Showing error 995

User: Jiri Slaby
Error type: Leaving function in locked state
Error type description: Some lock is not unlocked on all paths of a function, so it is leaked
File location: fs/namei.c
Line in file: 1734
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2012-03-02 21:35:18 UTC


Source:

   1/*
   2 *  linux/fs/namei.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * Some corrections by tytso.
   9 */
  10
  11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  12 * lookup logic.
  13 */
  14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  15 */
  16
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/fs.h>
  21#include <linux/namei.h>
  22#include <linux/quotaops.h>
  23#include <linux/pagemap.h>
  24#include <linux/fsnotify.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/syscalls.h>
  28#include <linux/mount.h>
  29#include <linux/audit.h>
  30#include <linux/capability.h>
  31#include <linux/file.h>
  32#include <linux/fcntl.h>
  33#include <linux/device_cgroup.h>
  34#include <asm/uaccess.h>
  35
  36#define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
  37
  38/* [Feb-1997 T. Schoebel-Theuer]
  39 * Fundamental changes in the pathname lookup mechanisms (namei)
  40 * were necessary because of omirr.  The reason is that omirr needs
  41 * to know the _real_ pathname, not the user-supplied one, in case
  42 * of symlinks (and also when transname replacements occur).
  43 *
  44 * The new code replaces the old recursive symlink resolution with
  45 * an iterative one (in case of non-nested symlink chains).  It does
  46 * this with calls to <fs>_follow_link().
  47 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  48 * replaced with a single function lookup_dentry() that can handle all 
  49 * the special cases of the former code.
  50 *
  51 * With the new dcache, the pathname is stored at each inode, at least as
  52 * long as the refcount of the inode is positive.  As a side effect, the
  53 * size of the dcache depends on the inode cache and thus is dynamic.
  54 *
  55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  56 * resolution to correspond with current state of the code.
  57 *
  58 * Note that the symlink resolution is not *completely* iterative.
  59 * There is still a significant amount of tail- and mid- recursion in
  60 * the algorithm.  Also, note that <fs>_readlink() is not used in
  61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  62 * may return different results than <fs>_follow_link().  Many virtual
  63 * filesystems (including /proc) exhibit this behavior.
  64 */
  65
  66/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  68 * and the name already exists in form of a symlink, try to create the new
  69 * name indicated by the symlink. The old code always complained that the
  70 * name already exists, due to not following the symlink even if its target
  71 * is nonexistent.  The new semantics affects also mknod() and link() when
  72 * the name is a symlink pointing to a non-existant name.
  73 *
  74 * I don't know which semantics is the right one, since I have no access
  75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  77 * "old" one. Personally, I think the new semantics is much more logical.
  78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  79 * file does succeed in both HP-UX and SunOs, but not in Solaris
  80 * and in the old Linux semantics.
  81 */
  82
  83/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  84 * semantics.  See the comments in "open_namei" and "do_link" below.
  85 *
  86 * [10-Sep-98 Alan Modra] Another symlink change.
  87 */
  88
  89/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  90 *        inside the path - always follow.
  91 *        in the last component in creation/removal/renaming - never follow.
  92 *        if LOOKUP_FOLLOW passed - follow.
  93 *        if the pathname has trailing slashes - follow.
  94 *        otherwise - don't follow.
  95 * (applied in that order).
  96 *
  97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
  98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
  99 * During the 2.4 we need to fix the userland stuff depending on it -
 100 * hopefully we will be able to get rid of that wart in 2.5. So far only
 101 * XEmacs seems to be relying on it...
 102 */
 103/*
 104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 105 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 106 * any extra contention...
 107 */
 108
 109static int __link_path_walk(const char *name, struct nameidata *nd);
 110
 111/* In order to reduce some races, while at the same time doing additional
 112 * checking and hopefully speeding things up, we copy filenames to the
 113 * kernel data space before using them..
 114 *
 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 116 * PATH_MAX includes the nul terminator --RR.
 117 */
 118static int do_getname(const char __user *filename, char *page)
 119{
 120        int retval;
 121        unsigned long len = PATH_MAX;
 122
 123        if (!segment_eq(get_fs(), KERNEL_DS)) {
 124                if ((unsigned long) filename >= TASK_SIZE)
 125                        return -EFAULT;
 126                if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
 127                        len = TASK_SIZE - (unsigned long) filename;
 128        }
 129
 130        retval = strncpy_from_user(page, filename, len);
 131        if (retval > 0) {
 132                if (retval < len)
 133                        return 0;
 134                return -ENAMETOOLONG;
 135        } else if (!retval)
 136                retval = -ENOENT;
 137        return retval;
 138}
 139
 140char * getname(const char __user * filename)
 141{
 142        char *tmp, *result;
 143
 144        result = ERR_PTR(-ENOMEM);
 145        tmp = __getname();
 146        if (tmp)  {
 147                int retval = do_getname(filename, tmp);
 148
 149                result = tmp;
 150                if (retval < 0) {
 151                        __putname(tmp);
 152                        result = ERR_PTR(retval);
 153                }
 154        }
 155        audit_getname(result);
 156        return result;
 157}
 158
 159#ifdef CONFIG_AUDITSYSCALL
 160void putname(const char *name)
 161{
 162        if (unlikely(!audit_dummy_context()))
 163                audit_putname(name);
 164        else
 165                __putname(name);
 166}
 167EXPORT_SYMBOL(putname);
 168#endif
 169
 170
 171/**
 172 * generic_permission  -  check for access rights on a Posix-like filesystem
 173 * @inode:        inode to check access rights for
 174 * @mask:        right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 175 * @check_acl:        optional callback to check for Posix ACLs
 176 *
 177 * Used to check for read/write/execute permissions on a file.
 178 * We use "fsuid" for this, letting us set arbitrary permissions
 179 * for filesystem access without changing the "normal" uids which
 180 * are used for other things..
 181 */
 182int generic_permission(struct inode *inode, int mask,
 183                int (*check_acl)(struct inode *inode, int mask))
 184{
 185        umode_t                        mode = inode->i_mode;
 186
 187        mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 188
 189        if (current->fsuid == inode->i_uid)
 190                mode >>= 6;
 191        else {
 192                if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
 193                        int error = check_acl(inode, mask);
 194                        if (error == -EACCES)
 195                                goto check_capabilities;
 196                        else if (error != -EAGAIN)
 197                                return error;
 198                }
 199
 200                if (in_group_p(inode->i_gid))
 201                        mode >>= 3;
 202        }
 203
 204        /*
 205         * If the DACs are ok we don't need any capability check.
 206         */
 207        if ((mask & ~mode) == 0)
 208                return 0;
 209
 210 check_capabilities:
 211        /*
 212         * Read/write DACs are always overridable.
 213         * Executable DACs are overridable if at least one exec bit is set.
 214         */
 215        if (!(mask & MAY_EXEC) || execute_ok(inode))
 216                if (capable(CAP_DAC_OVERRIDE))
 217                        return 0;
 218
 219        /*
 220         * Searching includes executable on directories, else just read.
 221         */
 222        if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
 223                if (capable(CAP_DAC_READ_SEARCH))
 224                        return 0;
 225
 226        return -EACCES;
 227}
 228
 229int inode_permission(struct inode *inode, int mask)
 230{
 231        int retval;
 232
 233        if (mask & MAY_WRITE) {
 234                umode_t mode = inode->i_mode;
 235
 236                /*
 237                 * Nobody gets write access to a read-only fs.
 238                 */
 239                if (IS_RDONLY(inode) &&
 240                    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 241                        return -EROFS;
 242
 243                /*
 244                 * Nobody gets write access to an immutable file.
 245                 */
 246                if (IS_IMMUTABLE(inode))
 247                        return -EACCES;
 248        }
 249
 250        /* Ordinary permission routines do not understand MAY_APPEND. */
 251        if (inode->i_op && inode->i_op->permission)
 252                retval = inode->i_op->permission(inode, mask);
 253        else
 254                retval = generic_permission(inode, mask, NULL);
 255
 256        if (retval)
 257                return retval;
 258
 259        retval = devcgroup_inode_permission(inode, mask);
 260        if (retval)
 261                return retval;
 262
 263        return security_inode_permission(inode,
 264                        mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
 265}
 266
 267/**
 268 * vfs_permission  -  check for access rights to a given path
 269 * @nd:                lookup result that describes the path
 270 * @mask:        right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 271 *
 272 * Used to check for read/write/execute permissions on a path.
 273 * We use "fsuid" for this, letting us set arbitrary permissions
 274 * for filesystem access without changing the "normal" uids which
 275 * are used for other things.
 276 */
 277int vfs_permission(struct nameidata *nd, int mask)
 278{
 279        return inode_permission(nd->path.dentry->d_inode, mask);
 280}
 281
 282/**
 283 * file_permission  -  check for additional access rights to a given file
 284 * @file:        file to check access rights for
 285 * @mask:        right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 286 *
 287 * Used to check for read/write/execute permissions on an already opened
 288 * file.
 289 *
 290 * Note:
 291 *        Do not use this function in new code.  All access checks should
 292 *        be done using vfs_permission().
 293 */
 294int file_permission(struct file *file, int mask)
 295{
 296        return inode_permission(file->f_path.dentry->d_inode, mask);
 297}
 298
 299/*
 300 * get_write_access() gets write permission for a file.
 301 * put_write_access() releases this write permission.
 302 * This is used for regular files.
 303 * We cannot support write (and maybe mmap read-write shared) accesses and
 304 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
 305 * can have the following values:
 306 * 0: no writers, no VM_DENYWRITE mappings
 307 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
 308 * > 0: (i_writecount) users are writing to the file.
 309 *
 310 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
 311 * except for the cases where we don't hold i_writecount yet. Then we need to
 312 * use {get,deny}_write_access() - these functions check the sign and refuse
 313 * to do the change if sign is wrong. Exclusion between them is provided by
 314 * the inode->i_lock spinlock.
 315 */
 316
 317int get_write_access(struct inode * inode)
 318{
 319        spin_lock(&inode->i_lock);
 320        if (atomic_read(&inode->i_writecount) < 0) {
 321                spin_unlock(&inode->i_lock);
 322                return -ETXTBSY;
 323        }
 324        atomic_inc(&inode->i_writecount);
 325        spin_unlock(&inode->i_lock);
 326
 327        return 0;
 328}
 329
 330int deny_write_access(struct file * file)
 331{
 332        struct inode *inode = file->f_path.dentry->d_inode;
 333
 334        spin_lock(&inode->i_lock);
 335        if (atomic_read(&inode->i_writecount) > 0) {
 336                spin_unlock(&inode->i_lock);
 337                return -ETXTBSY;
 338        }
 339        atomic_dec(&inode->i_writecount);
 340        spin_unlock(&inode->i_lock);
 341
 342        return 0;
 343}
 344
 345/**
 346 * path_get - get a reference to a path
 347 * @path: path to get the reference to
 348 *
 349 * Given a path increment the reference count to the dentry and the vfsmount.
