Showing error 951

User: Jiri Slaby
Error type: Leaving function in locked state
Error type description: Some lock is not unlocked on all paths of a function, so it is leaked
File location: fs/ubifs/file.c
Line in file: 870
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2012-03-02 21:35:17 UTC


Source:

   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (���������������� ����������)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements VFS file and inode operations of regular files, device
  25 * nodes and symlinks as well as address space operations.
  26 *
  27 * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
  28 * page is dirty and is used for budgeting purposes - dirty pages should not be
  29 * budgeted. The PG_checked flag is set if full budgeting is required for the
  30 * page e.g., when it corresponds to a file hole or it is just beyond the file
  31 * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
  32 * fail in this function, and the budget is released in 'ubifs_write_end()'. So
  33 * the PG_private and PG_checked flags carry the information about how the page
  34 * was budgeted, to make it possible to release the budget properly.
  35 *
  36 * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
  37 * we implement. However, this is not true for '->writepage()', which might be
  38 * called with 'i_mutex' unlocked. For example, when pdflush is performing
  39 * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
  40 * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
  41 * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
  42 * path'. So, in '->writepage()' we are only guaranteed that the page is
  43 * locked.
  44 *
  45 * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
  46 * readahead path does not have it locked ("sys_read -> generic_file_aio_read
  47 * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
  48 * not set as well. However, UBIFS disables readahead.
  49 *
  50 * This, for example means that there might be 2 concurrent '->writepage()'
  51 * calls for the same inode, but different inode dirty pages.
  52 */
  53
  54#include "ubifs.h"
  55#include <linux/mount.h>
  56#include <linux/namei.h>
  57
  58static int read_block(struct inode *inode, void *addr, unsigned int block,
  59                      struct ubifs_data_node *dn)
  60{
  61        struct ubifs_info *c = inode->i_sb->s_fs_info;
  62        int err, len, out_len;
  63        union ubifs_key key;
  64        unsigned int dlen;
  65
  66        data_key_init(c, &key, inode->i_ino, block);
  67        err = ubifs_tnc_lookup(c, &key, dn);
  68        if (err) {
  69                if (err == -ENOENT)
  70                        /* Not found, so it must be a hole */
  71                        memset(addr, 0, UBIFS_BLOCK_SIZE);
  72                return err;
  73        }
  74
  75        ubifs_assert(le64_to_cpu(dn->ch.sqnum) > ubifs_inode(inode)->creat_sqnum);
  76
  77        len = le32_to_cpu(dn->size);
  78        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  79                goto dump;
  80
  81        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  82        out_len = UBIFS_BLOCK_SIZE;
  83        err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
  84                               le16_to_cpu(dn->compr_type));
  85        if (err || len != out_len)
  86                goto dump;
  87
  88        /*
  89         * Data length can be less than a full block, even for blocks that are
  90         * not the last in the file (e.g., as a result of making a hole and
  91         * appending data). Ensure that the remainder is zeroed out.
  92         */
  93        if (len < UBIFS_BLOCK_SIZE)
  94                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  95
  96        return 0;
  97
  98dump:
  99        ubifs_err("bad data node (block %u, inode %lu)",
 100                  block, inode->i_ino);
 101        dbg_dump_node(c, dn);
 102        return -EINVAL;
 103}
 104
 105static int do_readpage(struct page *page)
 106{
 107        void *addr;
 108        int err = 0, i;
 109        unsigned int block, beyond;
 110        struct ubifs_data_node *dn;
 111        struct inode *inode = page->mapping->host;
 112        loff_t i_size = i_size_read(inode);
 113
 114        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 115                inode->i_ino, page->index, i_size, page->flags);
 116        ubifs_assert(!PageChecked(page));
 117        ubifs_assert(!PagePrivate(page));
 118
 119        addr = kmap(page);
 120
 121        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 122        beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 123        if (block >= beyond) {
 124                /* Reading beyond inode */
 125                SetPageChecked(page);
 126                memset(addr, 0, PAGE_CACHE_SIZE);
 127                goto out;
 128        }
 129
 130        dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
 131        if (!dn) {
 132                err = -ENOMEM;
 133                goto error;
 134        }
 135
 136        i = 0;
 137        while (1) {
 138                int ret;
 139
 140                if (block >= beyond) {
 141                        /* Reading beyond inode */
 142                        err = -ENOENT;
 143                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 144                } else {
 145                        ret = read_block(inode, addr, block, dn);
 146                        if (ret) {
 147                                err = ret;
 148                                if (err != -ENOENT)
 149                                        break;
 150                        } else if (block + 1 == beyond) {
 151                                int dlen = le32_to_cpu(dn->size);
 152                                int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
 153
 154                                if (ilen && ilen < dlen)
 155                                        memset(addr + ilen, 0, dlen - ilen);
 156                        }
 157                }
 158                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 159                        break;
 160                block += 1;
 161                addr += UBIFS_BLOCK_SIZE;
 162        }
 163        if (err) {
 164                if (err == -ENOENT) {
 165                        /* Not found, so it must be a hole */
 166                        SetPageChecked(page);
 167                        dbg_gen("hole");
 168                        goto out_free;
 169                }
 170                ubifs_err("cannot read page %lu of inode %lu, error %d",
 171                          page->index, inode->i_ino, err);
 172                goto error;
 173        }
 174
 175out_free:
 176        kfree(dn);
 177out:
 178        SetPageUptodate(page);
 179        ClearPageError(page);
 180        flush_dcache_page(page);
 181        kunmap(page);
 182        return 0;
 183
 184error:
 185        kfree(dn);
 186        ClearPageUptodate(page);
 187        SetPageError(page);
 188        flush_dcache_page(page);
 189        kunmap(page);
 190        return err;
 191}
 192
 193/**
 194 * release_new_page_budget - release budget of a new page.
 195 * @c: UBIFS file-system description object
 196 *
 197 * This is a helper function which releases budget corresponding to the budget
 198 * of one new page of data.
 199 */
 200static void release_new_page_budget(struct ubifs_info *c)
 201{
 202        struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
 203
 204        ubifs_release_budget(c, &req);
 205}
 206
 207/**
 208 * release_existing_page_budget - release budget of an existing page.
 209 * @c: UBIFS file-system description object
 210 *
 211 * This is a helper function which releases budget corresponding to the budget
 212 * of changing one one page of data which already exists on the flash media.
