Showing error 852

User: Jiri Slaby
Error type: Resource Leak
Error type description: The code omits to put the resource to the system for reuse
File location: arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c
Line in file: 278
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2011-11-07 22:40:13 UTC


Source:

  1/*
  2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
  3 *
  4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
  8 *
  9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 10 *
 11 *  This program is free software; you can redistribute it and/or modify
 12 *  it under the terms of the GNU General Public License as published by
 13 *  the Free Software Foundation; either version 2 of the License, or (at
 14 *  your option) any later version.
 15 *
 16 *  This program is distributed in the hope that it will be useful, but
 17 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 19 *  General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License along
 22 *  with this program; if not, write to the Free Software Foundation, Inc.,
 23 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 24 *
 25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 26 */
 27
 28#include <linux/kernel.h>
 29#include <linux/module.h>
 30#include <linux/init.h>
 31#include <linux/smp.h>
 32#include <linux/sched.h>
 33#include <linux/cpufreq.h>
 34#include <linux/compiler.h>
 35#include <linux/dmi.h>
 36
 37#include <linux/acpi.h>
 38#include <acpi/processor.h>
 39
 40#include <asm/io.h>
 41#include <asm/msr.h>
 42#include <asm/processor.h>
 43#include <asm/cpufeature.h>
 44#include <asm/delay.h>
 45#include <asm/uaccess.h>
 46
 47#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
 48
 49MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
 50MODULE_DESCRIPTION("ACPI Processor P-States Driver");
 51MODULE_LICENSE("GPL");
 52
 53enum {
 54        UNDEFINED_CAPABLE = 0,
 55        SYSTEM_INTEL_MSR_CAPABLE,
 56        SYSTEM_IO_CAPABLE,
 57};
 58
 59#define INTEL_MSR_RANGE                (0xffff)
 60#define CPUID_6_ECX_APERFMPERF_CAPABILITY        (0x1)
 61
 62struct acpi_cpufreq_data {
 63        struct acpi_processor_performance *acpi_data;
 64        struct cpufreq_frequency_table *freq_table;
 65        unsigned int max_freq;
 66        unsigned int resume;
 67        unsigned int cpu_feature;
 68};
 69
 70static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
 71
 72/* acpi_perf_data is a pointer to percpu data. */
 73static struct acpi_processor_performance *acpi_perf_data;
 74
 75static struct cpufreq_driver acpi_cpufreq_driver;
 76
 77static unsigned int acpi_pstate_strict;
 78
 79static int check_est_cpu(unsigned int cpuid)
 80{
 81        struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 82
 83        if (cpu->x86_vendor != X86_VENDOR_INTEL ||
 84            !cpu_has(cpu, X86_FEATURE_EST))
 85                return 0;
 86
 87        return 1;
 88}
 89
 90static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
 91{
 92        struct acpi_processor_performance *perf;
 93        int i;
 94
 95        perf = data->acpi_data;
 96
 97        for (i=0; i<perf->state_count; i++) {
 98                if (value == perf->states[i].status)
 99                        return data->freq_table[i].frequency;
100        }
101        return 0;
102}
103
104static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
105{
106        int i;
107        struct acpi_processor_performance *perf;
108
109        msr &= INTEL_MSR_RANGE;
110        perf = data->acpi_data;
111
112        for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
113                if (msr == perf->states[data->freq_table[i].index].status)
114                        return data->freq_table[i].frequency;
115        }
116        return data->freq_table[0].frequency;
117}
118
119static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
120{
121        switch (data->cpu_feature) {
122        case SYSTEM_INTEL_MSR_CAPABLE:
123                return extract_msr(val, data);