 350 */
 351void path_get(struct path *path)
 352{
 353        mntget(path->mnt);
 354        dget(path->dentry);
 355}
 356EXPORT_SYMBOL(path_get);
 357
 358/**
 359 * path_put - put a reference to a path
 360 * @path: path to put the reference to
 361 *
 362 * Given a path decrement the reference count to the dentry and the vfsmount.
 363 */
 364void path_put(struct path *path)
 365{
 366        dput(path->dentry);
 367        mntput(path->mnt);
 368}
 369EXPORT_SYMBOL(path_put);
 370
 371/**
 372 * release_open_intent - free up open intent resources
 373 * @nd: pointer to nameidata
 374 */
 375void release_open_intent(struct nameidata *nd)
 376{
 377        if (nd->intent.open.file->f_path.dentry == NULL)
 378                put_filp(nd->intent.open.file);
 379        else
 380                fput(nd->intent.open.file);
 381}
 382
 383static inline struct dentry *
 384do_revalidate(struct dentry *dentry, struct nameidata *nd)
 385{
 386        int status = dentry->d_op->d_revalidate(dentry, nd);
 387        if (unlikely(status <= 0)) {
 388                /*
 389                 * The dentry failed validation.
 390                 * If d_revalidate returned 0 attempt to invalidate
 391                 * the dentry otherwise d_revalidate is asking us
 392                 * to return a fail status.
 393                 */
 394                if (!status) {
 395                        if (!d_invalidate(dentry)) {
 396                                dput(dentry);
 397                                dentry = NULL;
 398                        }
 399                } else {
 400                        dput(dentry);
 401                        dentry = ERR_PTR(status);
 402                }
 403        }
 404        return dentry;
 405}
 406
 407/*
 408 * Internal lookup() using the new generic dcache.
 409 * SMP-safe
 410 */
 411static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
 412{
 413        struct dentry * dentry = __d_lookup(parent, name);
 414
 415        /* lockess __d_lookup may fail due to concurrent d_move() 
 416         * in some unrelated directory, so try with d_lookup
 417         */
 418        if (!dentry)
 419                dentry = d_lookup(parent, name);
 420
 421        if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
 422                dentry = do_revalidate(dentry, nd);
 423
 424        return dentry;
 425}
 426
 427/*
 428 * Short-cut version of permission(), for calling by
 429 * path_walk(), when dcache lock is held.  Combines parts
 430 * of permission() and generic_permission(), and tests ONLY for
 431 * MAY_EXEC permission.
 432 *
 433 * If appropriate, check DAC only.  If not appropriate, or
 434 * short-cut DAC fails, then call permission() to do more
 435 * complete permission check.
 436 */
 437static int exec_permission_lite(struct inode *inode)
 438{
 439        umode_t        mode = inode->i_mode;
 440
 441        if (inode->i_op && inode->i_op->permission)
 442                return -EAGAIN;
 443
 444        if (current->fsuid == inode->i_uid)
 445                mode >>= 6;
 446        else if (in_group_p(inode->i_gid))
 447                mode >>= 3;
 448
 449        if (mode & MAY_EXEC)
 450                goto ok;
 451
 452        if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
 453                goto ok;
 454
 455        if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
 456                goto ok;
 457
 458        if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
 459                goto ok;
 460
 461        return -EACCES;
 462ok:
 463        return security_inode_permission(inode, MAY_EXEC);
 464}
 465
 466/*
 467 * This is called when everything else fails, and we actually have
 468 * to go to the low-level filesystem to find out what we should do..
 469 *
 470 * We get the directory semaphore, and after getting that we also
 471 * make sure that nobody added the entry to the dcache in the meantime..
 472 * SMP-safe
 473 */
 474static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
 475{
 476        struct dentry * result;
 477        struct inode *dir = parent->d_inode;
 478
 479        mutex_lock(&dir->i_mutex);
 480        /*
 481         * First re-do the cached lookup just in case it was created
 482         * while we waited for the directory semaphore..
 483         *
 484         * FIXME! This could use version numbering or similar to
 485         * avoid unnecessary cache lookups.
 486         *
 487         * The "dcache_lock" is purely to protect the RCU list walker
 488         * from concurrent renames at this point (we mustn't get false
 489         * negatives from the RCU list walk here, unlike the optimistic
 490         * fast walk).
 491         *
 492         * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
 493         */
 494        result = d_lookup(parent, name);
 495        if (!result) {
 496                struct dentry *dentry;
 497
 498                /* Don't create child dentry for a dead directory. */
 499                result = ERR_PTR(-ENOENT);
 500                if (IS_DEADDIR(dir))
 501                        goto out_unlock;
 502
 503                dentry = d_alloc(parent, name);
 504                result = ERR_PTR(-ENOMEM);
 505                if (dentry) {
 506                        result = dir->i_op->lookup(dir, dentry, nd);
 507                        if (result)
 508                                dput(dentry);
 509                        else
 510                                result = dentry;
 511                }
 512out_unlock:
 513                mutex_unlock(&dir->i_mutex);
 514                return result;
 515        }
 516
 517        /*
 518         * Uhhuh! Nasty case: the cache was re-populated while
 519         * we waited on the semaphore. Need to revalidate.
 520         */
 521        mutex_unlock(&dir->i_mutex);
 522        if (result->d_op && result->d_op->d_revalidate) {
 523                result = do_revalidate(result, nd);
 524                if (!result)
 525                        result = ERR_PTR(-ENOENT);
 526        }
 527        return result;
 528}
 529
 530/* SMP-safe */
 531static __always_inline void
 532walk_init_root(const char *name, struct nameidata *nd)
 533{
 534        struct fs_struct *fs = current->fs;
 535
 536        read_lock(&fs->lock);
 537        nd->path = fs->root;
 538        path_get(&fs->root);
 539        read_unlock(&fs->lock);
 540}
 541
 542/*
 543 * Wrapper to retry pathname resolution whenever the underlying
 544 * file system returns an ESTALE.
 545 *
 546 * Retry the whole path once, forcing real lookup requests
 547 * instead of relying on the dcache.
 548 */
 549static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
 550{
 551        struct path save = nd->path;
 552        int result;
 553
 554        /* make sure the stuff we saved doesn't go away */
 555        path_get(&save);
 556
 557        result = __link_path_walk(name, nd);
 558        if (result == -ESTALE) {
 559                /* nd->path had been dropped */
 560                nd->path = save;
 561                path_get(&nd->path);
 562                nd->flags |= LOOKUP_REVAL;
 563                result = __link_path_walk(name, nd);
 564        }
 565
 566        path_put(&save);
 567
 568        return result;
 569}
 570
 571static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
 572{
 573        int res = 0;
 574        char *name;
 575        if (IS_ERR(link))
 576                goto fail;
 577
 578        if (*link == '/') {
 579                path_put(&nd->path);
 580                walk_init_root(link, nd);
 581        }
 582        res = link_path_walk(link, nd);
 583        if (nd->depth || res || nd->last_type!=LAST_NORM)
 584                return res;
 585        /*
 586         * If it is an iterative symlinks resolution in open_namei() we
 587         * have to copy the last component. And all that crap because of
 588         * bloody create() on broken symlinks. Furrfu...
 589         */
 590        name = __getname();
 591        if (unlikely(!name)) {
 592                path_put(&nd->path);
 593                return -ENOMEM;
 594        }
 595        strcpy(name, nd->last.name);
 596        nd->last.name = name;
 597        return 0;
 598fail:
 599        path_put(&nd->path);
 600        return PTR_ERR(link);
 601}
 602
 603static void path_put_conditional(struct path *path, struct nameidata *nd)
 604{
 605        dput(path->dentry);
 606        if (path->mnt != nd->path.mnt)
 607                mntput(path->mnt);
 608}
 609
 610static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
 611{
 612        dput(nd->path.dentry);
 613        if (nd->path.mnt != path->mnt)
 614                mntput(nd->path.mnt);
 615        nd->path.mnt = path->mnt;
 616        nd->path.dentry = path->dentry;
 617}
 618
 619static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
 620{
 621        int error;
 622        void *cookie;
 623        struct dentry *dentry = path->dentry;
 624
 625        touch_atime(path->mnt, dentry);
 626        nd_set_link(nd, NULL);
 627
 628        if (path->mnt != nd->path.mnt) {
 629                path_to_nameidata(path, nd);
 630                dget(dentry);
 631        }
 632        mntget(path->mnt);
 633        cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
 634        error = PTR_ERR(cookie);
 635        if (!IS_ERR(cookie)) {
 636                char *s = nd_get_link(nd);
 637                error = 0;
 638                if (s)
 639                        error = __vfs_follow_link(nd, s);
 640                if (dentry->d_inode->i_op->put_link)
 641                        dentry->d_inode->i_op->put_link(dentry, nd, cookie);
 642        }
 643        path_put(path);
 644
 645        return error;
 646}
 647
 648/*
 649 * This limits recursive symlink follows to 8, while
 650 * limiting consecutive symlinks to 40.
 651 *
 652 * Without that kind of total limit, nasty chains of consecutive
 653 * symlinks can cause almost arbitrarily long lookups. 