 213 */
 214static void release_existing_page_budget(struct ubifs_info *c)
 215{
 216        struct ubifs_budget_req req = { .dd_growth = c->page_budget};
 217
 218        ubifs_release_budget(c, &req);
 219}
 220
 221static int write_begin_slow(struct address_space *mapping,
 222                            loff_t pos, unsigned len, struct page **pagep)
 223{
 224        struct inode *inode = mapping->host;
 225        struct ubifs_info *c = inode->i_sb->s_fs_info;
 226        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 227        struct ubifs_budget_req req = { .new_page = 1 };
 228        int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 229        struct page *page;
 230
 231        dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
 232                inode->i_ino, pos, len, inode->i_size);
 233
 234        /*
 235         * At the slow path we have to budget before locking the page, because
 236         * budgeting may force write-back, which would wait on locked pages and
 237         * deadlock if we had the page locked. At this point we do not know
 238         * anything about the page, so assume that this is a new page which is
 239         * written to a hole. This corresponds to largest budget. Later the
 240         * budget will be amended if this is not true.
 241         */
 242        if (appending)
 243                /* We are appending data, budget for inode change */
 244                req.dirtied_ino = 1;
 245
 246        err = ubifs_budget_space(c, &req);
 247        if (unlikely(err))
 248                return err;
 249
 250        page = __grab_cache_page(mapping, index);
 251        if (unlikely(!page)) {
 252                ubifs_release_budget(c, &req);
 253                return -ENOMEM;
 254        }
 255
 256        if (!PageUptodate(page)) {
 257                if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
 258                        SetPageChecked(page);
 259                else {
 260                        err = do_readpage(page);
 261                        if (err) {
 262                                unlock_page(page);
 263                                page_cache_release(page);
 264                                return err;
 265                        }
 266                }
 267
 268                SetPageUptodate(page);
 269                ClearPageError(page);
 270        }
 271
 272        if (PagePrivate(page))
 273                /*
 274                 * The page is dirty, which means it was budgeted twice:
 275                 *   o first time the budget was allocated by the task which
 276                 *     made the page dirty and set the PG_private flag;
 277                 *   o and then we budgeted for it for the second time at the
 278                 *     very beginning of this function.
 279                 *
 280                 * So what we have to do is to release the page budget we
 281                 * allocated.
 282                 */
 283                release_new_page_budget(c);
 284        else if (!PageChecked(page))
 285                /*
 286                 * We are changing a page which already exists on the media.
 287                 * This means that changing the page does not make the amount
 288                 * of indexing information larger, and this part of the budget
 289                 * which we have already acquired may be released.
 290                 */
 291                ubifs_convert_page_budget(c);
 292
 293        if (appending) {
 294                struct ubifs_inode *ui = ubifs_inode(inode);
 295
 296                /*
 297                 * 'ubifs_write_end()' is optimized from the fast-path part of
 298                 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
 299                 * if data is appended.
 300                 */
 301                mutex_lock(&ui->ui_mutex);
 302                if (ui->dirty)
 303                        /*
 304                         * The inode is dirty already, so we may free the
 305                         * budget we allocated.
 306                         */
 307                        ubifs_release_dirty_inode_budget(c, ui);
 308        }
 309
 310        *pagep = page;
 311        return 0;
 312}
 313
 314/**
 315 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 316 * @c: UBIFS file-system description object
 317 * @page: page to allocate budget for
 318 * @ui: UBIFS inode object the page belongs to
 319 * @appending: non-zero if the page is appended
 320 *
 321 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 322 * for the operation. The budget is allocated differently depending on whether
 323 * this is appending, whether the page is dirty or not, and so on. This
 324 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 325 * in case of success and %-ENOSPC in case of failure.
 326 */
 327static int allocate_budget(struct ubifs_info *c, struct page *page,
 328                           struct ubifs_inode *ui, int appending)
 329{
 330        struct ubifs_budget_req req = { .fast = 1 };
 331
 332        if (PagePrivate(page)) {
 333                if (!appending)
 334                        /*
 335                         * The page is dirty and we are not appending, which
 336                         * means no budget is needed at all.
 337                         */
 338                        return 0;
 339
 340                mutex_lock(&ui->ui_mutex);
 341                if (ui->dirty)
 342                        /*
 343                         * The page is dirty and we are appending, so the inode
 344                         * has to be marked as dirty. However, it is already
 345                         * dirty, so we do not need any budget. We may return,
 346                         * but @ui->ui_mutex hast to be left locked because we
 347                         * should prevent write-back from flushing the inode
 348                         * and freeing the budget. The lock will be released in
 349                         * 'ubifs_write_end()'.
 350                         */
 351                        return 0;
 352
 353                /*
 354                 * The page is dirty, we are appending, the inode is clean, so
 355                 * we need to budget the inode change.
 356                 */
 357                req.dirtied_ino = 1;
 358        } else {
 359                if (PageChecked(page))
 360                        /*
 361                         * The page corresponds to a hole and does not
 362                         * exist on the media. So changing it makes
 363                         * make the amount of indexing information
 364                         * larger, and we have to budget for a new
 365                         * page.
 366                         */
 367                        req.new_page = 1;
 368                else
 369                        /*
 370                         * Not a hole, the change will not add any new
 371                         * indexing information, budget for page
 372                         * change.
 373                         */
 374                        req.dirtied_page = 1;
 375
 376                if (appending) {
 377                        mutex_lock(&ui->ui_mutex);
 378                        if (!ui->dirty)
 379                                /*
 380                                 * The inode is clean but we will have to mark
 381                                 * it as dirty because we are appending. This
 382                                 * needs a budget.
 383                                 */
 384                                req.dirtied_ino = 1;
 385                }
 386        }
 387
 388        return ubifs_budget_space(c, &req);
 389}
 390
 391/*
 392 * This function is called when a page of data is going to be written. Since
 393 * the page of data will not necessarily go to the flash straight away, UBIFS
 394 * has to reserve space on the media for it, which is done by means of
 395 * budgeting.
 396 *
 397 * This is the hot-path of the file-system and we are trying to optimize it as
 398 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 399 *
 400 * There many budgeting cases:
 401 *     o a new page is appended - we have to budget for a new page and for
 402 *       changing the inode; however, if the inode is already dirty, there is
 403 *       no need to budget for it;
 404 *     o an existing clean page is changed - we have budget for it; if the page
 405 *       does not exist on the media (a hole), we have to budget for a new
 406 *       page; otherwise, we may budget for changing an existing page; the
 407 *       difference between these cases is that changing an existing page does
 408 *       not introduce anything new to the FS indexing information, so it does
 409 *       not grow, and smaller budget is acquired in this case;
 410 *     o an existing dirty page is changed - no need to budget at all, because
 411 *       the page budget has been acquired by earlier, when the page has been
 412 *       marked dirty.
