Showing error 953

User: Jiri Slaby
Error type: Leaving function in locked state
Error type description: Some lock is not unlocked on all paths of a function, so it is leaked
File location: net/dsa/mv88e6xxx.c
Line in file: 302
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2012-03-02 21:35:17 UTC


Source:

  1/*
  2 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
  3 * Copyright (c) 2008 Marvell Semiconductor
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License as published by
  7 * the Free Software Foundation; either version 2 of the License, or
  8 * (at your option) any later version.
  9 */
 10
 11#include <linux/list.h>
 12#include <linux/netdevice.h>
 13#include <linux/phy.h>
 14#include "dsa_priv.h"
 15#include "mv88e6xxx.h"
 16
 17/*
 18 * If the switch's ADDR[4:0] strap pins are strapped to zero, it will
 19 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 20 * will be directly accessible on some {device address,register address}
 21 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 22 * will only respond to SMI transactions to that specific address, and
 23 * an indirect addressing mechanism needs to be used to access its
 24 * registers.
 25 */
 26static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
 27{
 28        int ret;
 29        int i;
 30
 31        for (i = 0; i < 16; i++) {
 32                ret = mdiobus_read(bus, sw_addr, 0);
 33                if (ret < 0)
 34                        return ret;
 35
 36                if ((ret & 0x8000) == 0)
 37                        return 0;
 38        }
 39
 40        return -ETIMEDOUT;
 41}
 42
 43int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
 44{
 45        int ret;
 46
 47        if (sw_addr == 0)
 48                return mdiobus_read(bus, addr, reg);
 49
 50        /*
 51         * Wait for the bus to become free.
 52         */
 53        ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
 54        if (ret < 0)
 55                return ret;
 56
 57        /*
 58         * Transmit the read command.
 59         */
 60        ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
 61        if (ret < 0)
 62                return ret;
 63
 64        /*
 65         * Wait for the read command to complete.
 66         */
 67        ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
 68        if (ret < 0)
 69                return ret;
 70
 71        /*
 72         * Read the data.
 73         */
 74        ret = mdiobus_read(bus, sw_addr, 1);
 75        if (ret < 0)
 76                return ret;
 77
 78        return ret & 0xffff;
 79}
 80
 81int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
 82{
 83        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
 84        int ret;
 85
 86        mutex_lock(&ps->smi_mutex);
 87        ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
 88                                   ds->pd->sw_addr, addr, reg);
 89        mutex_unlock(&ps->smi_mutex);
 90
 91        return ret;
 92}
 93
 94int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
 95                          int reg, u16 val)
 96{
 97        int ret;
 98
 99        if (sw_addr == 0)
100                return mdiobus_write(bus, addr, reg, val);
101
102        /*
103         * Wait for the bus to become free.
104         */
105        ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
106        if (ret < 0)
107                return ret;
108
109        /*
110         * Transmit the data to write.
111         */
112        ret = mdiobus_write(bus, sw_addr, 1, val);
113        if (ret < 0)
114                return ret;
115
116        /*
117         * Transmit the write command.
118         */
119        ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
120        if (ret < 0)
121                return ret;
122
123        /*
124         * Wait for the write command to complete.
125         */
126        ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
127        if (ret < 0)
128                return ret;
129
130        return 0;
131}
132
133int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
134{
135        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
136        int ret;
137
138        mutex_lock(&ps->smi_mutex);
139        ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
140                                    ds->pd->sw_addr, addr, reg, val);
141        mutex_unlock(&ps->smi_mutex);
142
143        return ret;
144}
145
146int mv88e6xxx_config_prio(struct dsa_switch *ds)
147{
148        /*
149         * Configure the IP ToS mapping registers.
150         */
151        REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
152        REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
153        REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
154        REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
155        REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
156        REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
157        REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
158        REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
159
160        /*
161         * Configure the IEEE 802.1p priority mapping register.
162         */
163        REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
164
165        return 0;
166}
167
168int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
169{
170        REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
171        REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
172        REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
173
174        return 0;
175}
176
177int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
178{
179        int i;
180        int ret;
181
182        for (i = 0; i < 6; i++) {
183                int j;
184
185                /*
186                 * Write the MAC address byte.