 654 */
 655static inline int do_follow_link(struct path *path, struct nameidata *nd)
 656{
 657        int err = -ELOOP;
 658        if (current->link_count >= MAX_NESTED_LINKS)
 659                goto loop;
 660        if (current->total_link_count >= 40)
 661                goto loop;
 662        BUG_ON(nd->depth >= MAX_NESTED_LINKS);
 663        cond_resched();
 664        err = security_inode_follow_link(path->dentry, nd);
 665        if (err)
 666                goto loop;
 667        current->link_count++;
 668        current->total_link_count++;
 669        nd->depth++;
 670        err = __do_follow_link(path, nd);
 671        current->link_count--;
 672        nd->depth--;
 673        return err;
 674loop:
 675        path_put_conditional(path, nd);
 676        path_put(&nd->path);
 677        return err;
 678}
 679
 680int follow_up(struct vfsmount **mnt, struct dentry **dentry)
 681{
 682        struct vfsmount *parent;
 683        struct dentry *mountpoint;
 684        spin_lock(&vfsmount_lock);
 685        parent=(*mnt)->mnt_parent;
 686        if (parent == *mnt) {
 687                spin_unlock(&vfsmount_lock);
 688                return 0;
 689        }
 690        mntget(parent);
 691        mountpoint=dget((*mnt)->mnt_mountpoint);
 692        spin_unlock(&vfsmount_lock);
 693        dput(*dentry);
 694        *dentry = mountpoint;
 695        mntput(*mnt);
 696        *mnt = parent;
 697        return 1;
 698}
 699
 700/* no need for dcache_lock, as serialization is taken care in
 701 * namespace.c
 702 */
 703static int __follow_mount(struct path *path)
 704{
 705        int res = 0;
 706        while (d_mountpoint(path->dentry)) {
 707                struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
 708                if (!mounted)
 709                        break;
 710                dput(path->dentry);
 711                if (res)
 712                        mntput(path->mnt);
 713                path->mnt = mounted;
 714                path->dentry = dget(mounted->mnt_root);
 715                res = 1;
 716        }
 717        return res;
 718}
 719
 720static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
 721{
 722        while (d_mountpoint(*dentry)) {
 723                struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
 724                if (!mounted)
 725                        break;
 726                dput(*dentry);
 727                mntput(*mnt);
 728                *mnt = mounted;
 729                *dentry = dget(mounted->mnt_root);
 730        }
 731}
 732
 733/* no need for dcache_lock, as serialization is taken care in
 734 * namespace.c
 735 */
 736int follow_down(struct vfsmount **mnt, struct dentry **dentry)
 737{
 738        struct vfsmount *mounted;
 739
 740        mounted = lookup_mnt(*mnt, *dentry);
 741        if (mounted) {
 742                dput(*dentry);
 743                mntput(*mnt);
 744                *mnt = mounted;
 745                *dentry = dget(mounted->mnt_root);
 746                return 1;
 747        }
 748        return 0;
 749}
 750
 751static __always_inline void follow_dotdot(struct nameidata *nd)
 752{
 753        struct fs_struct *fs = current->fs;
 754
 755        while(1) {
 756                struct vfsmount *parent;
 757                struct dentry *old = nd->path.dentry;
 758
 759                read_lock(&fs->lock);
 760                if (nd->path.dentry == fs->root.dentry &&
 761                    nd->path.mnt == fs->root.mnt) {
 762                        read_unlock(&fs->lock);
 763                        break;
 764                }
 765                read_unlock(&fs->lock);
 766                spin_lock(&dcache_lock);
 767                if (nd->path.dentry != nd->path.mnt->mnt_root) {
 768                        nd->path.dentry = dget(nd->path.dentry->d_parent);
 769                        spin_unlock(&dcache_lock);
 770                        dput(old);
 771                        break;
 772                }
 773                spin_unlock(&dcache_lock);
 774                spin_lock(&vfsmount_lock);
 775                parent = nd->path.mnt->mnt_parent;
 776                if (parent == nd->path.mnt) {
 777                        spin_unlock(&vfsmount_lock);
 778                        break;
 779                }
 780                mntget(parent);
 781                nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
 782                spin_unlock(&vfsmount_lock);
 783                dput(old);
 784                mntput(nd->path.mnt);
 785                nd->path.mnt = parent;
 786        }
 787        follow_mount(&nd->path.mnt, &nd->path.dentry);
 788}
 789
 790/*
 791 *  It's more convoluted than I'd like it to be, but... it's still fairly
 792 *  small and for now I'd prefer to have fast path as straight as possible.
 793 *  It _is_ time-critical.
 794 */
 795static int do_lookup(struct nameidata *nd, struct qstr *name,
 796                     struct path *path)
 797{
 798        struct vfsmount *mnt = nd->path.mnt;
 799        struct dentry *dentry = __d_lookup(nd->path.dentry, name);
 800
 801        if (!dentry)
 802                goto need_lookup;
 803        if (dentry->d_op && dentry->d_op->d_revalidate)
 804                goto need_revalidate;
 805done:
 806        path->mnt = mnt;
 807        path->dentry = dentry;
 808        __follow_mount(path);
 809        return 0;
 810
 811need_lookup:
 812        dentry = real_lookup(nd->path.dentry, name, nd);
 813        if (IS_ERR(dentry))
 814                goto fail;
 815        goto done;
 816
 817need_revalidate:
 818        dentry = do_revalidate(dentry, nd);
 819        if (!dentry)
 820                goto need_lookup;
 821        if (IS_ERR(dentry))
 822                goto fail;
 823        goto done;
 824
 825fail:
 826        return PTR_ERR(dentry);
 827}
 828
 829/*
 830 * Name resolution.
 831 * This is the basic name resolution function, turning a pathname into
 832 * the final dentry. We expect 'base' to be positive and a directory.
 833 *
 834 * Returns 0 and nd will have valid dentry and mnt on success.
 835 * Returns error and drops reference to input namei data on failure.
 836 */
 837static int __link_path_walk(const char *name, struct nameidata *nd)
 838{
 839        struct path next;
 840        struct inode *inode;
 841        int err;
 842        unsigned int lookup_flags = nd->flags;
 843        
 844        while (*name=='/')
 845                name++;
 846        if (!*name)
 847                goto return_reval;
 848
 849        inode = nd->path.dentry->d_inode;
 850        if (nd->depth)
 851                lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
 852
 853        /* At this point we know we have a real path component. */
 854        for(;;) {
 855                unsigned long hash;
 856                struct qstr this;
 857                unsigned int c;
 858
 859                nd->flags |= LOOKUP_CONTINUE;
 860                err = exec_permission_lite(inode);
 861                if (err == -EAGAIN)
 862                        err = vfs_permission(nd, MAY_EXEC);
 863                 if (err)
 864                        break;
 865
 866                this.name = name;
 867                c = *(const unsigned char *)name;
 868
 869                hash = init_name_hash();
 870                do {
 871                        name++;
 872                        hash = partial_name_hash(c, hash);
 873                        c = *(const unsigned char *)name;
 874                } while (c && (c != '/'));
 875                this.len = name - (const char *) this.name;
 876                this.hash = end_name_hash(hash);
 877
 878                /* remove trailing slashes? */
 879                if (!c)
 880                        goto last_component;
 881                while (*++name == '/');
 882                if (!*name)
 883                        goto last_with_slashes;
 884
 885                /*
 886                 * "." and ".." are special - ".." especially so because it has
 887                 * to be able to know about the current root directory and
 888                 * parent relationships.
 889                 */
 890                if (this.name[0] == '.') switch (this.len) {
 891                        default:
 892                                break;
 893                        case 2:        
 894                                if (this.name[1] != '.')
 895                                        break;
 896                                follow_dotdot(nd);
 897                                inode = nd->path.dentry->d_inode;
 898                                /* fallthrough */
 899                        case 1:
 900                                continue;
 901                }
 902                /*
 903                 * See if the low-level filesystem might want
 904                 * to use its own hash..
 905                 */
 906                if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
 907                        err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
 908                                                            &this);
 909                        if (err < 0)
 910                                break;
 911                }
 912                /* This does the actual lookups.. */
 913                err = do_lookup(nd, &this, &next);
 914                if (err)
 915                        break;
 916
 917                err = -ENOENT;
 918                inode = next.dentry->d_inode;
 919                if (!inode)
 920                        goto out_dput;
 921                err = -ENOTDIR; 
 922                if (!inode->i_op)
 923                        goto out_dput;
 924
 925                if (inode->i_op->follow_link) {
 926                        err = do_follow_link(&next, nd);
 927                        if (err)
 928                                goto return_err;
 929                        err = -ENOENT;
 930                        inode = nd->path.dentry->d_inode;
 931                        if (!inode)
 932                                break;
 933                        err = -ENOTDIR; 
 934                        if (!inode->i_op)
 935                                break;
 936                } else
 937                        path_to_nameidata(&next, nd);
 938                err = -ENOTDIR; 
 939                if (!inode->i_op->lookup)
 940                        break;
 941                continue;
 942                /* here ends the main loop */
 943
 944last_with_slashes:
 945                lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
 946last_component:
 947                /* Clear LOOKUP_CONTINUE iff it was previously unset */
 948                nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
 949                if (lookup_flags & LOOKUP_PARENT)
 950                        goto lookup_parent;
 951                if (this.name[0] == '.') switch (this.len) {
 952                        default:
 953                                break;
 954                        case 2:        
 955                                if (this.name[1] != '.')
 956                                        break;
 957                                follow_dotdot(nd);
 958                                inode = nd->path.dentry->d_inode;
 959                                /* fallthrough */
 960                        case 1:
 961                                goto return_reval;
 962                }
 963                if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
 964                        err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
 965                                                            &this);
 966                        if (err < 0)
 967                                break;
 968                }
 969                err = do_lookup(nd, &this, &next);
 970                if (err)
 971                        break;
 972                inode = next.dentry->d_inode;
 973                if ((lookup_flags & LOOKUP_FOLLOW)
 974                    && inode && inode->i_op && inode->i_op->follow_link) {
 975                        err = do_follow_link(&next, nd);
 976                        if (err)
 977                                goto return_err;
 978                        inode = nd->path.dentry->d_inode;
 979                } else
 980                        path_to_nameidata(&next, nd);
 981                err = -ENOENT;
 982                if (!inode)
 983                        break;
 984                if (lookup_flags & LOOKUP_DIRECTORY) {
 985                        err = -ENOTDIR; 
 986                        if (!inode->i_op || !inode->i_op->lookup)
 987                                break;
 988                }
 989                goto return_base;
 990lookup_parent:
 991                nd->last = this;
 992                nd->last_type = LAST_NORM;
 993                if (this.name[0] != '.')
 994                        goto return_base;
 995                if (this.len == 1)
 996                        nd->last_type = LAST_DOT;
 997                else if (this.len == 2 && this.name[1] == '.')
 998                        nd->last_type = LAST_DOTDOT;
 999                else
1000                        goto return_base;
1001return_reval:
1002                /*
1003                 * We bypassed the ordinary revalidation routines.
1004                 * We may need to check the cached dentry for staleness.