 413 *
 414 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 415 * space to reserve. This imposes some locking restrictions and makes it
 416 * impossible to take into account the above cases, and makes it impossible to
 417 * optimize budgeting.
 418 *
 419 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 420 * there is a plenty of flash space and the budget will be acquired quickly,
 421 * without forcing write-back. The slow path does not make this assumption.
 422 */
 423static int ubifs_write_begin(struct file *file, struct address_space *mapping,
 424                             loff_t pos, unsigned len, unsigned flags,
 425                             struct page **pagep, void **fsdata)
 426{
 427        struct inode *inode = mapping->host;
 428        struct ubifs_info *c = inode->i_sb->s_fs_info;
 429        struct ubifs_inode *ui = ubifs_inode(inode);
 430        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 431        int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
 432        struct page *page;
 433
 434
 435        ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
 436
 437        if (unlikely(c->ro_media))
 438                return -EROFS;
 439
 440        /* Try out the fast-path part first */
 441        page = __grab_cache_page(mapping, index);
 442        if (unlikely(!page))
 443                return -ENOMEM;
 444
 445        if (!PageUptodate(page)) {
 446                /* The page is not loaded from the flash */
 447                if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
 448                        /*
 449                         * We change whole page so no need to load it. But we
 450                         * have to set the @PG_checked flag to make the further
 451                         * code the page is new. This might be not true, but it
 452                         * is better to budget more that to read the page from
 453                         * the media.
 454                         */
 455                        SetPageChecked(page);
 456                else {
 457                        err = do_readpage(page);
 458                        if (err) {
 459                                unlock_page(page);
 460                                page_cache_release(page);
 461                                return err;
 462                        }
 463                }
 464
 465                SetPageUptodate(page);
 466                ClearPageError(page);
 467        }
 468
 469        err = allocate_budget(c, page, ui, appending);
 470        if (unlikely(err)) {
 471                ubifs_assert(err == -ENOSPC);
 472                /*
 473                 * Budgeting failed which means it would have to force
 474                 * write-back but didn't, because we set the @fast flag in the
 475                 * request. Write-back cannot be done now, while we have the
 476                 * page locked, because it would deadlock. Unlock and free
 477                 * everything and fall-back to slow-path.
 478                 */
 479                if (appending) {
 480                        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 481                        mutex_unlock(&ui->ui_mutex);
 482                }
 483                unlock_page(page);
 484                page_cache_release(page);
 485
 486                return write_begin_slow(mapping, pos, len, pagep);
 487        }
 488
 489        /*
 490         * Whee, we aquired budgeting quickly - without involving
 491         * garbage-collection, committing or forceing write-back. We return
 492         * with @ui->ui_mutex locked if we are appending pages, and unlocked
 493         * otherwise. This is an optimization (slightly hacky though).
 494         */
 495        *pagep = page;
 496        return 0;
 497
 498}
 499
 500/**
 501 * cancel_budget - cancel budget.
 502 * @c: UBIFS file-system description object
 503 * @page: page to cancel budget for
 504 * @ui: UBIFS inode object the page belongs to
 505 * @appending: non-zero if the page is appended
 506 *
 507 * This is a helper function for a page write operation. It unlocks the
 508 * @ui->ui_mutex in case of appending.
 509 */
 510static void cancel_budget(struct ubifs_info *c, struct page *page,
 511                          struct ubifs_inode *ui, int appending)
 512{
 513        if (appending) {
 514                if (!ui->dirty)
 515                        ubifs_release_dirty_inode_budget(c, ui);
 516                mutex_unlock(&ui->ui_mutex);
 517        }
 518        if (!PagePrivate(page)) {
 519                if (PageChecked(page))
 520                        release_new_page_budget(c);
 521                else
 522                        release_existing_page_budget(c);
 523        }
 524}
 525
 526static int ubifs_write_end(struct file *file, struct address_space *mapping,
 527                           loff_t pos, unsigned len, unsigned copied,
 528                           struct page *page, void *fsdata)
 529{
 530        struct inode *inode = mapping->host;
 531        struct ubifs_inode *ui = ubifs_inode(inode);
 532        struct ubifs_info *c = inode->i_sb->s_fs_info;
 533        loff_t end_pos = pos + len;
 534        int appending = !!(end_pos > inode->i_size);
 535
 536        dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
 537                inode->i_ino, pos, page->index, len, copied, inode->i_size);
 538
 539        if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
 540                /*
 541                 * VFS copied less data to the page that it intended and
 542                 * declared in its '->write_begin()' call via the @len
 543                 * argument. If the page was not up-to-date, and @len was
 544                 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
 545                 * not load it from the media (for optimization reasons). This
 546                 * means that part of the page contains garbage. So read the
 547                 * page now.
 548                 */
 549                dbg_gen("copied %d instead of %d, read page and repeat",
 550                        copied, len);
 551                cancel_budget(c, page, ui, appending);
 552
 553                /*
 554                 * Return 0 to force VFS to repeat the whole operation, or the
 555                 * error code if 'do_readpage()' failes.
 556                 */
 557                copied = do_readpage(page);
 558                goto out;
 559        }
 560
 561        if (!PagePrivate(page)) {
 562                SetPagePrivate(page);
 563                atomic_long_inc(&c->dirty_pg_cnt);
 564                __set_page_dirty_nobuffers(page);
 565        }
 566
 567        if (appending) {
 568                i_size_write(inode, end_pos);
 569                ui->ui_size = end_pos;
 570                /*
 571                 * Note, we do not set @I_DIRTY_PAGES (which means that the
 572                 * inode has dirty pages), this has been done in
 573                 * '__set_page_dirty_nobuffers()'.
 574                 */
 575                __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 576                ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 577                mutex_unlock(&ui->ui_mutex);
 578        }
 579
 580out:
 581        unlock_page(page);
 582        page_cache_release(page);
 583        return copied;
 584}
 585
 586/**
 587 * populate_page - copy data nodes into a page for bulk-read.
 588 * @c: UBIFS file-system description object
 589 * @page: page
 590 * @bu: bulk-read information
 591 * @n: next zbranch slot
 592 *
 593 * This function returns %0 on success and a negative error code on failure.