124        case SYSTEM_IO_CAPABLE:
125                return extract_io(val, data);
126        default:
127                return 0;
128        }
129}
130
131struct msr_addr {
132        u32 reg;
133};
134
135struct io_addr {
136        u16 port;
137        u8 bit_width;
138};
139
140typedef union {
141        struct msr_addr msr;
142        struct io_addr io;
143} drv_addr_union;
144
145struct drv_cmd {
146        unsigned int type;
147        cpumask_t mask;
148        drv_addr_union addr;
149        u32 val;
150};
151
152static void do_drv_read(struct drv_cmd *cmd)
153{
154        u32 h;
155
156        switch (cmd->type) {
157        case SYSTEM_INTEL_MSR_CAPABLE:
158                rdmsr(cmd->addr.msr.reg, cmd->val, h);
159                break;
160        case SYSTEM_IO_CAPABLE:
161                acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
162                                &cmd->val,
163                                (u32)cmd->addr.io.bit_width);
164                break;
165        default:
166                break;
167        }
168}
169
170static void do_drv_write(struct drv_cmd *cmd)
171{
172        u32 lo, hi;
173
174        switch (cmd->type) {
175        case SYSTEM_INTEL_MSR_CAPABLE:
176                rdmsr(cmd->addr.msr.reg, lo, hi);
177                lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
178                wrmsr(cmd->addr.msr.reg, lo, hi);
179                break;
180        case SYSTEM_IO_CAPABLE:
181                acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
182                                cmd->val,
183                                (u32)cmd->addr.io.bit_width);
184                break;
185        default:
186                break;
187        }
188}
189
190static void drv_read(struct drv_cmd *cmd)
191{
192        cpumask_t saved_mask = current->cpus_allowed;
193        cmd->val = 0;
194
195        set_cpus_allowed_ptr(current, &cmd->mask);
196        do_drv_read(cmd);
197        set_cpus_allowed_ptr(current, &saved_mask);
198}
199
200static void drv_write(struct drv_cmd *cmd)
201{
202        cpumask_t saved_mask = current->cpus_allowed;
203        unsigned int i;
204
205        for_each_cpu_mask_nr(i, cmd->mask) {
206                set_cpus_allowed_ptr(current, &cpumask_of_cpu(i));
207                do_drv_write(cmd);
208        }
209
210        set_cpus_allowed_ptr(current, &saved_mask);
211        return;
212}
213
214static u32 get_cur_val(const cpumask_t *mask)
215{
216        struct acpi_processor_performance *perf;
217        struct drv_cmd cmd;
218
219        if (unlikely(cpus_empty(*mask)))
220                return 0;
221
222        switch (per_cpu(drv_data, first_cpu(*mask))->cpu_feature) {
223        case SYSTEM_INTEL_MSR_CAPABLE:
224                cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
225                cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
226                break;
227        case SYSTEM_IO_CAPABLE:
228                cmd.type = SYSTEM_IO_CAPABLE;
229                perf = per_cpu(drv_data, first_cpu(*mask))->acpi_data;
230                cmd.addr.io.port = perf->control_register.address;
231                cmd.addr.io.bit_width = perf->control_register.bit_width;
232                break;
233        default:
234                return 0;
235        }
236
237        cmd.mask = *mask;
238
239        drv_read(&cmd);
240
241        dprintk("get_cur_val = %u\n", cmd.val);
242
243        return cmd.val;
244}
245
246/*
247 * Return the measured active (C0) frequency on this CPU since last call
248 * to this function.
249 * Input: cpu number
250 * Return: Average CPU frequency in terms of max frequency (zero on error)
251 *
252 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
253 * over a period of time, while CPU is in C0 state.
254 * IA32_MPERF counts at the rate of max advertised frequency
255 * IA32_APERF counts at the rate of actual CPU frequency
256 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
257 * no meaning should be associated with absolute values of these MSRs.