1005                 */
1006                if (nd->path.dentry && nd->path.dentry->d_sb &&
1007                    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1008                        err = -ESTALE;
1009                        /* Note: we do not d_invalidate() */
1010                        if (!nd->path.dentry->d_op->d_revalidate(
1011                                        nd->path.dentry, nd))
1012                                break;
1013                }
1014return_base:
1015                return 0;
1016out_dput:
1017                path_put_conditional(&next, nd);
1018                break;
1019        }
1020        path_put(&nd->path);
1021return_err:
1022        return err;
1023}
1024
1025static int path_walk(const char *name, struct nameidata *nd)
1026{
1027        current->total_link_count = 0;
1028        return link_path_walk(name, nd);
1029}
1030
1031/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1032static int do_path_lookup(int dfd, const char *name,
1033                                unsigned int flags, struct nameidata *nd)
1034{
1035        int retval = 0;
1036        int fput_needed;
1037        struct file *file;
1038        struct fs_struct *fs = current->fs;
1039
1040        nd->last_type = LAST_ROOT; /* if there are only slashes... */
1041        nd->flags = flags;
1042        nd->depth = 0;
1043
1044        if (*name=='/') {
1045                read_lock(&fs->lock);
1046                nd->path = fs->root;
1047                path_get(&fs->root);
1048                read_unlock(&fs->lock);
1049        } else if (dfd == AT_FDCWD) {
1050                read_lock(&fs->lock);
1051                nd->path = fs->pwd;
1052                path_get(&fs->pwd);
1053                read_unlock(&fs->lock);
1054        } else {
1055                struct dentry *dentry;
1056
1057                file = fget_light(dfd, &fput_needed);
1058                retval = -EBADF;
1059                if (!file)
1060                        goto out_fail;
1061
1062                dentry = file->f_path.dentry;
1063
1064                retval = -ENOTDIR;
1065                if (!S_ISDIR(dentry->d_inode->i_mode))
1066                        goto fput_fail;
1067
1068                retval = file_permission(file, MAY_EXEC);
1069                if (retval)
1070                        goto fput_fail;
1071
1072                nd->path = file->f_path;
1073                path_get(&file->f_path);
1074
1075                fput_light(file, fput_needed);
1076        }
1077
1078        retval = path_walk(name, nd);
1079        if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1080                                nd->path.dentry->d_inode))
1081                audit_inode(name, nd->path.dentry);
1082out_fail:
1083        return retval;
1084
1085fput_fail:
1086        fput_light(file, fput_needed);
1087        goto out_fail;
1088}
1089
1090int path_lookup(const char *name, unsigned int flags,
1091                        struct nameidata *nd)
1092{
1093        return do_path_lookup(AT_FDCWD, name, flags, nd);
1094}
1095
1096int kern_path(const char *name, unsigned int flags, struct path *path)
1097{
1098        struct nameidata nd;
1099        int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1100        if (!res)
1101                *path = nd.path;
1102        return res;
1103}
1104
1105/**
1106 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1107 * @dentry:  pointer to dentry of the base directory
1108 * @mnt: pointer to vfs mount of the base directory
1109 * @name: pointer to file name
1110 * @flags: lookup flags
1111 * @nd: pointer to nameidata
1112 */
1113int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1114                    const char *name, unsigned int flags,
1115                    struct nameidata *nd)
1116{
1117        int retval;
1118
1119        /* same as do_path_lookup */
1120        nd->last_type = LAST_ROOT;
1121        nd->flags = flags;
1122        nd->depth = 0;
1123
1124        nd->path.dentry = dentry;
1125        nd->path.mnt = mnt;
1126        path_get(&nd->path);
1127
1128        retval = path_walk(name, nd);
1129        if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1130                                nd->path.dentry->d_inode))
1131                audit_inode(name, nd->path.dentry);
1132
1133        return retval;
1134
1135}
1136
1137/**
1138 * path_lookup_open - lookup a file path with open intent
1139 * @dfd: the directory to use as base, or AT_FDCWD
1140 * @name: pointer to file name
1141 * @lookup_flags: lookup intent flags
1142 * @nd: pointer to nameidata
1143 * @open_flags: open intent flags
1144 */
1145int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1146                struct nameidata *nd, int open_flags)
1147{
1148        struct file *filp = get_empty_filp();
1149        int err;
1150
1151        if (filp == NULL)
1152                return -ENFILE;
1153        nd->intent.open.file = filp;
1154        nd->intent.open.flags = open_flags;
1155        nd->intent.open.create_mode = 0;
1156        err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1157        if (IS_ERR(nd->intent.open.file)) {
1158                if (err == 0) {
1159                        err = PTR_ERR(nd->intent.open.file);
1160                        path_put(&nd->path);
1161                }
1162        } else if (err != 0)
1163                release_open_intent(nd);
1164        return err;
1165}
1166
1167static struct dentry *__lookup_hash(struct qstr *name,
1168                struct dentry *base, struct nameidata *nd)
1169{
1170        struct dentry *dentry;
1171        struct inode *inode;
1172        int err;
1173
1174        inode = base->d_inode;
1175
1176        /*
1177         * See if the low-level filesystem might want
1178         * to use its own hash..
1179         */
1180        if (base->d_op && base->d_op->d_hash) {
1181                err = base->d_op->d_hash(base, name);
1182                dentry = ERR_PTR(err);
1183                if (err < 0)
1184                        goto out;
1185        }
1186
1187        dentry = cached_lookup(base, name, nd);
1188        if (!dentry) {
1189                struct dentry *new;
1190
1191                /* Don't create child dentry for a dead directory. */
1192                dentry = ERR_PTR(-ENOENT);
1193                if (IS_DEADDIR(inode))
1194                        goto out;
1195
1196                new = d_alloc(base, name);
1197                dentry = ERR_PTR(-ENOMEM);
1198                if (!new)
1199                        goto out;
1200                dentry = inode->i_op->lookup(inode, new, nd);
1201                if (!dentry)
1202                        dentry = new;
1203                else
1204                        dput(new);
1205        }
1206out:
1207        return dentry;
1208}
1209
1210/*
1211 * Restricted form of lookup. Doesn't follow links, single-component only,
1212 * needs parent already locked. Doesn't follow mounts.
1213 * SMP-safe.
1214 */
1215static struct dentry *lookup_hash(struct nameidata *nd)
1216{
1217        int err;
1218
1219        err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1220        if (err)
1221                return ERR_PTR(err);
1222        return __lookup_hash(&nd->last, nd->path.dentry, nd);
1223}
1224
1225static int __lookup_one_len(const char *name, struct qstr *this,
1226                struct dentry *base, int len)
1227{
1228        unsigned long hash;
1229        unsigned int c;
1230
1231        this->name = name;
1232        this->len = len;
1233        if (!len)
1234                return -EACCES;
1235
1236        hash = init_name_hash();
1237        while (len--) {
1238                c = *(const unsigned char *)name++;
1239                if (c == '/' || c == '\0')
1240                        return -EACCES;
1241                hash = partial_name_hash(c, hash);
1242        }
1243        this->hash = end_name_hash(hash);
1244        return 0;
1245}
1246
1247/**
1248 * lookup_one_len - filesystem helper to lookup single pathname component
1249 * @name:        pathname component to lookup
1250 * @base:        base directory to lookup from
1251 * @len:        maximum length @len should be interpreted to
1252 *
1253 * Note that this routine is purely a helper for filesystem usage and should
1254 * not be called by generic code.  Also note that by using this function the
1255 * nameidata argument is passed to the filesystem methods and a filesystem
1256 * using this helper needs to be prepared for that.
1257 */
1258struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1259{
1260        int err;
1261        struct qstr this;
1262
1263        err = __lookup_one_len(name, &this, base, len);
1264        if (err)
1265                return ERR_PTR(err);
1266
1267        err = inode_permission(base->d_inode, MAY_EXEC);
1268        if (err)
1269                return ERR_PTR(err);
1270        return __lookup_hash(&this, base, NULL);
1271}
1272
1273/**
1274 * lookup_one_noperm - bad hack for sysfs
1275 * @name:        pathname component to lookup
1276 * @base:        base directory to lookup from
1277 *
1278 * This is a variant of lookup_one_len that doesn't perform any permission
1279 * checks.   It's a horrible hack to work around the braindead sysfs
1280 * architecture and should not be used anywhere else.
1281 *
1282 * DON'T USE THIS FUNCTION EVER, thanks.
1283 */
1284struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1285{
1286        int err;
1287        struct qstr this;
1288
1289        err = __lookup_one_len(name, &this, base, strlen(name));
1290        if (err)
1291                return ERR_PTR(err);
1292        return __lookup_hash(&this, base, NULL);
1293}
1294
1295int user_path_at(int dfd, const char __user *name, unsigned flags,
1296                 struct path *path)
1297{
1298        struct nameidata nd;
1299        char *tmp = getname(name);
1300        int err = PTR_ERR(tmp);
1301        if (!IS_ERR(tmp)) {
1302
1303                BUG_ON(flags & LOOKUP_PARENT);
1304
1305                err = do_path_lookup(dfd, tmp, flags, &nd);
1306                putname(tmp);
1307                if (!err)
1308                        *path = nd.path;
1309        }
1310        return err;
1311}
1312
1313static int user_path_parent(int dfd, const char __user *path,
1314                        struct nameidata *nd, char **name)
1315{
1316        char *s = getname(path);
1317        int error;
1318
1319        if (IS_ERR(s))
1320                return PTR_ERR(s);
1321
1322        error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1323        if (error)
1324                putname(s);
1325        else
1326                *name = s;
1327
1328        return error;
1329}
1330
1331/*
1332 * It's inline, so penalty for filesystems that don't use sticky bit is
1333 * minimal.
1334 */
1335static inline int check_sticky(struct inode *dir, struct inode *inode)
1336{
1337        if (!(dir->i_mode & S_ISVTX))
1338                return 0;
1339        if (inode->i_uid == current->fsuid)
1340                return 0;
1341        if (dir->i_uid == current->fsuid)
1342                return 0;
1343        return !capable(CAP_FOWNER);
1344}
1345
1346/*
1347 *        Check whether we can remove a link victim from directory dir, check
1348 *  whether the type of victim is right.
1349 *  1. We can't do it if dir is read-only (done in permission())
1350 *  2. We should have write and exec permissions on dir
1351 *  3. We can't remove anything from append-only dir
1352 *  4. We can't do anything with immutable dir (done in permission())
1353 *  5. If the sticky bit on dir is set we should either
1354 *        a. be owner of dir, or
1355 *        b. be owner of victim, or
1356 *        c. have CAP_FOWNER capability
1357 *  6. If the victim is append-only or immutable we can't do antyhing with
1358 *     links pointing to it.
1359 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1360 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1361 *  9. We can't remove a root or mountpoint.
1362 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1363 *     nfs_async_unlink().
1364 */
1365static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1366{
1367        int error;
1368
1369        if (!victim->d_inode)
1370                return -ENOENT;
1371
1372        BUG_ON(victim->d_parent->d_inode != dir);
1373        audit_inode_child(victim->d_name.name, victim, dir);
1374
1375        error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1376        if (error)
1377                return error;
1378        if (IS_APPEND(dir))
1379                return -EPERM;
1380        if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1381            IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1382                return -EPERM;
1383        if (isdir) {
1384                if (!S_ISDIR(victim->d_inode->i_mode))
1385                        return -ENOTDIR;
1386                if (IS_ROOT(victim))
1387                        return -EBUSY;
1388        } else if (S_ISDIR(victim->d_inode->i_mode))
1389                return -EISDIR;
1390        if (IS_DEADDIR(dir))
1391                return -ENOENT;
1392        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1393                return -EBUSY;
1394        return 0;
1395}
1396
1397/*        Check whether we can create an object with dentry child in directory
1398 *  dir.
1399 *  1. We can't do it if child already exists (open has special treatment for
1400 *     this case, but since we are inlined it's OK)
1401 *  2. We can't do it if dir is read-only (done in permission())
1402 *  3. We should have write and exec permissions on dir
1403 *  4. We can't do it if dir is immutable (done in permission())
1404 */
1405static inline int may_create(struct inode *dir, struct dentry *child)
1406{
1407        if (child->d_inode)
1408                return -EEXIST;
1409        if (IS_DEADDIR(dir))
1410                return -ENOENT;
1411        return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1412}
1413
1414/* 
1415 * O_DIRECTORY translates into forcing a directory lookup.