 594 */
 595static int populate_page(struct ubifs_info *c, struct page *page,
 596                         struct bu_info *bu, int *n)
 597{
 598        int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
 599        struct inode *inode = page->mapping->host;
 600        loff_t i_size = i_size_read(inode);
 601        unsigned int page_block;
 602        void *addr, *zaddr;
 603        pgoff_t end_index;
 604
 605        dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
 606                inode->i_ino, page->index, i_size, page->flags);
 607
 608        addr = zaddr = kmap(page);
 609
 610        end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
 611        if (!i_size || page->index > end_index) {
 612                hole = 1;
 613                memset(addr, 0, PAGE_CACHE_SIZE);
 614                goto out_hole;
 615        }
 616
 617        page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 618        while (1) {
 619                int err, len, out_len, dlen;
 620
 621                if (nn >= bu->cnt) {
 622                        hole = 1;
 623                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 624                } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
 625                        struct ubifs_data_node *dn;
 626
 627                        dn = bu->buf + (bu->zbranch[nn].offs - offs);
 628
 629                        ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
 630                                     ubifs_inode(inode)->creat_sqnum);
 631
 632                        len = le32_to_cpu(dn->size);
 633                        if (len <= 0 || len > UBIFS_BLOCK_SIZE)
 634                                goto out_err;
 635
 636                        dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
 637                        out_len = UBIFS_BLOCK_SIZE;
 638                        err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
 639                                               le16_to_cpu(dn->compr_type));
 640                        if (err || len != out_len)
 641                                goto out_err;
 642
 643                        if (len < UBIFS_BLOCK_SIZE)
 644                                memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
 645
 646                        nn += 1;
 647                        read = (i << UBIFS_BLOCK_SHIFT) + len;
 648                } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
 649                        nn += 1;
 650                        continue;
 651                } else {
 652                        hole = 1;
 653                        memset(addr, 0, UBIFS_BLOCK_SIZE);
 654                }
 655                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 656                        break;
 657                addr += UBIFS_BLOCK_SIZE;
 658                page_block += 1;
 659        }
 660
 661        if (end_index == page->index) {
 662                int len = i_size & (PAGE_CACHE_SIZE - 1);
 663
 664                if (len && len < read)
 665                        memset(zaddr + len, 0, read - len);
 666        }
 667
 668out_hole:
 669        if (hole) {
 670                SetPageChecked(page);
 671                dbg_gen("hole");
 672        }
 673
 674        SetPageUptodate(page);
 675        ClearPageError(page);
 676        flush_dcache_page(page);
 677        kunmap(page);
 678        *n = nn;
 679        return 0;
 680
 681out_err:
 682        ClearPageUptodate(page);
 683        SetPageError(page);
 684        flush_dcache_page(page);
 685        kunmap(page);
 686        ubifs_err("bad data node (block %u, inode %lu)",
 687                  page_block, inode->i_ino);
 688        return -EINVAL;
 689}
 690
 691/**
 692 * ubifs_do_bulk_read - do bulk-read.
 693 * @c: UBIFS file-system description object
 694 * @bu: bulk-read information
 695 * @page1: first page to read
 696 *
 697 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 698 */
 699static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
 700                              struct page *page1)
 701{
 702        pgoff_t offset = page1->index, end_index;
 703        struct address_space *mapping = page1->mapping;
 704        struct inode *inode = mapping->host;
 705        struct ubifs_inode *ui = ubifs_inode(inode);
 706        int err, page_idx, page_cnt, ret = 0, n = 0;
 707        int allocate = bu->buf ? 0 : 1;
 708        loff_t isize;
 709
 710        err = ubifs_tnc_get_bu_keys(c, bu);
 711        if (err)
 712                goto out_warn;
 713
 714        if (bu->eof) {
 715                /* Turn off bulk-read at the end of the file */
 716                ui->read_in_a_row = 1;
 717                ui->bulk_read = 0;
 718        }
 719
 720        page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
 721        if (!page_cnt) {
 722                /*
 723                 * This happens when there are multiple blocks per page and the
 724                 * blocks for the first page we are looking for, are not
 725                 * together. If all the pages were like this, bulk-read would
 726                 * reduce performance, so we turn it off for a while.
 727                 */
 728                goto out_bu_off;
 729        }
 730
 731        if (bu->cnt) {
 732                if (allocate) {
 733                        /*
 734                         * Allocate bulk-read buffer depending on how many data
 735                         * nodes we are going to read.
 736                         */
 737                        bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
 738                                      bu->zbranch[bu->cnt - 1].len -
 739                                      bu->zbranch[0].offs;
 740                        ubifs_assert(bu->buf_len > 0);
 741                        ubifs_assert(bu->buf_len <= c->leb_size);
 742                        bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
 743                        if (!bu->buf)
 744                                goto out_bu_off;
 745                }
 746
 747                err = ubifs_tnc_bulk_read(c, bu);
 748                if (err)
 749                        goto out_warn;
 750        }
 751
 752        err = populate_page(c, page1, bu, &n);
 753        if (err)
 754                goto out_warn;
 755
 756        unlock_page(page1);
 757        ret = 1;
 758
 759        isize = i_size_read(inode);
 760        if (isize == 0)
 761                goto out_free;
 762        end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
 763
 764        for (page_idx = 1; page_idx < page_cnt; page_idx++) {
 765                pgoff_t page_offset = offset + page_idx;
 766                struct page *page;
 767
 768                if (page_offset > end_index)
 769                        break;
 770                page = find_or_create_page(mapping, page_offset,
 771                                           GFP_NOFS | __GFP_COLD);
 772                if (!page)
 773                        break;
 774                if (!PageUptodate(page))
 775                        err = populate_page(c, page, bu, &n);
 776                unlock_page(page);
 777                page_cache_release(page);
 778                if (err)
 779                        break;
 780        }
 781
 782        ui->last_page_read = offset + page_idx - 1;
 783
 784out_free:
 785        if (allocate)
 786                kfree(bu->buf);
 787        return ret;
 788
 789out_warn:
 790        ubifs_warn("ignoring error %d and skipping bulk-read", err);
 791        goto out_free;
 792
 793out_bu_off:
 794        ui->read_in_a_row = ui->bulk_read = 0;
 795        goto out_free;
 796}
 797
 798/**
 799 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 800 * @page: page from which to start bulk-read.