258 */
259static unsigned int get_measured_perf(struct cpufreq_policy *policy,
260                                      unsigned int cpu)
261{
262        union {
263                struct {
264                        u32 lo;
265                        u32 hi;
266                } split;
267                u64 whole;
268        } aperf_cur, mperf_cur;
269
270        cpumask_t saved_mask;
271        unsigned int perf_percent;
272        unsigned int retval;
273
274        saved_mask = current->cpus_allowed;
275        set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
276        if (get_cpu() != cpu) {
277                /* We were not able to run on requested processor */
278                put_cpu();
279                return 0;
280        }
281
282        rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
283        rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
284
285        wrmsr(MSR_IA32_APERF, 0,0);
286        wrmsr(MSR_IA32_MPERF, 0,0);
287
288#ifdef __i386__
289        /*
290         * We dont want to do 64 bit divide with 32 bit kernel
291         * Get an approximate value. Return failure in case we cannot get
292         * an approximate value.
293         */
294        if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
295                int shift_count;
296                u32 h;
297
298                h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
299                shift_count = fls(h);
300
301                aperf_cur.whole >>= shift_count;
302                mperf_cur.whole >>= shift_count;
303        }
304
305        if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
306                int shift_count = 7;
307                aperf_cur.split.lo >>= shift_count;
308                mperf_cur.split.lo >>= shift_count;
309        }
310
311        if (aperf_cur.split.lo && mperf_cur.split.lo)
312                perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
313        else
314                perf_percent = 0;
315
316#else
317        if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
318                int shift_count = 7;
319                aperf_cur.whole >>= shift_count;
320                mperf_cur.whole >>= shift_count;
321        }
322
323        if (aperf_cur.whole && mperf_cur.whole)
324                perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
325        else
326                perf_percent = 0;
327
328#endif
329
330        retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
331
332        put_cpu();
333        set_cpus_allowed_ptr(current, &saved_mask);
334
335        dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
336        return retval;
337}
338
339static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
340{
341        struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
342        unsigned int freq;
343        unsigned int cached_freq;
344
345        dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
346
347        if (unlikely(data == NULL ||
348                     data->acpi_data == NULL || data->freq_table == NULL)) {
349                return 0;
350        }
351
352        cached_freq = data->freq_table[data->acpi_data->state].frequency;
353        freq = extract_freq(get_cur_val(&cpumask_of_cpu(cpu)), data);
354        if (freq != cached_freq) {
355                /*
356                 * The dreaded BIOS frequency change behind our back.
357                 * Force set the frequency on next target call.
358                 */
359                data->resume = 1;
360        }
361
362        dprintk("cur freq = %u\n", freq);
363
364        return freq;
365}
366
367static unsigned int check_freqs(const cpumask_t *mask, unsigned int freq,
368                                struct acpi_cpufreq_data *data)
369{
370        unsigned int cur_freq;
371        unsigned int i;
372
373        for (i=0; i<100; i++) {
374                cur_freq = extract_freq(get_cur_val(mask), data);
375                if (cur_freq == freq)
376                        return 1;
377                udelay(10);
378        }
379        return 0;
380}
381
382static int acpi_cpufreq_target(struct cpufreq_policy *policy,
383                               unsigned int target_freq, unsigned int relation)
384{
385        struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
386        struct acpi_processor_performance *perf;
387        struct cpufreq_freqs freqs;
388        cpumask_t online_policy_cpus;
389        struct drv_cmd cmd;
390        unsigned int next_state = 0; /* Index into freq_table */
391        unsigned int next_perf_state = 0; /* Index into perf table */
392        unsigned int i;
393        int result = 0;
394
395        dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
396
397        if (unlikely(data == NULL ||
398             data->acpi_data == NULL || data->freq_table == NULL)) {
399                return -ENODEV;
400        }
401
402        perf = data->acpi_data;
403        result = cpufreq_frequency_table_target(policy,
404                                                data->freq_table,
405                                                target_freq,
406                                                relation, &next_state);