1416 */
1417static inline int lookup_flags(unsigned int f)
1418{
1419        unsigned long retval = LOOKUP_FOLLOW;
1420
1421        if (f & O_NOFOLLOW)
1422                retval &= ~LOOKUP_FOLLOW;
1423        
1424        if (f & O_DIRECTORY)
1425                retval |= LOOKUP_DIRECTORY;
1426
1427        return retval;
1428}
1429
1430/*
1431 * p1 and p2 should be directories on the same fs.
1432 */
1433struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1434{
1435        struct dentry *p;
1436
1437        if (p1 == p2) {
1438                mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1439                return NULL;
1440        }
1441
1442        mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1443
1444        p = d_ancestor(p2, p1);
1445        if (p) {
1446                mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1447                mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1448                return p;
1449        }
1450
1451        p = d_ancestor(p1, p2);
1452        if (p) {
1453                mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1454                mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1455                return p;
1456        }
1457
1458        mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1459        mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1460        return NULL;
1461}
1462
1463void unlock_rename(struct dentry *p1, struct dentry *p2)
1464{
1465        mutex_unlock(&p1->d_inode->i_mutex);
1466        if (p1 != p2) {
1467                mutex_unlock(&p2->d_inode->i_mutex);
1468                mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1469        }
1470}
1471
1472int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1473                struct nameidata *nd)
1474{
1475        int error = may_create(dir, dentry);
1476
1477        if (error)
1478                return error;
1479
1480        if (!dir->i_op || !dir->i_op->create)
1481                return -EACCES;        /* shouldn't it be ENOSYS? */
1482        mode &= S_IALLUGO;
1483        mode |= S_IFREG;
1484        error = security_inode_create(dir, dentry, mode);
1485        if (error)
1486                return error;
1487        DQUOT_INIT(dir);
1488        error = dir->i_op->create(dir, dentry, mode, nd);
1489        if (!error)
1490                fsnotify_create(dir, dentry);
1491        return error;
1492}
1493
1494int may_open(struct nameidata *nd, int acc_mode, int flag)
1495{
1496        struct dentry *dentry = nd->path.dentry;
1497        struct inode *inode = dentry->d_inode;
1498        int error;
1499
1500        if (!inode)
1501                return -ENOENT;
1502
1503        if (S_ISLNK(inode->i_mode))
1504                return -ELOOP;
1505        
1506        if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1507                return -EISDIR;
1508
1509        /*
1510         * FIFO's, sockets and device files are special: they don't
1511         * actually live on the filesystem itself, and as such you
1512         * can write to them even if the filesystem is read-only.
1513         */
1514        if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1515                    flag &= ~O_TRUNC;
1516        } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1517                if (nd->path.mnt->mnt_flags & MNT_NODEV)
1518                        return -EACCES;
1519
1520                flag &= ~O_TRUNC;
1521        }
1522
1523        error = vfs_permission(nd, acc_mode);
1524        if (error)
1525                return error;
1526        /*
1527         * An append-only file must be opened in append mode for writing.
1528         */
1529        if (IS_APPEND(inode)) {
1530                if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1531                        return -EPERM;
1532                if (flag & O_TRUNC)
1533                        return -EPERM;
1534        }
1535
1536        /* O_NOATIME can only be set by the owner or superuser */
1537        if (flag & O_NOATIME)
1538                if (!is_owner_or_cap(inode))
1539                        return -EPERM;
1540
1541        /*
1542         * Ensure there are no outstanding leases on the file.
1543         */
1544        error = break_lease(inode, flag);
1545        if (error)
1546                return error;
1547
1548        if (flag & O_TRUNC) {
1549                error = get_write_access(inode);
1550                if (error)
1551                        return error;
1552
1553                /*
1554                 * Refuse to truncate files with mandatory locks held on them.
1555                 */
1556                error = locks_verify_locked(inode);
1557                if (!error) {
1558                        DQUOT_INIT(inode);
1559
1560                        error = do_truncate(dentry, 0,
1561                                            ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1562                                            NULL);
1563                }
1564                put_write_access(inode);
1565                if (error)
1566                        return error;
1567        } else
1568                if (flag & FMODE_WRITE)
1569                        DQUOT_INIT(inode);
1570
1571        return 0;
1572}
1573
1574/*
1575 * Be careful about ever adding any more callers of this
1576 * function.  Its flags must be in the namei format, not
1577 * what get passed to sys_open().
1578 */
1579static int __open_namei_create(struct nameidata *nd, struct path *path,
1580                                int flag, int mode)
1581{
1582        int error;
1583        struct dentry *dir = nd->path.dentry;
1584
1585        if (!IS_POSIXACL(dir->d_inode))
1586                mode &= ~current->fs->umask;
1587        error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1588        mutex_unlock(&dir->d_inode->i_mutex);
1589        dput(nd->path.dentry);
1590        nd->path.dentry = path->dentry;
1591        if (error)
1592                return error;
1593        /* Don't check for write permission, don't truncate */
1594        return may_open(nd, 0, flag & ~O_TRUNC);
1595}
1596
1597/*
1598 * Note that while the flag value (low two bits) for sys_open means:
1599 *        00 - read-only
1600 *        01 - write-only
1601 *        10 - read-write
1602 *        11 - special
1603 * it is changed into
1604 *        00 - no permissions needed
1605 *        01 - read-permission
1606 *        10 - write-permission
1607 *        11 - read-write
1608 * for the internal routines (ie open_namei()/follow_link() etc)
1609 * This is more logical, and also allows the 00 "no perm needed"
1610 * to be used for symlinks (where the permissions are checked
1611 * later).
1612 *
1613*/
1614static inline int open_to_namei_flags(int flag)
1615{
1616        if ((flag+1) & O_ACCMODE)
1617                flag++;
1618        return flag;
1619}
1620
1621static int open_will_write_to_fs(int flag, struct inode *inode)
1622{
1623        /*
1624         * We'll never write to the fs underlying
1625         * a device file.
1626         */
1627        if (special_file(inode->i_mode))
1628                return 0;
1629        return (flag & O_TRUNC);
1630}
1631
1632/*
1633 * Note that the low bits of the passed in "open_flag"
1634 * are not the same as in the local variable "flag". See
1635 * open_to_namei_flags() for more details.
1636 */
1637struct file *do_filp_open(int dfd, const char *pathname,
1638                int open_flag, int mode)
1639{
1640        struct file *filp;
1641        struct nameidata nd;
1642        int acc_mode, error;
1643        struct path path;
1644        struct dentry *dir;
1645        int count = 0;
1646        int will_write;
1647        int flag = open_to_namei_flags(open_flag);
1648
1649        acc_mode = MAY_OPEN | ACC_MODE(flag);
1650
1651        /* O_TRUNC implies we need access checks for write permissions */
1652        if (flag & O_TRUNC)
1653                acc_mode |= MAY_WRITE;
1654
1655        /* Allow the LSM permission hook to distinguish append 
1656           access from general write access. */
1657        if (flag & O_APPEND)
1658                acc_mode |= MAY_APPEND;
1659
1660        /*
1661         * The simplest case - just a plain lookup.
1662         */
1663        if (!(flag & O_CREAT)) {
1664                error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1665                                         &nd, flag);
1666                if (error)
1667                        return ERR_PTR(error);
1668                goto ok;
1669        }
1670
1671        /*
1672         * Create - we need to know the parent.
1673         */
1674        error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1675        if (error)
1676                return ERR_PTR(error);
1677
1678        /*
1679         * We have the parent and last component. First of all, check
1680         * that we are not asked to creat(2) an obvious directory - that
1681         * will not do.
1682         */
1683        error = -EISDIR;
1684        if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1685                goto exit_parent;
1686
1687        error = -ENFILE;
1688        filp = get_empty_filp();
1689        if (filp == NULL)
1690                goto exit_parent;
1691        nd.intent.open.file = filp;
1692        nd.intent.open.flags = flag;
1693        nd.intent.open.create_mode = mode;
1694        dir = nd.path.dentry;
1695        nd.flags &= ~LOOKUP_PARENT;
1696        nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1697        if (flag & O_EXCL)
1698                nd.flags |= LOOKUP_EXCL;
1699        mutex_lock(&dir->d_inode->i_mutex);
1700        path.dentry = lookup_hash(&nd);
1701        path.mnt = nd.path.mnt;
1702
1703do_last:
1704        error = PTR_ERR(path.dentry);
1705        if (IS_ERR(path.dentry)) {
1706                mutex_unlock(&dir->d_inode->i_mutex);
1707                goto exit;
1708        }
1709
1710        if (IS_ERR(nd.intent.open.file)) {
1711                error = PTR_ERR(nd.intent.open.file);
1712                goto exit_mutex_unlock;
1713        }
1714
1715        /* Negative dentry, just create the file */
1716        if (!path.dentry->d_inode) {
1717                /*
1718                 * This write is needed to ensure that a
1719                 * ro->rw transition does not occur between
1720                 * the time when the file is created and when
1721                 * a permanent write count is taken through
1722                 * the 'struct file' in nameidata_to_filp().
1723                 */
1724                error = mnt_want_write(nd.path.mnt);
1725                if (error)
1726                        goto exit_mutex_unlock;
1727                error = __open_namei_create(&nd, &path, flag, mode);
1728                if (error) {
1729                        mnt_drop_write(nd.path.mnt);
1730                        goto exit;
1731                }
1732                filp = nameidata_to_filp(&nd, open_flag);
1733                mnt_drop_write(nd.path.mnt);
1734                return filp;
1735        }
1736
1737        /*
1738         * It already exists.
1739         */
1740        mutex_unlock(&dir->d_inode->i_mutex);
1741        audit_inode(pathname, path.dentry);
1742
1743        error = -EEXIST;
1744        if (flag & O_EXCL)
1745                goto exit_dput;
1746
1747        if (__follow_mount(&path)) {
1748                error = -ELOOP;
1749                if (flag & O_NOFOLLOW)
1750                        goto exit_dput;
1751        }
1752
1753        error = -ENOENT;
1754        if (!path.dentry->d_inode)
1755                goto exit_dput;
1756        if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1757                goto do_link;
1758
1759        path_to_nameidata(&path, &nd);
1760        error = -EISDIR;
1761        if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1762                goto exit;
1763ok:
1764        /*
1765         * Consider:
1766         * 1. may_open() truncates a file
1767         * 2. a rw->ro mount transition occurs
1768         * 3. nameidata_to_filp() fails due to
1769         *    the ro mount.
1770         * That would be inconsistent, and should
1771         * be avoided. Taking this mnt write here
1772         * ensures that (2) can not occur.
1773         */
1774        will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1775        if (will_write) {
1776                error = mnt_want_write(nd.path.mnt);
1777                if (error)
1778                        goto exit;
1779        }
1780        error = may_open(&nd, acc_mode, flag);
1781        if (error) {
1782                if (will_write)
1783                        mnt_drop_write(nd.path.mnt);
1784                goto exit;
1785        }
1786        filp = nameidata_to_filp(&nd, open_flag);
1787        /*
1788         * It is now safe to drop the mnt write
1789         * because the filp has had a write taken
1790         * on its behalf.