 801 *
 802 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 803 * bulk-read facility is designed to take advantage of that, by reading in one
 804 * go consecutive data nodes that are also located consecutively in the same
 805 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 806 */
 807static int ubifs_bulk_read(struct page *page)
 808{
 809        struct inode *inode = page->mapping->host;
 810        struct ubifs_info *c = inode->i_sb->s_fs_info;
 811        struct ubifs_inode *ui = ubifs_inode(inode);
 812        pgoff_t index = page->index, last_page_read = ui->last_page_read;
 813        struct bu_info *bu;
 814        int err = 0, allocated = 0;
 815
 816        ui->last_page_read = index;
 817        if (!c->bulk_read)
 818                return 0;
 819
 820        /*
 821         * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
 822         * so don't bother if we cannot lock the mutex.
 823         */
 824        if (!mutex_trylock(&ui->ui_mutex))
 825                return 0;
 826
 827        if (index != last_page_read + 1) {
 828                /* Turn off bulk-read if we stop reading sequentially */
 829                ui->read_in_a_row = 1;
 830                if (ui->bulk_read)
 831                        ui->bulk_read = 0;
 832                goto out_unlock;
 833        }
 834
 835        if (!ui->bulk_read) {
 836                ui->read_in_a_row += 1;
 837                if (ui->read_in_a_row < 3)
 838                        goto out_unlock;
 839                /* Three reads in a row, so switch on bulk-read */
 840                ui->bulk_read = 1;
 841        }
 842
 843        /*
 844         * If possible, try to use pre-allocated bulk-read information, which
 845         * is protected by @c->bu_mutex.
 846         */
 847        if (mutex_trylock(&c->bu_mutex))
 848                bu = &c->bu;
 849        else {
 850                bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
 851                if (!bu)
 852                        goto out_unlock;
 853
 854                bu->buf = NULL;
 855                allocated = 1;
 856        }
 857
 858        bu->buf_len = c->max_bu_buf_len;
 859        data_key_init(c, &bu->key, inode->i_ino,
 860                      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
 861        err = ubifs_do_bulk_read(c, bu, page);
 862
 863        if (!allocated)
 864                mutex_unlock(&c->bu_mutex);
 865        else
 866                kfree(bu);
 867
 868out_unlock:
 869        mutex_unlock(&ui->ui_mutex);
 870        return err;
 871}
 872
 873static int ubifs_readpage(struct file *file, struct page *page)
 874{
 875        if (ubifs_bulk_read(page))
 876                return 0;
 877        do_readpage(page);
 878        unlock_page(page);
 879        return 0;
 880}
 881
 882static int do_writepage(struct page *page, int len)
 883{
 884        int err = 0, i, blen;
 885        unsigned int block;
 886        void *addr;
 887        union ubifs_key key;
 888        struct inode *inode = page->mapping->host;
 889        struct ubifs_info *c = inode->i_sb->s_fs_info;
 890
 891#ifdef UBIFS_DEBUG
 892        spin_lock(&ui->ui_lock);
 893        ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
 894        spin_unlock(&ui->ui_lock);
 895#endif
 896
 897        /* Update radix tree tags */
 898        set_page_writeback(page);
 899
 900        addr = kmap(page);
 901        block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 902        i = 0;
 903        while (len) {
 904                blen = min_t(int, len, UBIFS_BLOCK_SIZE);
 905                data_key_init(c, &key, inode->i_ino, block);
 906                err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
 907                if (err)
 908                        break;
 909                if (++i >= UBIFS_BLOCKS_PER_PAGE)
 910                        break;
 911                block += 1;
 912                addr += blen;
 913                len -= blen;
 914        }
 915        if (err) {
 916                SetPageError(page);
 917                ubifs_err("cannot write page %lu of inode %lu, error %d",
 918                          page->index, inode->i_ino, err);
 919                ubifs_ro_mode(c, err);
 920        }
 921
 922        ubifs_assert(PagePrivate(page));
 923        if (PageChecked(page))
 924                release_new_page_budget(c);
 925        else
 926                release_existing_page_budget(c);
 927
 928        atomic_long_dec(&c->dirty_pg_cnt);
 929        ClearPagePrivate(page);
 930        ClearPageChecked(page);
 931
 932        kunmap(page);
 933        unlock_page(page);
 934        end_page_writeback(page);
 935        return err;
 936}
 937
 938/*
 939 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 940 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 941 * situation when a we have an inode with size 0, then a megabyte of data is
 942 * appended to the inode, then write-back starts and flushes some amount of the
 943 * dirty pages, the journal becomes full, commit happens and finishes, and then
 944 * an unclean reboot happens. When the file system is mounted next time, the
 945 * inode size would still be 0, but there would be many pages which are beyond
 946 * the inode size, they would be indexed and consume flash space. Because the
 947 * journal has been committed, the replay would not be able to detect this
 948 * situation and correct the inode size. This means UBIFS would have to scan
 949 * whole index and correct all inode sizes, which is long an unacceptable.
 950 *
 951 * To prevent situations like this, UBIFS writes pages back only if they are
 952 * within last synchronized inode size, i.e. the the size which has been
 953 * written to the flash media last time. Otherwise, UBIFS forces inode
 954 * write-back, thus making sure the on-flash inode contains current inode size,
 955 * and then keeps writing pages back.
 956 *
 957 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 958 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 959 * @i_mutex, which means other VFS operations may be run on this inode at the
 960 * same time. And the problematic one is truncation to smaller size, from where
 961 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
 962 * drops the truncated pages. And while dropping the pages, it takes the page
 963 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
 964 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
 965 * means that @inode->i_size is changed while @ui_mutex is unlocked.
 966 *
 967 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
 968 * inode size. How do we do this if @inode->i_size may became smaller while we
 969 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
 970 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
 971 * internally and updates it under @ui_mutex.
 972 *
 973 * Q: why we do not worry that if we race with truncation, we may end up with a
 974 * situation when the inode is truncated while we are in the middle of
 975 * 'do_writepage()', so we do write beyond inode size?
 976 * A: If we are in the middle of 'do_writepage()', truncation would be locked
 977 * on the page lock and it would not write the truncated inode node to the
 978 * journal before we have finished.