407        if (unlikely(result))
408                return -ENODEV;
409
410#ifdef CONFIG_HOTPLUG_CPU
411        /* cpufreq holds the hotplug lock, so we are safe from here on */
412        cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
413#else
414        online_policy_cpus = policy->cpus;
415#endif
416
417        next_perf_state = data->freq_table[next_state].index;
418        if (perf->state == next_perf_state) {
419                if (unlikely(data->resume)) {
420                        dprintk("Called after resume, resetting to P%d\n",
421                                next_perf_state);
422                        data->resume = 0;
423                } else {
424                        dprintk("Already at target state (P%d)\n",
425                                next_perf_state);
426                        return 0;
427                }
428        }
429
430        switch (data->cpu_feature) {
431        case SYSTEM_INTEL_MSR_CAPABLE:
432                cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
433                cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
434                cmd.val = (u32) perf->states[next_perf_state].control;
435                break;
436        case SYSTEM_IO_CAPABLE:
437                cmd.type = SYSTEM_IO_CAPABLE;
438                cmd.addr.io.port = perf->control_register.address;
439                cmd.addr.io.bit_width = perf->control_register.bit_width;
440                cmd.val = (u32) perf->states[next_perf_state].control;
441                break;
442        default:
443                return -ENODEV;
444        }
445
446        cpus_clear(cmd.mask);
447
448        if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
449                cmd.mask = online_policy_cpus;
450        else
451                cpu_set(policy->cpu, cmd.mask);
452
453        freqs.old = perf->states[perf->state].core_frequency * 1000;
454        freqs.new = data->freq_table[next_state].frequency;
455        for_each_cpu_mask_nr(i, cmd.mask) {
456                freqs.cpu = i;
457                cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
458        }
459
460        drv_write(&cmd);
461
462        if (acpi_pstate_strict) {
463                if (!check_freqs(&cmd.mask, freqs.new, data)) {
464                        dprintk("acpi_cpufreq_target failed (%d)\n",
465                                policy->cpu);
466                        return -EAGAIN;
467                }
468        }
469
470        for_each_cpu_mask_nr(i, cmd.mask) {
471                freqs.cpu = i;
472                cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
473        }
474        perf->state = next_perf_state;
475
476        return result;
477}
478
479static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
480{
481        struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
482
483        dprintk("acpi_cpufreq_verify\n");
484
485        return cpufreq_frequency_table_verify(policy, data->freq_table);
486}
487
488static unsigned long
489acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
490{
491        struct acpi_processor_performance *perf = data->acpi_data;
492
493        if (cpu_khz) {
494                /* search the closest match to cpu_khz */
495                unsigned int i;
496                unsigned long freq;
497                unsigned long freqn = perf->states[0].core_frequency * 1000;
498
499                for (i=0; i<(perf->state_count-1); i++) {
500                        freq = freqn;
501                        freqn = perf->states[i+1].core_frequency * 1000;
502                        if ((2 * cpu_khz) > (freqn + freq)) {
503                                perf->state = i;
504                                return freq;
505                        }
506                }
507                perf->state = perf->state_count-1;
508                return freqn;
509        } else {
510                /* assume CPU is at P0... */
511                perf->state = 0;
512                return perf->states[0].core_frequency * 1000;
513        }
514}
515
516/*
517 * acpi_cpufreq_early_init - initialize ACPI P-States library
518 *
519 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
520 * in order to determine correct frequency and voltage pairings. We can
521 * do _PDC and _PSD and find out the processor dependency for the
522 * actual init that will happen later...
523 */
524static int __init acpi_cpufreq_early_init(void)
525{
526        dprintk("acpi_cpufreq_early_init\n");
527
528        acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
529        if (!acpi_perf_data) {
530                dprintk("Memory allocation error for acpi_perf_data.\n");
531                return -ENOMEM;
532        }
533
534        /* Do initialization in ACPI core */
535        acpi_processor_preregister_performance(acpi_perf_data);
536        return 0;
537}
538
539#ifdef CONFIG_SMP
540/*
541 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
542 * or do it in BIOS firmware and won't inform about it to OS. If not
543 * detected, this has a side effect of making CPU run at a different speed
544 * than OS intended it to run at. Detect it and handle it cleanly.
