Showing error 586

User: Jiri Slaby
Error type: Double Lock
Error type description: Some lock is locked twice unintentionally in a sequence
File location: fs/mbcache.c
Line in file: 585
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Smatch (1.59)
Entered: 2011-11-07 22:19:59 UTC


Source:

  1/*
  2 * linux/fs/mbcache.c
  3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
  4 */
  5
  6/*
  7 * Filesystem Meta Information Block Cache (mbcache)
  8 *
  9 * The mbcache caches blocks of block devices that need to be located
 10 * by their device/block number, as well as by other criteria (such
 11 * as the block's contents).
 12 *
 13 * There can only be one cache entry in a cache per device and block number.
 14 * Additional indexes need not be unique in this sense. The number of
 15 * additional indexes (=other criteria) can be hardwired at compile time
 16 * or specified at cache create time.
 17 *
 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
 19 * in the cache. A valid entry is in the main hash tables of the cache,
 20 * and may also be in the lru list. An invalid entry is not in any hashes
 21 * or lists.
 22 *
 23 * A valid cache entry is only in the lru list if no handles refer to it.
 24 * Invalid cache entries will be freed when the last handle to the cache
 25 * entry is released. Entries that cannot be freed immediately are put
 26 * back on the lru list.
 27 */
 28
 29#include <linux/kernel.h>
 30#include <linux/module.h>
 31
 32#include <linux/hash.h>
 33#include <linux/fs.h>
 34#include <linux/mm.h>
 35#include <linux/slab.h>
 36#include <linux/sched.h>
 37#include <linux/init.h>
 38#include <linux/mbcache.h>
 39
 40
 41#ifdef MB_CACHE_DEBUG
 42# define mb_debug(f...) do { \
 43                printk(KERN_DEBUG f); \
 44                printk("\n"); \
 45        } while (0)
 46#define mb_assert(c) do { if (!(c)) \
 47                printk(KERN_ERR "assertion " #c " failed\n"); \
 48        } while(0)
 49#else
 50# define mb_debug(f...) do { } while(0)
 51# define mb_assert(c) do { } while(0)
 52#endif
 53#define mb_error(f...) do { \
 54                printk(KERN_ERR f); \
 55                printk("\n"); \
 56        } while(0)
 57
 58#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
 59
 60static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
 61                
 62MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
 63MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
 64MODULE_LICENSE("GPL");
 65
 66EXPORT_SYMBOL(mb_cache_create);
 67EXPORT_SYMBOL(mb_cache_shrink);
 68EXPORT_SYMBOL(mb_cache_destroy);
 69EXPORT_SYMBOL(mb_cache_entry_alloc);
 70EXPORT_SYMBOL(mb_cache_entry_insert);
 71EXPORT_SYMBOL(mb_cache_entry_release);
 72EXPORT_SYMBOL(mb_cache_entry_free);
 73EXPORT_SYMBOL(mb_cache_entry_get);
 74#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
 75EXPORT_SYMBOL(mb_cache_entry_find_first);
 76EXPORT_SYMBOL(mb_cache_entry_find_next);
 77#endif
 78
 79struct mb_cache {
 80        struct list_head                c_cache_list;
 81        const char                        *c_name;
 82        struct mb_cache_op                c_op;
 83        atomic_t                        c_entry_count;
 84        int                                c_bucket_bits;
 85#ifndef MB_CACHE_INDEXES_COUNT
 86        int                                c_indexes_count;
 87#endif
 88        struct kmem_cache                        *c_entry_cache;
 89        struct list_head                *c_block_hash;
 90        struct list_head                *c_indexes_hash[0];
 91};
 92
 93
 94/*
 95 * Global data: list of all mbcache's, lru list, and a spinlock for
 96 * accessing cache data structures on SMP machines. The lru list is
 97 * global across all mbcaches.
 98 */
 99
100static LIST_HEAD(mb_cache_list);
101static LIST_HEAD(mb_cache_lru_list);
102static DEFINE_SPINLOCK(mb_cache_spinlock);
103
104static inline int
105mb_cache_indexes(struct mb_cache *cache)
106{
107#ifdef MB_CACHE_INDEXES_COUNT
108        return MB_CACHE_INDEXES_COUNT;
109#else
110        return cache->c_indexes_count;
111#endif
112}
113
114/*
115 * What the mbcache registers as to get shrunk dynamically.