187                 */
188                REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
189
190                /*
191                 * Wait for the write to complete.
192                 */
193                for (j = 0; j < 16; j++) {
194                        ret = REG_READ(REG_GLOBAL2, 0x0d);
195                        if ((ret & 0x8000) == 0)
196                                break;
197                }
198                if (j == 16)
199                        return -ETIMEDOUT;
200        }
201
202        return 0;
203}
204
205int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
206{
207        if (addr >= 0)
208                return mv88e6xxx_reg_read(ds, addr, regnum);
209        return 0xffff;
210}
211
212int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
213{
214        if (addr >= 0)
215                return mv88e6xxx_reg_write(ds, addr, regnum, val);
216        return 0;
217}
218
219#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
220static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
221{
222        int ret;
223        int i;
224
225        ret = REG_READ(REG_GLOBAL, 0x04);
226        REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
227
228        for (i = 0; i < 1000; i++) {
229                ret = REG_READ(REG_GLOBAL, 0x00);
230                msleep(1);
231                if ((ret & 0xc000) != 0xc000)
232                        return 0;
233        }
234
235        return -ETIMEDOUT;
236}
237
238static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
239{
240        int ret;
241        int i;
242
243        ret = REG_READ(REG_GLOBAL, 0x04);
244        REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
245
246        for (i = 0; i < 1000; i++) {
247                ret = REG_READ(REG_GLOBAL, 0x00);
248                msleep(1);
249                if ((ret & 0xc000) == 0xc000)
250                        return 0;
251        }
252
253        return -ETIMEDOUT;
254}
255
256static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
257{
258        struct mv88e6xxx_priv_state *ps;
259
260        ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
261        if (mutex_trylock(&ps->ppu_mutex)) {
262                struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
263
264                if (mv88e6xxx_ppu_enable(ds) == 0)
265                        ps->ppu_disabled = 0;
266                mutex_unlock(&ps->ppu_mutex);
267        }
268}
269
270static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
271{
272        struct mv88e6xxx_priv_state *ps = (void *)_ps;
273
274        schedule_work(&ps->ppu_work);
275}
276
277static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
278{
279        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
280        int ret;
281
282        mutex_lock(&ps->ppu_mutex);
283
284        /*
285         * If the PHY polling unit is enabled, disable it so that
286         * we can access the PHY registers.  If it was already
287         * disabled, cancel the timer that is going to re-enable
288         * it.
289         */
290        if (!ps->ppu_disabled) {
291                ret = mv88e6xxx_ppu_disable(ds);
292                if (ret < 0) {
293                        mutex_unlock(&ps->ppu_mutex);
294                        return ret;
295                }
296                ps->ppu_disabled = 1;
297        } else {
298                del_timer(&ps->ppu_timer);
299                ret = 0;
300        }
301
302        return ret;
303}
304
305static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
306{
307        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
308
309        /*
310         * Schedule a timer to re-enable the PHY polling unit.