 979 */
 980static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
 981{
 982        struct inode *inode = page->mapping->host;
 983        struct ubifs_inode *ui = ubifs_inode(inode);
 984        loff_t i_size =  i_size_read(inode), synced_i_size;
 985        pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
 986        int err, len = i_size & (PAGE_CACHE_SIZE - 1);
 987        void *kaddr;
 988
 989        dbg_gen("ino %lu, pg %lu, pg flags %#lx",
 990                inode->i_ino, page->index, page->flags);
 991        ubifs_assert(PagePrivate(page));
 992
 993        /* Is the page fully outside @i_size? (truncate in progress) */
 994        if (page->index > end_index || (page->index == end_index && !len)) {
 995                err = 0;
 996                goto out_unlock;
 997        }
 998
 999        spin_lock(&ui->ui_lock);
1000        synced_i_size = ui->synced_i_size;
1001        spin_unlock(&ui->ui_lock);
1002
1003        /* Is the page fully inside @i_size? */
1004        if (page->index < end_index) {
1005                if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1006                        err = inode->i_sb->s_op->write_inode(inode, 1);
1007                        if (err)
1008                                goto out_unlock;
1009                        /*
1010                         * The inode has been written, but the write-buffer has
1011                         * not been synchronized, so in case of an unclean
1012                         * reboot we may end up with some pages beyond inode
1013                         * size, but they would be in the journal (because
1014                         * commit flushes write buffers) and recovery would deal
1015                         * with this.
1016                         */
1017                }
1018                return do_writepage(page, PAGE_CACHE_SIZE);
1019        }
1020
1021        /*
1022         * The page straddles @i_size. It must be zeroed out on each and every
1023         * writepage invocation because it may be mmapped. "A file is mapped
1024         * in multiples of the page size. For a file that is not a multiple of
1025         * the page size, the remaining memory is zeroed when mapped, and
1026         * writes to that region are not written out to the file."
1027         */
1028        kaddr = kmap_atomic(page, KM_USER0);
1029        memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1030        flush_dcache_page(page);
1031        kunmap_atomic(kaddr, KM_USER0);
1032
1033        if (i_size > synced_i_size) {
1034                err = inode->i_sb->s_op->write_inode(inode, 1);
1035                if (err)
1036                        goto out_unlock;
1037        }
1038
1039        return do_writepage(page, len);
1040
1041out_unlock:
1042        unlock_page(page);
1043        return err;
1044}
1045
1046/**
1047 * do_attr_changes - change inode attributes.
1048 * @inode: inode to change attributes for
1049 * @attr: describes attributes to change
1050 */
1051static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1052{
1053        if (attr->ia_valid & ATTR_UID)
1054                inode->i_uid = attr->ia_uid;
1055        if (attr->ia_valid & ATTR_GID)
1056                inode->i_gid = attr->ia_gid;
1057        if (attr->ia_valid & ATTR_ATIME)
1058                inode->i_atime = timespec_trunc(attr->ia_atime,
1059                                                inode->i_sb->s_time_gran);
1060        if (attr->ia_valid & ATTR_MTIME)
1061                inode->i_mtime = timespec_trunc(attr->ia_mtime,
1062                                                inode->i_sb->s_time_gran);
1063        if (attr->ia_valid & ATTR_CTIME)
1064                inode->i_ctime = timespec_trunc(attr->ia_ctime,
1065                                                inode->i_sb->s_time_gran);
1066        if (attr->ia_valid & ATTR_MODE) {
1067                umode_t mode = attr->ia_mode;
1068
1069                if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1070                        mode &= ~S_ISGID;
1071                inode->i_mode = mode;
1072        }
1073}
1074
1075/**
1076 * do_truncation - truncate an inode.
1077 * @c: UBIFS file-system description object
1078 * @inode: inode to truncate
1079 * @attr: inode attribute changes description
1080 *
1081 * This function implements VFS '->setattr()' call when the inode is truncated
1082 * to a smaller size. Returns zero in case of success and a negative error code
1083 * in case of failure.
1084 */
1085static int do_truncation(struct ubifs_info *c, struct inode *inode,
1086                         const struct iattr *attr)
1087{
1088        int err;
1089        struct ubifs_budget_req req;
1090        loff_t old_size = inode->i_size, new_size = attr->ia_size;
1091        int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1092        struct ubifs_inode *ui = ubifs_inode(inode);
1093
1094        dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1095        memset(&req, 0, sizeof(struct ubifs_budget_req));
1096
1097        /*
1098         * If this is truncation to a smaller size, and we do not truncate on a
1099         * block boundary, budget for changing one data block, because the last
1100         * block will be re-written.
1101         */
1102        if (new_size & (UBIFS_BLOCK_SIZE - 1))
1103                req.dirtied_page = 1;
1104
1105        req.dirtied_ino = 1;
1106        /* A funny way to budget for truncation node */
1107        req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1108        err = ubifs_budget_space(c, &req);
1109        if (err) {
1110                /*
1111                 * Treat truncations to zero as deletion and always allow them,
1112                 * just like we do for '->unlink()'.
1113                 */
1114                if (new_size || err != -ENOSPC)
1115                        return err;
1116                budgeted = 0;
1117        }
1118
1119        err = vmtruncate(inode, new_size);
1120        if (err)
1121                goto out_budg;
1122
1123        if (offset) {
1124                pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1125                struct page *page;
1126
1127                page = find_lock_page(inode->i_mapping, index);
1128                if (page) {
1129                        if (PageDirty(page)) {
1130                                /*
1131                                 * 'ubifs_jnl_truncate()' will try to truncate
1132                                 * the last data node, but it contains
1133                                 * out-of-date data because the page is dirty.
1134                                 * Write the page now, so that
1135                                 * 'ubifs_jnl_truncate()' will see an already
1136                                 * truncated (and up to date) data node.
1137                                 */
1138                                ubifs_assert(PagePrivate(page));
1139
1140                                clear_page_dirty_for_io(page);
1141                                if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1142                                        offset = new_size &
1143                                                 (PAGE_CACHE_SIZE - 1);
1144                                err = do_writepage(page, offset);
1145                                page_cache_release(page);
1146                                if (err)
1147                                        goto out_budg;
1148                                /*
1149                                 * We could now tell 'ubifs_jnl_truncate()' not
1150                                 * to read the last block.
1151                                 */
1152                        } else {
1153                                /*
1154                                 * We could 'kmap()' the page and pass the data
1155                                 * to 'ubifs_jnl_truncate()' to save it from
1156                                 * having to read it.
1157                                 */
1158                                unlock_page(page);
1159                                page_cache_release(page);
1160                        }
1161                }
1162        }
1163
1164        mutex_lock(&ui->ui_mutex);
1165        ui->ui_size = inode->i_size;
1166        /* Truncation changes inode [mc]time */
1167        inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1168        /* The other attributes may be changed at the same time as well */
1169        do_attr_changes(inode, attr);
1170
1171        err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1172        mutex_unlock(&ui->ui_mutex);
1173out_budg:
1174        if (budgeted)
1175                ubifs_release_budget(c, &req);
1176        else {
1177                c->nospace = c->nospace_rp = 0;
1178                smp_wmb();
1179        }
1180        return err;
1181}
1182
1183/**
1184 * do_setattr - change inode attributes.