545 */
546static int bios_with_sw_any_bug;
547
548static int sw_any_bug_found(const struct dmi_system_id *d)
549{
550        bios_with_sw_any_bug = 1;
551        return 0;
552}
553
554static const struct dmi_system_id sw_any_bug_dmi_table[] = {
555        {
556                .callback = sw_any_bug_found,
557                .ident = "Supermicro Server X6DLP",
558                .matches = {
559                        DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
560                        DMI_MATCH(DMI_BIOS_VERSION, "080010"),
561                        DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
562                },
563        },
564        { }
565};
566#endif
567
568static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
569{
570        unsigned int i;
571        unsigned int valid_states = 0;
572        unsigned int cpu = policy->cpu;
573        struct acpi_cpufreq_data *data;
574        unsigned int result = 0;
575        struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
576        struct acpi_processor_performance *perf;
577
578        dprintk("acpi_cpufreq_cpu_init\n");
579
580        data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
581        if (!data)
582                return -ENOMEM;
583
584        data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
585        per_cpu(drv_data, cpu) = data;
586
587        if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
588                acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
589
590        result = acpi_processor_register_performance(data->acpi_data, cpu);
591        if (result)
592                goto err_free;
593
594        perf = data->acpi_data;
595        policy->shared_type = perf->shared_type;
596
597        /*
598         * Will let policy->cpus know about dependency only when software
599         * coordination is required.
600         */
601        if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
602            policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
603                policy->cpus = perf->shared_cpu_map;
604        }
605        policy->related_cpus = perf->shared_cpu_map;
606
607#ifdef CONFIG_SMP
608        dmi_check_system(sw_any_bug_dmi_table);
609        if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
610                policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
611                policy->cpus = per_cpu(cpu_core_map, cpu);
612        }
613#endif
614
615        /* capability check */
616        if (perf->state_count <= 1) {
617                dprintk("No P-States\n");
618                result = -ENODEV;
619                goto err_unreg;
620        }
621
622        if (perf->control_register.space_id != perf->status_register.space_id) {
623                result = -ENODEV;
624                goto err_unreg;
625        }
626
627        switch (perf->control_register.space_id) {
628        case ACPI_ADR_SPACE_SYSTEM_IO:
629                dprintk("SYSTEM IO addr space\n");
630                data->cpu_feature = SYSTEM_IO_CAPABLE;
631                break;
632        case ACPI_ADR_SPACE_FIXED_HARDWARE:
633                dprintk("HARDWARE addr space\n");
634                if (!check_est_cpu(cpu)) {
635                        result = -ENODEV;
636                        goto err_unreg;
637                }
638                data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
639                break;
640        default:
641                dprintk("Unknown addr space %d\n",
642                        (u32) (perf->control_register.space_id));
643                result = -ENODEV;
644                goto err_unreg;
645        }
646
647        data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
648                    (perf->state_count+1), GFP_KERNEL);
649        if (!data->freq_table) {
650                result = -ENOMEM;
651                goto err_unreg;
652        }
653
654        /* detect transition latency */
655        policy->cpuinfo.transition_latency = 0;
656        for (i=0; i<perf->state_count; i++) {
657                if ((perf->states[i].transition_latency * 1000) >
658                    policy->cpuinfo.transition_latency)
659                        policy->cpuinfo.transition_latency =
660                            perf->states[i].transition_latency * 1000;
661        }
662
663        data->max_freq = perf->states[0].core_frequency * 1000;
664        /* table init */
665        for (i=0; i<perf->state_count; i++) {
666                if (i>0 && perf->states[i].core_frequency >=
667                    data->freq_table[valid_states-1].frequency / 1000)
668                        continue;
669
670                data->freq_table[valid_states].index = i;