1791         */
1792        if (will_write)
1793                mnt_drop_write(nd.path.mnt);
1794        return filp;
1795
1796exit_mutex_unlock:
1797        mutex_unlock(&dir->d_inode->i_mutex);
1798exit_dput:
1799        path_put_conditional(&path, &nd);
1800exit:
1801        if (!IS_ERR(nd.intent.open.file))
1802                release_open_intent(&nd);
1803exit_parent:
1804        path_put(&nd.path);
1805        return ERR_PTR(error);
1806
1807do_link:
1808        error = -ELOOP;
1809        if (flag & O_NOFOLLOW)
1810                goto exit_dput;
1811        /*
1812         * This is subtle. Instead of calling do_follow_link() we do the
1813         * thing by hands. The reason is that this way we have zero link_count
1814         * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1815         * After that we have the parent and last component, i.e.
1816         * we are in the same situation as after the first path_walk().
1817         * Well, almost - if the last component is normal we get its copy
1818         * stored in nd->last.name and we will have to putname() it when we
1819         * are done. Procfs-like symlinks just set LAST_BIND.
1820         */
1821        nd.flags |= LOOKUP_PARENT;
1822        error = security_inode_follow_link(path.dentry, &nd);
1823        if (error)
1824                goto exit_dput;
1825        error = __do_follow_link(&path, &nd);
1826        if (error) {
1827                /* Does someone understand code flow here? Or it is only
1828                 * me so stupid? Anathema to whoever designed this non-sense
1829                 * with "intent.open".
1830                 */
1831                release_open_intent(&nd);
1832                return ERR_PTR(error);
1833        }
1834        nd.flags &= ~LOOKUP_PARENT;
1835        if (nd.last_type == LAST_BIND)
1836                goto ok;
1837        error = -EISDIR;
1838        if (nd.last_type != LAST_NORM)
1839                goto exit;
1840        if (nd.last.name[nd.last.len]) {
1841                __putname(nd.last.name);
1842                goto exit;
1843        }
1844        error = -ELOOP;
1845        if (count++==32) {
1846                __putname(nd.last.name);
1847                goto exit;
1848        }
1849        dir = nd.path.dentry;
1850        mutex_lock(&dir->d_inode->i_mutex);
1851        path.dentry = lookup_hash(&nd);
1852        path.mnt = nd.path.mnt;
1853        __putname(nd.last.name);
1854        goto do_last;
1855}
1856
1857/**
1858 * filp_open - open file and return file pointer
1859 *
1860 * @filename:        path to open
1861 * @flags:        open flags as per the open(2) second argument
1862 * @mode:        mode for the new file if O_CREAT is set, else ignored
1863 *
1864 * This is the helper to open a file from kernelspace if you really
1865 * have to.  But in generally you should not do this, so please move
1866 * along, nothing to see here..
1867 */
1868struct file *filp_open(const char *filename, int flags, int mode)
1869{
1870        return do_filp_open(AT_FDCWD, filename, flags, mode);
1871}
1872EXPORT_SYMBOL(filp_open);
1873
1874/**
1875 * lookup_create - lookup a dentry, creating it if it doesn't exist
1876 * @nd: nameidata info
1877 * @is_dir: directory flag
1878 *
1879 * Simple function to lookup and return a dentry and create it
1880 * if it doesn't exist.  Is SMP-safe.
1881 *
1882 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1883 */
1884struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1885{
1886        struct dentry *dentry = ERR_PTR(-EEXIST);
1887
1888        mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1889        /*
1890         * Yucky last component or no last component at all?
1891         * (foo/., foo/.., /////)
1892         */
1893        if (nd->last_type != LAST_NORM)
1894                goto fail;
1895        nd->flags &= ~LOOKUP_PARENT;
1896        nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1897        nd->intent.open.flags = O_EXCL;
1898
1899        /*
1900         * Do the final lookup.
1901         */
1902        dentry = lookup_hash(nd);
1903        if (IS_ERR(dentry))
1904                goto fail;
1905
1906        if (dentry->d_inode)
1907                goto eexist;
1908        /*
1909         * Special case - lookup gave negative, but... we had foo/bar/
1910         * From the vfs_mknod() POV we just have a negative dentry -
1911         * all is fine. Let's be bastards - you had / on the end, you've
1912         * been asking for (non-existent) directory. -ENOENT for you.
1913         */
1914        if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1915                dput(dentry);
1916                dentry = ERR_PTR(-ENOENT);
1917        }
1918        return dentry;
1919eexist:
1920        dput(dentry);
1921        dentry = ERR_PTR(-EEXIST);
1922fail:
1923        return dentry;
1924}
1925EXPORT_SYMBOL_GPL(lookup_create);
1926
1927int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1928{
1929        int error = may_create(dir, dentry);
1930
1931        if (error)
1932                return error;
1933
1934        if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1935                return -EPERM;
1936
1937        if (!dir->i_op || !dir->i_op->mknod)
1938                return -EPERM;
1939
1940        error = devcgroup_inode_mknod(mode, dev);
1941        if (error)
1942                return error;
1943
1944        error = security_inode_mknod(dir, dentry, mode, dev);
1945        if (error)
1946                return error;
1947
1948        DQUOT_INIT(dir);
1949        error = dir->i_op->mknod(dir, dentry, mode, dev);
1950        if (!error)
1951                fsnotify_create(dir, dentry);
1952        return error;
1953}
1954
1955static int may_mknod(mode_t mode)
1956{
1957        switch (mode & S_IFMT) {
1958        case S_IFREG:
1959        case S_IFCHR:
1960        case S_IFBLK:
1961        case S_IFIFO:
1962        case S_IFSOCK:
1963        case 0: /* zero mode translates to S_IFREG */
1964                return 0;
1965        case S_IFDIR:
1966                return -EPERM;
1967        default:
1968                return -EINVAL;
1969        }
1970}
1971
1972asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1973                                unsigned dev)
1974{
1975        int error;
1976        char *tmp;
1977        struct dentry *dentry;
1978        struct nameidata nd;
1979
1980        if (S_ISDIR(mode))
1981                return -EPERM;
1982
1983        error = user_path_parent(dfd, filename, &nd, &tmp);
1984        if (error)
1985                return error;
1986
1987        dentry = lookup_create(&nd, 0);
1988        if (IS_ERR(dentry)) {
1989                error = PTR_ERR(dentry);
1990                goto out_unlock;
1991        }
1992        if (!IS_POSIXACL(nd.path.dentry->d_inode))
1993                mode &= ~current->fs->umask;
1994        error = may_mknod(mode);
1995        if (error)
1996                goto out_dput;
1997        error = mnt_want_write(nd.path.mnt);
1998        if (error)
1999                goto out_dput;
2000        switch (mode & S_IFMT) {
2001                case 0: case S_IFREG:
2002                        error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2003                        break;
2004                case S_IFCHR: case S_IFBLK:
2005                        error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2006                                        new_decode_dev(dev));
2007                        break;
2008                case S_IFIFO: case S_IFSOCK:
2009                        error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2010                        break;
2011        }
2012        mnt_drop_write(nd.path.mnt);
2013out_dput:
2014        dput(dentry);
2015out_unlock:
2016        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2017        path_put(&nd.path);
2018        putname(tmp);
2019
2020        return error;
2021}
2022
2023asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2024{
2025        return sys_mknodat(AT_FDCWD, filename, mode, dev);
2026}
2027
2028int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2029{
2030        int error = may_create(dir, dentry);
2031
2032        if (error)
2033                return error;
2034
2035        if (!dir->i_op || !dir->i_op->mkdir)
2036                return -EPERM;
2037
2038        mode &= (S_IRWXUGO|S_ISVTX);
2039        error = security_inode_mkdir(dir, dentry, mode);
2040        if (error)
2041                return error;
2042
2043        DQUOT_INIT(dir);
2044        error = dir->i_op->mkdir(dir, dentry, mode);
2045        if (!error)
2046                fsnotify_mkdir(dir, dentry);
2047        return error;
2048}
2049
2050asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2051{
2052        int error = 0;
2053        char * tmp;
2054        struct dentry *dentry;
2055        struct nameidata nd;
2056
2057        error = user_path_parent(dfd, pathname, &nd, &tmp);
2058        if (error)
2059                goto out_err;
2060
2061        dentry = lookup_create(&nd, 1);
2062        error = PTR_ERR(dentry);
2063        if (IS_ERR(dentry))
2064                goto out_unlock;
2065
2066        if (!IS_POSIXACL(nd.path.dentry->d_inode))
2067                mode &= ~current->fs->umask;
2068        error = mnt_want_write(nd.path.mnt);
2069        if (error)
2070                goto out_dput;
2071        error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2072        mnt_drop_write(nd.path.mnt);
2073out_dput:
2074        dput(dentry);
2075out_unlock:
2076        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2077        path_put(&nd.path);
2078        putname(tmp);
2079out_err:
2080        return error;
2081}
2082
2083asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2084{
2085        return sys_mkdirat(AT_FDCWD, pathname, mode);
2086}
2087
2088/*
2089 * We try to drop the dentry early: we should have
2090 * a usage count of 2 if we're the only user of this
2091 * dentry, and if that is true (possibly after pruning
2092 * the dcache), then we drop the dentry now.
2093 *
2094 * A low-level filesystem can, if it choses, legally
2095 * do a
2096 *
2097 *        if (!d_unhashed(dentry))
2098 *                return -EBUSY;
2099 *
2100 * if it cannot handle the case of removing a directory
2101 * that is still in use by something else..