1185 * @c: UBIFS file-system description object
1186 * @inode: inode to change attributes for
1187 * @attr: inode attribute changes description
1188 *
1189 * This function implements VFS '->setattr()' call for all cases except
1190 * truncations to smaller size. Returns zero in case of success and a negative
1191 * error code in case of failure.
1192 */
1193static int do_setattr(struct ubifs_info *c, struct inode *inode,
1194                      const struct iattr *attr)
1195{
1196        int err, release;
1197        loff_t new_size = attr->ia_size;
1198        struct ubifs_inode *ui = ubifs_inode(inode);
1199        struct ubifs_budget_req req = { .dirtied_ino = 1,
1200                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1201
1202        err = ubifs_budget_space(c, &req);
1203        if (err)
1204                return err;
1205
1206        if (attr->ia_valid & ATTR_SIZE) {
1207                dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1208                err = vmtruncate(inode, new_size);
1209                if (err)
1210                        goto out;
1211        }
1212
1213        mutex_lock(&ui->ui_mutex);
1214        if (attr->ia_valid & ATTR_SIZE) {
1215                /* Truncation changes inode [mc]time */
1216                inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1217                /* 'vmtruncate()' changed @i_size, update @ui_size */
1218                ui->ui_size = inode->i_size;
1219        }
1220
1221        do_attr_changes(inode, attr);
1222
1223        release = ui->dirty;
1224        if (attr->ia_valid & ATTR_SIZE)
1225                /*
1226                 * Inode length changed, so we have to make sure
1227                 * @I_DIRTY_DATASYNC is set.
1228                 */
1229                 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1230        else
1231                mark_inode_dirty_sync(inode);
1232        mutex_unlock(&ui->ui_mutex);
1233
1234        if (release)
1235                ubifs_release_budget(c, &req);
1236        if (IS_SYNC(inode))
1237                err = inode->i_sb->s_op->write_inode(inode, 1);
1238        return err;
1239
1240out:
1241        ubifs_release_budget(c, &req);
1242        return err;
1243}
1244
1245int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1246{
1247        int err;
1248        struct inode *inode = dentry->d_inode;
1249        struct ubifs_info *c = inode->i_sb->s_fs_info;
1250
1251        dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1252                inode->i_ino, inode->i_mode, attr->ia_valid);
1253        err = inode_change_ok(inode, attr);
1254        if (err)
1255                return err;
1256
1257        err = dbg_check_synced_i_size(inode);
1258        if (err)
1259                return err;
1260
1261        if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1262                /* Truncation to a smaller size */
1263                err = do_truncation(c, inode, attr);
1264        else
1265                err = do_setattr(c, inode, attr);
1266
1267        return err;
1268}
1269
1270static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1271{
1272        struct inode *inode = page->mapping->host;
1273        struct ubifs_info *c = inode->i_sb->s_fs_info;
1274
1275        ubifs_assert(PagePrivate(page));
1276        if (offset)
1277                /* Partial page remains dirty */
1278                return;
1279
1280        if (PageChecked(page))
1281                release_new_page_budget(c);
1282        else
1283                release_existing_page_budget(c);
1284
1285        atomic_long_dec(&c->dirty_pg_cnt);
1286        ClearPagePrivate(page);
1287        ClearPageChecked(page);
1288}
1289
1290static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1291{
1292        struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1293
1294        nd_set_link(nd, ui->data);
1295        return NULL;
1296}
1297
1298int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1299{
1300        struct inode *inode = dentry->d_inode;
1301        struct ubifs_info *c = inode->i_sb->s_fs_info;
1302        int err;
1303
1304        dbg_gen("syncing inode %lu", inode->i_ino);
1305
1306        /*
1307         * VFS has already synchronized dirty pages for this inode. Synchronize
1308         * the inode unless this is a 'datasync()' call.
1309         */
1310        if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1311                err = inode->i_sb->s_op->write_inode(inode, 1);
1312                if (err)
1313                        return err;
1314        }
1315
1316        /*
1317         * Nodes related to this inode may still sit in a write-buffer. Flush
1318         * them.
1319         */
1320        err = ubifs_sync_wbufs_by_inode(c, inode);
1321        if (err)
1322                return err;
1323
1324        return 0;
1325}
1326
1327/**
1328 * mctime_update_needed - check if mtime or ctime update is needed.
1329 * @inode: the inode to do the check for
1330 * @now: current time
1331 *
1332 * This helper function checks if the inode mtime/ctime should be updated or
1333 * not. If current values of the time-stamps are within the UBIFS inode time
1334 * granularity, they are not updated. This is an optimization.
1335 */
1336static inline int mctime_update_needed(const struct inode *inode,
1337                                       const struct timespec *now)
1338{
1339        if (!timespec_equal(&inode->i_mtime, now) ||
1340            !timespec_equal(&inode->i_ctime, now))
1341                return 1;
1342        return 0;
1343}
1344
1345/**
1346 * update_ctime - update mtime and ctime of an inode.
1347 * @c: UBIFS file-system description object
1348 * @inode: inode to update
1349 *
1350 * This function updates mtime and ctime of the inode if it is not equivalent to
1351 * current time. Returns zero in case of success and a negative error code in
1352 * case of failure.
1353 */
1354static int update_mctime(struct ubifs_info *c, struct inode *inode)
1355{
1356        struct timespec now = ubifs_current_time(inode);
1357        struct ubifs_inode *ui = ubifs_inode(inode);
1358
1359        if (mctime_update_needed(inode, &now)) {
1360                int err, release;
1361                struct ubifs_budget_req req = { .dirtied_ino = 1,
1362                                .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1363
1364                err = ubifs_budget_space(c, &req);
1365                if (err)
1366                        return err;
1367
1368                mutex_lock(&ui->ui_mutex);
1369                inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1370                release = ui->dirty;
1371                mark_inode_dirty_sync(inode);
1372                mutex_unlock(&ui->ui_mutex);
1373                if (release)
1374                        ubifs_release_budget(c, &req);
1375        }
1376
1377        return 0;
1378}
1379
1380static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1381                               unsigned long nr_segs, loff_t pos)
1382{
1383        int err;
1384        ssize_t ret;
1385        struct inode *inode = iocb->ki_filp->f_mapping->host;
1386        struct ubifs_info *c = inode->i_sb->s_fs_info;
1387
1388        err = update_mctime(c, inode);
1389        if (err)
1390                return err;
1391
1392        ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1393        if (ret < 0)
1394                return ret;
1395
1396        if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1397                err = ubifs_sync_wbufs_by_inode(c, inode);
1398                if (err)
1399                        return err;
1400        }
1401
1402        return ret;
1403}
1404
1405static int ubifs_set_page_dirty(struct page *page)
1406{
1407        int ret;
1408
1409        ret = __set_page_dirty_nobuffers(page);
1410        /*
1411         * An attempt to dirty a page without budgeting for it - should not
1412         * happen.