116 */
117
118static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask);
119
120static struct shrinker mb_cache_shrinker = {
121        .shrink = mb_cache_shrink_fn,
122        .seeks = DEFAULT_SEEKS,
123};
124
125static inline int
126__mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
127{
128        return !list_empty(&ce->e_block_list);
129}
130
131
132static void
133__mb_cache_entry_unhash(struct mb_cache_entry *ce)
134{
135        int n;
136
137        if (__mb_cache_entry_is_hashed(ce)) {
138                list_del_init(&ce->e_block_list);
139                for (n=0; n<mb_cache_indexes(ce->e_cache); n++)
140                        list_del(&ce->e_indexes[n].o_list);
141        }
142}
143
144
145static void
146__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
147{
148        struct mb_cache *cache = ce->e_cache;
149
150        mb_assert(!(ce->e_used || ce->e_queued));
151        if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) {
152                /* free failed -- put back on the lru list
153                   for freeing later. */
154                spin_lock(&mb_cache_spinlock);
155                list_add(&ce->e_lru_list, &mb_cache_lru_list);
156                spin_unlock(&mb_cache_spinlock);
157        } else {
158                kmem_cache_free(cache->c_entry_cache, ce);
159                atomic_dec(&cache->c_entry_count);
160        }
161}
162
163
164static void
165__mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
166        __releases(mb_cache_spinlock)
167{
168        /* Wake up all processes queuing for this cache entry. */
169        if (ce->e_queued)
170                wake_up_all(&mb_cache_queue);
171        if (ce->e_used >= MB_CACHE_WRITER)
172                ce->e_used -= MB_CACHE_WRITER;
173        ce->e_used--;
174        if (!(ce->e_used || ce->e_queued)) {
175                if (!__mb_cache_entry_is_hashed(ce))
176                        goto forget;
177                mb_assert(list_empty(&ce->e_lru_list));
178                list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
179        }
180        spin_unlock(&mb_cache_spinlock);
181        return;
182forget:
183        spin_unlock(&mb_cache_spinlock);
184        __mb_cache_entry_forget(ce, GFP_KERNEL);
185}
186
187
188/*
189 * mb_cache_shrink_fn()  memory pressure callback
190 *
191 * This function is called by the kernel memory management when memory
192 * gets low.
193 *
194 * @nr_to_scan: Number of objects to scan
195 * @gfp_mask: (ignored)
196 *
197 * Returns the number of objects which are present in the cache.
198 */
199static int
200mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask)
201{
202        LIST_HEAD(free_list);
203        struct list_head *l, *ltmp;
204        int count = 0;
205
206        spin_lock(&mb_cache_spinlock);
207        list_for_each(l, &mb_cache_list) {
208                struct mb_cache *cache =
209                        list_entry(l, struct mb_cache, c_cache_list);
210                mb_debug("cache %s (%d)", cache->c_name,
211                          atomic_read(&cache->c_entry_count));
212                count += atomic_read(&cache->c_entry_count);
213        }
214        mb_debug("trying to free %d entries", nr_to_scan);
215        if (nr_to_scan == 0) {
216                spin_unlock(&mb_cache_spinlock);
217                goto out;
218        }
219        while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
220                struct mb_cache_entry *ce =
221                        list_entry(mb_cache_lru_list.next,
222                                   struct mb_cache_entry, e_lru_list);
223                list_move_tail(&ce->e_lru_list, &free_list);
224                __mb_cache_entry_unhash(ce);
225        }
226        spin_unlock(&mb_cache_spinlock);
227        list_for_each_safe(l, ltmp, &free_list) {
228                __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
229                                                   e_lru_list), gfp_mask);
230        }
231out:
232        return (count / 100) * sysctl_vfs_cache_pressure;
233}
234
235
236/*
237 * mb_cache_create()  create a new cache
238 *
239 * All entries in one cache are equal size. Cache entries may be from
240 * multiple devices. If this is the first mbcache created, registers
241 * the cache with kernel memory management. Returns NULL if no more
242 * memory was available.