2102 */
2103void dentry_unhash(struct dentry *dentry)
2104{
2105        dget(dentry);
2106        shrink_dcache_parent(dentry);
2107        spin_lock(&dcache_lock);
2108        spin_lock(&dentry->d_lock);
2109        if (atomic_read(&dentry->d_count) == 2)
2110                __d_drop(dentry);
2111        spin_unlock(&dentry->d_lock);
2112        spin_unlock(&dcache_lock);
2113}
2114
2115int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2116{
2117        int error = may_delete(dir, dentry, 1);
2118
2119        if (error)
2120                return error;
2121
2122        if (!dir->i_op || !dir->i_op->rmdir)
2123                return -EPERM;
2124
2125        DQUOT_INIT(dir);
2126
2127        mutex_lock(&dentry->d_inode->i_mutex);
2128        dentry_unhash(dentry);
2129        if (d_mountpoint(dentry))
2130                error = -EBUSY;
2131        else {
2132                error = security_inode_rmdir(dir, dentry);
2133                if (!error) {
2134                        error = dir->i_op->rmdir(dir, dentry);
2135                        if (!error)
2136                                dentry->d_inode->i_flags |= S_DEAD;
2137                }
2138        }
2139        mutex_unlock(&dentry->d_inode->i_mutex);
2140        if (!error) {
2141                d_delete(dentry);
2142        }
2143        dput(dentry);
2144
2145        return error;
2146}
2147
2148static long do_rmdir(int dfd, const char __user *pathname)
2149{
2150        int error = 0;
2151        char * name;
2152        struct dentry *dentry;
2153        struct nameidata nd;
2154
2155        error = user_path_parent(dfd, pathname, &nd, &name);
2156        if (error)
2157                return error;
2158
2159        switch(nd.last_type) {
2160        case LAST_DOTDOT:
2161                error = -ENOTEMPTY;
2162                goto exit1;
2163        case LAST_DOT:
2164                error = -EINVAL;
2165                goto exit1;
2166        case LAST_ROOT:
2167                error = -EBUSY;
2168                goto exit1;
2169        }
2170
2171        nd.flags &= ~LOOKUP_PARENT;
2172
2173        mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2174        dentry = lookup_hash(&nd);
2175        error = PTR_ERR(dentry);
2176        if (IS_ERR(dentry))
2177                goto exit2;
2178        error = mnt_want_write(nd.path.mnt);
2179        if (error)
2180                goto exit3;
2181        error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2182        mnt_drop_write(nd.path.mnt);
2183exit3:
2184        dput(dentry);
2185exit2:
2186        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2187exit1:
2188        path_put(&nd.path);
2189        putname(name);
2190        return error;
2191}
2192
2193asmlinkage long sys_rmdir(const char __user *pathname)
2194{
2195        return do_rmdir(AT_FDCWD, pathname);
2196}
2197
2198int vfs_unlink(struct inode *dir, struct dentry *dentry)
2199{
2200        int error = may_delete(dir, dentry, 0);
2201
2202        if (error)
2203                return error;
2204
2205        if (!dir->i_op || !dir->i_op->unlink)
2206                return -EPERM;
2207
2208        DQUOT_INIT(dir);
2209
2210        mutex_lock(&dentry->d_inode->i_mutex);
2211        if (d_mountpoint(dentry))
2212                error = -EBUSY;
2213        else {
2214                error = security_inode_unlink(dir, dentry);
2215                if (!error)
2216                        error = dir->i_op->unlink(dir, dentry);
2217        }
2218        mutex_unlock(&dentry->d_inode->i_mutex);
2219
2220        /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2221        if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2222                fsnotify_link_count(dentry->d_inode);
2223                d_delete(dentry);
2224        }
2225
2226        return error;
2227}
2228
2229/*
2230 * Make sure that the actual truncation of the file will occur outside its
2231 * directory's i_mutex.  Truncate can take a long time if there is a lot of
2232 * writeout happening, and we don't want to prevent access to the directory
2233 * while waiting on the I/O.
2234 */
2235static long do_unlinkat(int dfd, const char __user *pathname)
2236{
2237        int error;
2238        char *name;
2239        struct dentry *dentry;
2240        struct nameidata nd;
2241        struct inode *inode = NULL;
2242
2243        error = user_path_parent(dfd, pathname, &nd, &name);
2244        if (error)
2245                return error;
2246
2247        error = -EISDIR;
2248        if (nd.last_type != LAST_NORM)
2249                goto exit1;
2250
2251        nd.flags &= ~LOOKUP_PARENT;
2252
2253        mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2254        dentry = lookup_hash(&nd);
2255        error = PTR_ERR(dentry);
2256        if (!IS_ERR(dentry)) {
2257                /* Why not before? Because we want correct error value */
2258                if (nd.last.name[nd.last.len])
2259                        goto slashes;
2260                inode = dentry->d_inode;
2261                if (inode)
2262                        atomic_inc(&inode->i_count);
2263                error = mnt_want_write(nd.path.mnt);
2264                if (error)
2265                        goto exit2;
2266                error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2267                mnt_drop_write(nd.path.mnt);
2268        exit2:
2269                dput(dentry);
2270        }
2271        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2272        if (inode)
2273                iput(inode);        /* truncate the inode here */
2274exit1:
2275        path_put(&nd.path);
2276        putname(name);
2277        return error;
2278
2279slashes:
2280        error = !dentry->d_inode ? -ENOENT :
2281                S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2282        goto exit2;
2283}
2284
2285asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2286{
2287        if ((flag & ~AT_REMOVEDIR) != 0)
2288                return -EINVAL;
2289
2290        if (flag & AT_REMOVEDIR)
2291                return do_rmdir(dfd, pathname);
2292
2293        return do_unlinkat(dfd, pathname);
2294}
2295
2296asmlinkage long sys_unlink(const char __user *pathname)
2297{
2298        return do_unlinkat(AT_FDCWD, pathname);
2299}
2300
2301int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2302{
2303        int error = may_create(dir, dentry);
2304
2305        if (error)
2306                return error;
2307
2308        if (!dir->i_op || !dir->i_op->symlink)
2309                return -EPERM;
2310
2311        error = security_inode_symlink(dir, dentry, oldname);
2312        if (error)
2313                return error;
2314
2315        DQUOT_INIT(dir);
2316        error = dir->i_op->symlink(dir, dentry, oldname);
2317        if (!error)
2318                fsnotify_create(dir, dentry);
2319        return error;
2320}
2321
2322asmlinkage long sys_symlinkat(const char __user *oldname,
2323                              int newdfd, const char __user *newname)
2324{
2325        int error;
2326        char *from;
2327        char *to;
2328        struct dentry *dentry;
2329        struct nameidata nd;
2330
2331        from = getname(oldname);
2332        if (IS_ERR(from))
2333                return PTR_ERR(from);
2334
2335        error = user_path_parent(newdfd, newname, &nd, &to);
2336        if (error)
2337                goto out_putname;
2338
2339        dentry = lookup_create(&nd, 0);
2340        error = PTR_ERR(dentry);
2341        if (IS_ERR(dentry))
2342                goto out_unlock;
2343
2344        error = mnt_want_write(nd.path.mnt);
2345        if (error)
2346                goto out_dput;
2347        error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2348        mnt_drop_write(nd.path.mnt);
2349out_dput:
2350        dput(dentry);
2351out_unlock:
2352        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2353        path_put(&nd.path);
2354        putname(to);
2355out_putname:
2356        putname(from);
2357        return error;
2358}
2359
2360asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2361{
2362        return sys_symlinkat(oldname, AT_FDCWD, newname);
2363}
2364
2365int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2366{
2367        struct inode *inode = old_dentry->d_inode;
2368        int error;
2369
2370        if (!inode)
2371                return -ENOENT;
2372
2373        error = may_create(dir, new_dentry);
2374        if (error)
2375                return error;
2376
2377        if (dir->i_sb != inode->i_sb)
2378                return -EXDEV;
2379
2380        /*
2381         * A link to an append-only or immutable file cannot be created.
2382         */
2383        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2384                return -EPERM;
2385        if (!dir->i_op || !dir->i_op->link)
2386                return -EPERM;
2387        if (S_ISDIR(inode->i_mode))
2388                return -EPERM;
2389
2390        error = security_inode_link(old_dentry, dir, new_dentry);
2391        if (error)
2392                return error;
2393
2394        mutex_lock(&inode->i_mutex);
2395        DQUOT_INIT(dir);
2396        error = dir->i_op->link(old_dentry, dir, new_dentry);
2397        mutex_unlock(&inode->i_mutex);
2398        if (!error)
2399                fsnotify_link(dir, inode, new_dentry);
2400        return error;
2401}
2402
2403/*
2404 * Hardlinks are often used in delicate situations.  We avoid
2405 * security-related surprises by not following symlinks on the
2406 * newname.  --KAB
2407 *
2408 * We don't follow them on the oldname either to be compatible
2409 * with linux 2.0, and to avoid hard-linking to directories
2410 * and other special files.  --ADM
2411 */
2412asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2413                           int newdfd, const char __user *newname,
2414                           int flags)
2415{
2416        struct dentry *new_dentry;
2417        struct nameidata nd;
2418        struct path old_path;
2419        int error;
2420        char *to;
2421
2422        if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2423                return -EINVAL;
2424
2425        error = user_path_at(olddfd, oldname,
2426                             flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2427                             &old_path);
2428        if (error)
2429                return error;
2430
2431        error = user_path_parent(newdfd, newname, &nd, &to);
2432        if (error)
2433                goto out;
2434        error = -EXDEV;
2435        if (old_path.mnt != nd.path.mnt)
2436                goto out_release;
2437        new_dentry = lookup_create(&nd, 0);
2438        error = PTR_ERR(new_dentry);
2439        if (IS_ERR(new_dentry))
2440                goto out_unlock;
2441        error = mnt_want_write(nd.path.mnt);
2442        if (error)
2443                goto out_dput;
2444        error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2445        mnt_drop_write(nd.path.mnt);
2446out_dput:
2447        dput(new_dentry);
2448out_unlock:
2449        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2450out_release:
2451        path_put(&nd.path);
2452        putname(to);
2453out:
2454        path_put(&old_path);
2455
2456        return error;
2457}
2458
2459asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2460{
2461        return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2462}
2463
2464/*
2465 * The worst of all namespace operations - renaming directory. "Perverted"
2466 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2467 * Problems:
2468 *        a) we can get into loop creation. Check is done in is_subdir().
2469 *        b) race potential - two innocent renames can create a loop together.
2470 *           That's where 4.4 screws up. Current fix: serialization on
2471 *           sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2472 *           story.
2473 *        c) we have to lock _three_ objects - parents and victim (if it exists).
2474 *           And that - after we got ->i_mutex on parents (until then we don't know
2475 *           whether the target exists).  Solution: try to be smart with locking
2476 *           order for inodes.  We rely on the fact that tree topology may change
2477 *           only under ->s_vfs_rename_mutex _and_ that parent of the object we
2478 *           move will be locked.  Thus we can rank directories by the tree
2479 *           (ancestors first) and rank all non-directories after them.
2480 *           That works since everybody except rename does "lock parent, lookup,
2481 *           lock child" and rename is under ->s_vfs_rename_mutex.
2482 *           HOWEVER, it relies on the assumption that any object with ->lookup()
2483 *           has no more than 1 dentry.  If "hybrid" objects will ever appear,
2484 *           we'd better make sure that there's no link(2) for them.
2485 *        d) some filesystems don't support opened-but-unlinked directories,
2486 *           either because of layout or because they are not ready to deal with
2487 *           all cases correctly. The latter will be fixed (taking this sort of
2488 *           stuff into VFS), but the former is not going away. Solution: the same
2489 *           trick as in rmdir().
2490 *        e) conversion from fhandle to dentry may come in the wrong moment - when
2491 *           we are removing the target. Solution: we will have to grab ->i_mutex
2492 *           in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2493 *           ->i_mutex on parents, which works but leads to some truely excessive
2494 *           locking].
2495 */
2496static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2497                          struct inode *new_dir, struct dentry *new_dentry)
2498{
2499        int error = 0;
2500        struct inode *target;
2501
2502        /*
2503         * If we are going to change the parent - check write permissions,
2504         * we'll need to flip '..'.