1413         */
1414        ubifs_assert(ret == 0);
1415        return ret;
1416}
1417
1418static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1419{
1420        /*
1421         * An attempt to release a dirty page without budgeting for it - should
1422         * not happen.
1423         */
1424        if (PageWriteback(page))
1425                return 0;
1426        ubifs_assert(PagePrivate(page));
1427        ubifs_assert(0);
1428        ClearPagePrivate(page);
1429        ClearPageChecked(page);
1430        return 1;
1431}
1432
1433/*
1434 * mmap()d file has taken write protection fault and is being made
1435 * writable. UBIFS must ensure page is budgeted for.
1436 */
1437static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
1438{
1439        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1440        struct ubifs_info *c = inode->i_sb->s_fs_info;
1441        struct timespec now = ubifs_current_time(inode);
1442        struct ubifs_budget_req req = { .new_page = 1 };
1443        int err, update_time;
1444
1445        dbg_gen("ino %lu, pg %lu, i_size %lld",        inode->i_ino, page->index,
1446                i_size_read(inode));
1447        ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1448
1449        if (unlikely(c->ro_media))
1450                return -EROFS;
1451
1452        /*
1453         * We have not locked @page so far so we may budget for changing the
1454         * page. Note, we cannot do this after we locked the page, because
1455         * budgeting may cause write-back which would cause deadlock.
1456         *
1457         * At the moment we do not know whether the page is dirty or not, so we
1458         * assume that it is not and budget for a new page. We could look at
1459         * the @PG_private flag and figure this out, but we may race with write
1460         * back and the page state may change by the time we lock it, so this
1461         * would need additional care. We do not bother with this at the
1462         * moment, although it might be good idea to do. Instead, we allocate
1463         * budget for a new page and amend it later on if the page was in fact
1464         * dirty.
1465         *
1466         * The budgeting-related logic of this function is similar to what we
1467         * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1468         * for more comments.
1469         */
1470        update_time = mctime_update_needed(inode, &now);
1471        if (update_time)
1472                /*
1473                 * We have to change inode time stamp which requires extra
1474                 * budgeting.
1475                 */
1476                req.dirtied_ino = 1;
1477
1478        err = ubifs_budget_space(c, &req);
1479        if (unlikely(err)) {
1480                if (err == -ENOSPC)
1481                        ubifs_warn("out of space for mmapped file "
1482                                   "(inode number %lu)", inode->i_ino);
1483                return err;
1484        }
1485
1486        lock_page(page);
1487        if (unlikely(page->mapping != inode->i_mapping ||
1488                     page_offset(page) > i_size_read(inode))) {
1489                /* Page got truncated out from underneath us */
1490                err = -EINVAL;
1491                goto out_unlock;
1492        }
1493
1494        if (PagePrivate(page))
1495                release_new_page_budget(c);
1496        else {
1497                if (!PageChecked(page))
1498                        ubifs_convert_page_budget(c);
1499                SetPagePrivate(page);
1500                atomic_long_inc(&c->dirty_pg_cnt);
1501                __set_page_dirty_nobuffers(page);
1502        }
1503
1504        if (update_time) {
1505                int release;
1506                struct ubifs_inode *ui = ubifs_inode(inode);
1507
1508                mutex_lock(&ui->ui_mutex);
1509                inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1510                release = ui->dirty;
1511                mark_inode_dirty_sync(inode);
1512                mutex_unlock(&ui->ui_mutex);
1513                if (release)
1514                        ubifs_release_dirty_inode_budget(c, ui);
1515        }
1516
1517        unlock_page(page);
1518        return 0;
1519
1520out_unlock:
1521        unlock_page(page);
1522        ubifs_release_budget(c, &req);
1523        return err;
1524}
1525
1526static struct vm_operations_struct ubifs_file_vm_ops = {
1527        .fault        = filemap_fault,
1528        .page_mkwrite = ubifs_vm_page_mkwrite,
1529};
1530
1531static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1532{
1533        int err;
1534
1535        /* 'generic_file_mmap()' takes care of NOMMU case */
1536        err = generic_file_mmap(file, vma);
1537        if (err)
1538                return err;
1539        vma->vm_ops = &ubifs_file_vm_ops;
1540        return 0;
1541}
1542
1543struct address_space_operations ubifs_file_address_operations = {
1544        .readpage       = ubifs_readpage,
1545        .writepage      = ubifs_writepage,
1546        .write_begin    = ubifs_write_begin,
1547        .write_end      = ubifs_write_end,
1548        .invalidatepage = ubifs_invalidatepage,
1549        .set_page_dirty = ubifs_set_page_dirty,
1550        .releasepage    = ubifs_releasepage,
1551};
1552
1553struct inode_operations ubifs_file_inode_operations = {
1554        .setattr     = ubifs_setattr,
1555        .getattr     = ubifs_getattr,
1556#ifdef CONFIG_UBIFS_FS_XATTR
1557        .setxattr    = ubifs_setxattr,
1558        .getxattr    = ubifs_getxattr,
1559        .listxattr   = ubifs_listxattr,
1560        .removexattr = ubifs_removexattr,
1561#endif
1562};
1563
1564struct inode_operations ubifs_symlink_inode_operations = {
1565        .readlink    = generic_readlink,
1566        .follow_link = ubifs_follow_link,
1567        .setattr     = ubifs_setattr,
1568        .getattr     = ubifs_getattr,
1569};
1570
1571struct file_operations ubifs_file_operations = {
1572        .llseek         = generic_file_llseek,
1573        .read           = do_sync_read,
1574        .write          = do_sync_write,
1575        .aio_read       = generic_file_aio_read,
1576        .aio_write      = ubifs_aio_write,
1577        .mmap           = ubifs_file_mmap,
1578        .fsync          = ubifs_fsync,
1579        .unlocked_ioctl = ubifs_ioctl,
1580        .splice_read        = generic_file_splice_read,
1581        .splice_write        = generic_file_splice_write,
1582#ifdef CONFIG_COMPAT
1583        .compat_ioctl   = ubifs_compat_ioctl,
1584#endif
1585};