243 *
244 * @name: name of the cache (informal)
245 * @cache_op: contains the callback called when freeing a cache entry
246 * @entry_size: The size of a cache entry, including
247 *              struct mb_cache_entry
248 * @indexes_count: number of additional indexes in the cache. Must equal
249 *                 MB_CACHE_INDEXES_COUNT if the number of indexes is
250 *                 hardwired.
251 * @bucket_bits: log2(number of hash buckets)
252 */
253struct mb_cache *
254mb_cache_create(const char *name, struct mb_cache_op *cache_op,
255                size_t entry_size, int indexes_count, int bucket_bits)
256{
257        int m=0, n, bucket_count = 1 << bucket_bits;
258        struct mb_cache *cache = NULL;
259
260        if(entry_size < sizeof(struct mb_cache_entry) +
261           indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]))
262                return NULL;
263
264        cache = kmalloc(sizeof(struct mb_cache) +
265                        indexes_count * sizeof(struct list_head), GFP_KERNEL);
266        if (!cache)
267                goto fail;
268        cache->c_name = name;
269        cache->c_op.free = NULL;
270        if (cache_op)
271                cache->c_op.free = cache_op->free;
272        atomic_set(&cache->c_entry_count, 0);
273        cache->c_bucket_bits = bucket_bits;
274#ifdef MB_CACHE_INDEXES_COUNT
275        mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT);
276#else
277        cache->c_indexes_count = indexes_count;
278#endif
279        cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
280                                      GFP_KERNEL);
281        if (!cache->c_block_hash)
282                goto fail;
283        for (n=0; n<bucket_count; n++)
284                INIT_LIST_HEAD(&cache->c_block_hash[n]);
285        for (m=0; m<indexes_count; m++) {
286                cache->c_indexes_hash[m] = kmalloc(bucket_count *
287                                                 sizeof(struct list_head),
288                                                 GFP_KERNEL);
289                if (!cache->c_indexes_hash[m])
290                        goto fail;
291                for (n=0; n<bucket_count; n++)
292                        INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]);
293        }
294        cache->c_entry_cache = kmem_cache_create(name, entry_size, 0,
295                SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
296        if (!cache->c_entry_cache)
297                goto fail;
298
299        spin_lock(&mb_cache_spinlock);
300        list_add(&cache->c_cache_list, &mb_cache_list);
301        spin_unlock(&mb_cache_spinlock);
302        return cache;
303
304fail:
305        if (cache) {
306                while (--m >= 0)
307                        kfree(cache->c_indexes_hash[m]);
308                kfree(cache->c_block_hash);
309                kfree(cache);
310        }
311        return NULL;
312}
313
314
315/*
316 * mb_cache_shrink()
317 *
318 * Removes all cache entries of a device from the cache. All cache entries
319 * currently in use cannot be freed, and thus remain in the cache. All others
320 * are freed.
321 *
322 * @bdev: which device's cache entries to shrink
323 */
324void
325mb_cache_shrink(struct block_device *bdev)
326{
327        LIST_HEAD(free_list);
328        struct list_head *l, *ltmp;
329
330        spin_lock(&mb_cache_spinlock);
331        list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
332                struct mb_cache_entry *ce =
333                        list_entry(l, struct mb_cache_entry, e_lru_list);
334                if (ce->e_bdev == bdev) {
335                        list_move_tail(&ce->e_lru_list, &free_list);
336                        __mb_cache_entry_unhash(ce);
337                }
338        }
339        spin_unlock(&mb_cache_spinlock);
340        list_for_each_safe(l, ltmp, &free_list) {
341                __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
342                                                   e_lru_list), GFP_KERNEL);
343        }
344}
345
346
347/*
348 * mb_cache_destroy()
349 *
350 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
351 * and then destroys it. If this was the last mbcache, un-registers the
352 * mbcache from kernel memory management.