2505         */
2506        if (new_dir != old_dir) {
2507                error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2508                if (error)
2509                        return error;
2510        }
2511
2512        error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2513        if (error)
2514                return error;
2515
2516        target = new_dentry->d_inode;
2517        if (target) {
2518                mutex_lock(&target->i_mutex);
2519                dentry_unhash(new_dentry);
2520        }
2521        if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2522                error = -EBUSY;
2523        else 
2524                error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2525        if (target) {
2526                if (!error)
2527                        target->i_flags |= S_DEAD;
2528                mutex_unlock(&target->i_mutex);
2529                if (d_unhashed(new_dentry))
2530                        d_rehash(new_dentry);
2531                dput(new_dentry);
2532        }
2533        if (!error)
2534                if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2535                        d_move(old_dentry,new_dentry);
2536        return error;
2537}
2538
2539static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2540                            struct inode *new_dir, struct dentry *new_dentry)
2541{
2542        struct inode *target;
2543        int error;
2544
2545        error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2546        if (error)
2547                return error;
2548
2549        dget(new_dentry);
2550        target = new_dentry->d_inode;
2551        if (target)
2552                mutex_lock(&target->i_mutex);
2553        if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2554                error = -EBUSY;
2555        else
2556                error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2557        if (!error) {
2558                if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2559                        d_move(old_dentry, new_dentry);
2560        }
2561        if (target)
2562                mutex_unlock(&target->i_mutex);
2563        dput(new_dentry);
2564        return error;
2565}
2566
2567int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2568               struct inode *new_dir, struct dentry *new_dentry)
2569{
2570        int error;
2571        int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2572        const char *old_name;
2573
2574        if (old_dentry->d_inode == new_dentry->d_inode)
2575                 return 0;
2576 
2577        error = may_delete(old_dir, old_dentry, is_dir);
2578        if (error)
2579                return error;
2580
2581        if (!new_dentry->d_inode)
2582                error = may_create(new_dir, new_dentry);
2583        else
2584                error = may_delete(new_dir, new_dentry, is_dir);
2585        if (error)
2586                return error;
2587
2588        if (!old_dir->i_op || !old_dir->i_op->rename)
2589                return -EPERM;
2590
2591        DQUOT_INIT(old_dir);
2592        DQUOT_INIT(new_dir);
2593
2594        old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2595
2596        if (is_dir)
2597                error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2598        else
2599                error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2600        if (!error) {
2601                const char *new_name = old_dentry->d_name.name;
2602                fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2603                              new_dentry->d_inode, old_dentry);
2604        }
2605        fsnotify_oldname_free(old_name);
2606
2607        return error;
2608}
2609
2610asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2611                             int newdfd, const char __user *newname)
2612{
2613        struct dentry *old_dir, *new_dir;
2614        struct dentry *old_dentry, *new_dentry;
2615        struct dentry *trap;
2616        struct nameidata oldnd, newnd;
2617        char *from;
2618        char *to;
2619        int error;
2620
2621        error = user_path_parent(olddfd, oldname, &oldnd, &from);
2622        if (error)
2623                goto exit;
2624
2625        error = user_path_parent(newdfd, newname, &newnd, &to);
2626        if (error)
2627                goto exit1;
2628
2629        error = -EXDEV;
2630        if (oldnd.path.mnt != newnd.path.mnt)
2631                goto exit2;
2632
2633        old_dir = oldnd.path.dentry;
2634        error = -EBUSY;
2635        if (oldnd.last_type != LAST_NORM)
2636                goto exit2;
2637
2638        new_dir = newnd.path.dentry;
2639        if (newnd.last_type != LAST_NORM)
2640                goto exit2;
2641
2642        oldnd.flags &= ~LOOKUP_PARENT;
2643        newnd.flags &= ~LOOKUP_PARENT;
2644        newnd.flags |= LOOKUP_RENAME_TARGET;
2645
2646        trap = lock_rename(new_dir, old_dir);
2647
2648        old_dentry = lookup_hash(&oldnd);
2649        error = PTR_ERR(old_dentry);
2650        if (IS_ERR(old_dentry))
2651                goto exit3;
2652        /* source must exist */
2653        error = -ENOENT;
2654        if (!old_dentry->d_inode)
2655                goto exit4;
2656        /* unless the source is a directory trailing slashes give -ENOTDIR */
2657        if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2658                error = -ENOTDIR;
2659                if (oldnd.last.name[oldnd.last.len])
2660                        goto exit4;
2661                if (newnd.last.name[newnd.last.len])
2662                        goto exit4;
2663        }
2664        /* source should not be ancestor of target */
2665        error = -EINVAL;
2666        if (old_dentry == trap)
2667                goto exit4;
2668        new_dentry = lookup_hash(&newnd);
2669        error = PTR_ERR(new_dentry);
2670        if (IS_ERR(new_dentry))
2671                goto exit4;
2672        /* target should not be an ancestor of source */
2673        error = -ENOTEMPTY;
2674        if (new_dentry == trap)
2675                goto exit5;
2676
2677        error = mnt_want_write(oldnd.path.mnt);
2678        if (error)
2679                goto exit5;
2680        error = vfs_rename(old_dir->d_inode, old_dentry,
2681                                   new_dir->d_inode, new_dentry);
2682        mnt_drop_write(oldnd.path.mnt);
2683exit5:
2684        dput(new_dentry);
2685exit4:
2686        dput(old_dentry);
2687exit3:
2688        unlock_rename(new_dir, old_dir);
2689exit2:
2690        path_put(&newnd.path);
2691        putname(to);
2692exit1:
2693        path_put(&oldnd.path);
2694        putname(from);
2695exit:
2696        return error;
2697}
2698
2699asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2700{
2701        return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2702}
2703
2704int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2705{
2706        int len;
2707
2708        len = PTR_ERR(link);
2709        if (IS_ERR(link))
2710                goto out;
2711
2712        len = strlen(link);
2713        if (len > (unsigned) buflen)
2714                len = buflen;
2715        if (copy_to_user(buffer, link, len))
2716                len = -EFAULT;
2717out:
2718        return len;
2719}
2720
2721/*
2722 * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2723 * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2724 * using) it for any given inode is up to filesystem.
2725 */
2726int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2727{
2728        struct nameidata nd;
2729        void *cookie;
2730        int res;
2731
2732        nd.depth = 0;
2733        cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2734        if (IS_ERR(cookie))
2735                return PTR_ERR(cookie);
2736
2737        res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2738        if (dentry->d_inode->i_op->put_link)
2739                dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2740        return res;
2741}
2742
2743int vfs_follow_link(struct nameidata *nd, const char *link)
2744{
2745        return __vfs_follow_link(nd, link);
2746}
2747
2748/* get the link contents into pagecache */
2749static char *page_getlink(struct dentry * dentry, struct page **ppage)
2750{
2751        struct page * page;
2752        struct address_space *mapping = dentry->d_inode->i_mapping;
2753        page = read_mapping_page(mapping, 0, NULL);
2754        if (IS_ERR(page))
2755                return (char*)page;
2756        *ppage = page;
2757        return kmap(page);
2758}
2759
2760int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2761{
2762        struct page *page = NULL;
2763        char *s = page_getlink(dentry, &page);
2764        int res = vfs_readlink(dentry,buffer,buflen,s);
2765        if (page) {
2766                kunmap(page);
2767                page_cache_release(page);
2768        }
2769        return res;
2770}
2771
2772void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2773{
2774        struct page *page = NULL;
2775        nd_set_link(nd, page_getlink(dentry, &page));
2776        return page;
2777}
2778
2779void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2780{
2781        struct page *page = cookie;
2782
2783        if (page) {
2784                kunmap(page);
2785                page_cache_release(page);
2786        }
2787}
2788
2789int __page_symlink(struct inode *inode, const char *symname, int len,
2790                gfp_t gfp_mask)
2791{
2792        struct address_space *mapping = inode->i_mapping;
2793        struct page *page;
2794        void *fsdata;
2795        int err;
2796        char *kaddr;
2797
2798retry:
2799        err = pagecache_write_begin(NULL, mapping, 0, len-1,
2800                                AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2801        if (err)
2802                goto fail;
2803
2804        kaddr = kmap_atomic(page, KM_USER0);
2805        memcpy(kaddr, symname, len-1);
2806        kunmap_atomic(kaddr, KM_USER0);
2807
2808        err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2809                                                        page, fsdata);
2810        if (err < 0)
2811                goto fail;
2812        if (err < len-1)
2813                goto retry;
2814
2815        mark_inode_dirty(inode);
2816        return 0;
2817fail:
2818        return err;
2819}
2820
2821int page_symlink(struct inode *inode, const char *symname, int len)
2822{
2823        return __page_symlink(inode, symname, len,
2824                        mapping_gfp_mask(inode->i_mapping));
2825}
2826
2827const struct inode_operations page_symlink_inode_operations = {
2828        .readlink        = generic_readlink,
2829        .follow_link        = page_follow_link_light,
2830        .put_link        = page_put_link,
2831};
2832
2833EXPORT_SYMBOL(user_path_at);
2834EXPORT_SYMBOL(follow_down);
2835EXPORT_SYMBOL(follow_up);
2836EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2837EXPORT_SYMBOL(getname);
2838EXPORT_SYMBOL(lock_rename);
2839EXPORT_SYMBOL(lookup_one_len);
2840EXPORT_SYMBOL(page_follow_link_light);
2841EXPORT_SYMBOL(page_put_link);
2842EXPORT_SYMBOL(page_readlink);
2843EXPORT_SYMBOL(__page_symlink);
2844EXPORT_SYMBOL(page_symlink);
2845EXPORT_SYMBOL(page_symlink_inode_operations);
2846EXPORT_SYMBOL(path_lookup);
2847EXPORT_SYMBOL(kern_path);
2848EXPORT_SYMBOL(vfs_path_lookup);
2849EXPORT_SYMBOL(inode_permission);
2850EXPORT_SYMBOL(vfs_permission);
2851EXPORT_SYMBOL(file_permission);
2852EXPORT_SYMBOL(unlock_rename);
2853EXPORT_SYMBOL(vfs_create);
2854EXPORT_SYMBOL(vfs_follow_link);
2855EXPORT_SYMBOL(vfs_link);
2856EXPORT_SYMBOL(vfs_mkdir);
2857EXPORT_SYMBOL(vfs_mknod);
2858EXPORT_SYMBOL(generic_permission);
2859EXPORT_SYMBOL(vfs_readlink);
2860EXPORT_SYMBOL(vfs_rename);
2861EXPORT_SYMBOL(vfs_rmdir);
2862EXPORT_SYMBOL(vfs_symlink);
2863EXPORT_SYMBOL(vfs_unlink);
2864EXPORT_SYMBOL(dentry_unhash);
2865EXPORT_SYMBOL(generic_readlink);