311         */
312        mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
313        mutex_unlock(&ps->ppu_mutex);
314}
315
316void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
317{
318        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
319
320        mutex_init(&ps->ppu_mutex);
321        INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
322        init_timer(&ps->ppu_timer);
323        ps->ppu_timer.data = (unsigned long)ps;
324        ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
325}
326
327int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
328{
329        int ret;
330
331        ret = mv88e6xxx_ppu_access_get(ds);
332        if (ret >= 0) {
333                ret = mv88e6xxx_reg_read(ds, addr, regnum);
334                mv88e6xxx_ppu_access_put(ds);
335        }
336
337        return ret;
338}
339
340int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
341                            int regnum, u16 val)
342{
343        int ret;
344
345        ret = mv88e6xxx_ppu_access_get(ds);
346        if (ret >= 0) {
347                ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
348                mv88e6xxx_ppu_access_put(ds);
349        }
350
351        return ret;
352}
353#endif
354
355void mv88e6xxx_poll_link(struct dsa_switch *ds)
356{
357        int i;
358
359        for (i = 0; i < DSA_MAX_PORTS; i++) {
360                struct net_device *dev;
361                int port_status;
362                int link;
363                int speed;
364                int duplex;
365                int fc;
366
367                dev = ds->ports[i];
368                if (dev == NULL)
369                        continue;
370
371                link = 0;
372                if (dev->flags & IFF_UP) {
373                        port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
374                        if (port_status < 0)
375                                continue;
376
377                        link = !!(port_status & 0x0800);
378                }
379
380                if (!link) {
381                        if (netif_carrier_ok(dev)) {
382                                printk(KERN_INFO "%s: link down\n", dev->name);
383                                netif_carrier_off(dev);
384                        }
385                        continue;
386                }
387
388                switch (port_status & 0x0300) {
389                case 0x0000:
390                        speed = 10;
391                        break;
392                case 0x0100:
393                        speed = 100;
394                        break;
395                case 0x0200:
396                        speed = 1000;
397                        break;
398                default:
399                        speed = -1;
400                        break;
401                }
402                duplex = (port_status & 0x0400) ? 1 : 0;
403                fc = (port_status & 0x8000) ? 1 : 0;
404
405                if (!netif_carrier_ok(dev)) {
406                        printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
407                                         "flow control %sabled\n", dev->name,
408                                         speed, duplex ? "full" : "half",
409                                         fc ? "en" : "dis");
410                        netif_carrier_on(dev);
411                }
412        }
413}
414
415static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
416{
417        int ret;
418        int i;
419
420        for (i = 0; i < 10; i++) {
421                ret = REG_READ(REG_GLOBAL2, 0x1d);
422                if ((ret & 0x8000) == 0)
423                        return 0;
424        }
425
426        return -ETIMEDOUT;
427}
428
429static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
430{
431        int ret;
432
433        /*
434         * Snapshot the hardware statistics counters for this port.
435         */
436        REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
437
438        /*
439         * Wait for the snapshotting to complete.
440         */
441        ret = mv88e6xxx_stats_wait(ds);
442        if (ret < 0)
443                return ret;
444
445        return 0;
446}
447
448static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
449{
450        u32 _val;
451        int ret;
452
453        *val = 0;
454
455        ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
456        if (ret < 0)
457                return;
458
459        ret = mv88e6xxx_stats_wait(ds);
460        if (ret < 0)
461                return;
462
463        ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
464        if (ret < 0)
465                return;
466
467        _val = ret << 16;
468
469        ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
470        if (ret < 0)
471                return;
472
473        *val = _val | ret;
474}
475
476void mv88e6xxx_get_strings(struct dsa_switch *ds,
477                           int nr_stats, struct mv88e6xxx_hw_stat *stats,
478                           int port, uint8_t *data)
479{
480        int i;
481
482        for (i = 0; i < nr_stats; i++) {
483                memcpy(data + i * ETH_GSTRING_LEN,
484                       stats[i].string, ETH_GSTRING_LEN);
485        }
486}
487
488void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
489                                 int nr_stats, struct mv88e6xxx_hw_stat *stats,
490                                 int port, uint64_t *data)
491{
492        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
493        int ret;
494        int i;
495
496        mutex_lock(&ps->stats_mutex);
497
498        ret = mv88e6xxx_stats_snapshot(ds, port);
499        if (ret < 0) {
500                mutex_unlock(&ps->stats_mutex);
501                return;
502        }
503
504        /*
505         * Read each of the counters.
506         */
507        for (i = 0; i < nr_stats; i++) {
508                struct mv88e6xxx_hw_stat *s = stats + i;
509                u32 low;
510                u32 high;
511
512                mv88e6xxx_stats_read(ds, s->reg, &low);
513                if (s->sizeof_stat == 8)
514                        mv88e6xxx_stats_read(ds, s->reg + 1, &high);
515                else
516                        high = 0;
517
518                data[i] = (((u64)high) << 32) | low;
519        }
520
521        mutex_unlock(&ps->stats_mutex);
522}