671                data->freq_table[valid_states].frequency =
672                    perf->states[i].core_frequency * 1000;
673                valid_states++;
674        }
675        data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
676        perf->state = 0;
677
678        result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
679        if (result)
680                goto err_freqfree;
681
682        switch (perf->control_register.space_id) {
683        case ACPI_ADR_SPACE_SYSTEM_IO:
684                /* Current speed is unknown and not detectable by IO port */
685                policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
686                break;
687        case ACPI_ADR_SPACE_FIXED_HARDWARE:
688                acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
689                policy->cur = get_cur_freq_on_cpu(cpu);
690                break;
691        default:
692                break;
693        }
694
695        /* notify BIOS that we exist */
696        acpi_processor_notify_smm(THIS_MODULE);
697
698        /* Check for APERF/MPERF support in hardware */
699        if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
700                unsigned int ecx;
701                ecx = cpuid_ecx(6);
702                if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
703                        acpi_cpufreq_driver.getavg = get_measured_perf;
704        }
705
706        dprintk("CPU%u - ACPI performance management activated.\n", cpu);
707        for (i = 0; i < perf->state_count; i++)
708                dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
709                        (i == perf->state ? '*' : ' '), i,
710                        (u32) perf->states[i].core_frequency,
711                        (u32) perf->states[i].power,
712                        (u32) perf->states[i].transition_latency);
713
714        cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
715
716        /*
717         * the first call to ->target() should result in us actually
718         * writing something to the appropriate registers.
719         */
720        data->resume = 1;
721
722        return result;
723
724err_freqfree:
725        kfree(data->freq_table);
726err_unreg:
727        acpi_processor_unregister_performance(perf, cpu);
728err_free:
729        kfree(data);
730        per_cpu(drv_data, cpu) = NULL;
731
732        return result;
733}
734
735static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
736{
737        struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
738
739        dprintk("acpi_cpufreq_cpu_exit\n");
740
741        if (data) {
742                cpufreq_frequency_table_put_attr(policy->cpu);
743                per_cpu(drv_data, policy->cpu) = NULL;
744                acpi_processor_unregister_performance(data->acpi_data,
745                                                      policy->cpu);
746                kfree(data);
747        }
748
749        return 0;
750}
751
752static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
753{
754        struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
755
756        dprintk("acpi_cpufreq_resume\n");
757
758        data->resume = 1;
759
760        return 0;
761}
762
763static struct freq_attr *acpi_cpufreq_attr[] = {
764        &cpufreq_freq_attr_scaling_available_freqs,
765        NULL,
766};
767
768static struct cpufreq_driver acpi_cpufreq_driver = {
769        .verify = acpi_cpufreq_verify,
770        .target = acpi_cpufreq_target,
771        .init = acpi_cpufreq_cpu_init,
772        .exit = acpi_cpufreq_cpu_exit,
773        .resume = acpi_cpufreq_resume,
774        .name = "acpi-cpufreq",
775        .owner = THIS_MODULE,
776        .attr = acpi_cpufreq_attr,
777};
778
779static int __init acpi_cpufreq_init(void)
780{
781        int ret;
782
783        if (acpi_disabled)
784                return 0;
785
786        dprintk("acpi_cpufreq_init\n");
787
788        ret = acpi_cpufreq_early_init();
789        if (ret)
790                return ret;
791
792        ret = cpufreq_register_driver(&acpi_cpufreq_driver);
793        if (ret)
794                free_percpu(acpi_perf_data);
795
796        return ret;
797}
798
799static void __exit acpi_cpufreq_exit(void)
800{
801        dprintk("acpi_cpufreq_exit\n");
802
803        cpufreq_unregister_driver(&acpi_cpufreq_driver);
804
805        free_percpu(acpi_perf_data);
806}
807
808module_param(acpi_pstate_strict, uint, 0644);
809MODULE_PARM_DESC(acpi_pstate_strict,
810        "value 0 or non-zero. non-zero -> strict ACPI checks are "
811        "performed during frequency changes.");
812
813late_initcall(acpi_cpufreq_init);
814module_exit(acpi_cpufreq_exit);
815
816MODULE_ALIAS("acpi");