353 */
354void
355mb_cache_destroy(struct mb_cache *cache)
356{
357        LIST_HEAD(free_list);
358        struct list_head *l, *ltmp;
359        int n;
360
361        spin_lock(&mb_cache_spinlock);
362        list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
363                struct mb_cache_entry *ce =
364                        list_entry(l, struct mb_cache_entry, e_lru_list);
365                if (ce->e_cache == cache) {
366                        list_move_tail(&ce->e_lru_list, &free_list);
367                        __mb_cache_entry_unhash(ce);
368                }
369        }
370        list_del(&cache->c_cache_list);
371        spin_unlock(&mb_cache_spinlock);
372
373        list_for_each_safe(l, ltmp, &free_list) {
374                __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
375                                                   e_lru_list), GFP_KERNEL);
376        }
377
378        if (atomic_read(&cache->c_entry_count) > 0) {
379                mb_error("cache %s: %d orphaned entries",
380                          cache->c_name,
381                          atomic_read(&cache->c_entry_count));
382        }
383
384        kmem_cache_destroy(cache->c_entry_cache);
385
386        for (n=0; n < mb_cache_indexes(cache); n++)
387                kfree(cache->c_indexes_hash[n]);
388        kfree(cache->c_block_hash);
389        kfree(cache);
390}
391
392
393/*
394 * mb_cache_entry_alloc()
395 *
396 * Allocates a new cache entry. The new entry will not be valid initially,
397 * and thus cannot be looked up yet. It should be filled with data, and
398 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
399 * if no more memory was available.
400 */
401struct mb_cache_entry *
402mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
403{
404        struct mb_cache_entry *ce;
405
406        ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
407        if (ce) {
408                atomic_inc(&cache->c_entry_count);
409                INIT_LIST_HEAD(&ce->e_lru_list);
410                INIT_LIST_HEAD(&ce->e_block_list);
411                ce->e_cache = cache;
412                ce->e_used = 1 + MB_CACHE_WRITER;
413                ce->e_queued = 0;
414        }
415        return ce;
416}
417
418
419/*
420 * mb_cache_entry_insert()
421 *
422 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
423 * the cache. After this, the cache entry can be looked up, but is not yet
424 * in the lru list as the caller still holds a handle to it. Returns 0 on
425 * success, or -EBUSY if a cache entry for that device + inode exists
426 * already (this may happen after a failed lookup, but when another process
427 * has inserted the same cache entry in the meantime).
428 *
429 * @bdev: device the cache entry belongs to
430 * @block: block number
431 * @keys: array of additional keys. There must be indexes_count entries
432 *        in the array (as specified when creating the cache).
433 */
434int
435mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
436                      sector_t block, unsigned int keys[])
437{
438        struct mb_cache *cache = ce->e_cache;
439        unsigned int bucket;
440        struct list_head *l;
441        int error = -EBUSY, n;
442
443        bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 
444                           cache->c_bucket_bits);
445        spin_lock(&mb_cache_spinlock);
446        list_for_each_prev(l, &cache->c_block_hash[bucket]) {
447                struct mb_cache_entry *ce =
448                        list_entry(l, struct mb_cache_entry, e_block_list);
449                if (ce->e_bdev == bdev && ce->e_block == block)
450                        goto out;
451        }
452        __mb_cache_entry_unhash(ce);
453        ce->e_bdev = bdev;
454        ce->e_block = block;
455        list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
456        for (n=0; n<mb_cache_indexes(cache); n++) {
457                ce->e_indexes[n].o_key = keys[n];
458                bucket = hash_long(keys[n], cache->c_bucket_bits);
459                list_add(&ce->e_indexes[n].o_list,
460                         &cache->c_indexes_hash[n][bucket]);
461        }
462        error = 0;
463out:
464        spin_unlock(&mb_cache_spinlock);
465        return error;
466}
467
468
469/*
470 * mb_cache_entry_release()
471 *
472 * Release a handle to a cache entry. When the last handle to a cache entry
473 * is released it is either freed (if it is invalid) or otherwise inserted
474 * in to the lru list.
475 */
476void
477mb_cache_entry_release(struct mb_cache_entry *ce)
478{
479        spin_lock(&mb_cache_spinlock);
480        __mb_cache_entry_release_unlock(ce);
481}
482
483
484/*
485 * mb_cache_entry_free()
486 *
487 * This is equivalent to the sequence mb_cache_entry_takeout() --
488 * mb_cache_entry_release().
489 */
490void
491mb_cache_entry_free(struct mb_cache_entry *ce)
492{
493        spin_lock(&mb_cache_spinlock);
494        mb_assert(list_empty(&ce->e_lru_list));
495        __mb_cache_entry_unhash(ce);
496        __mb_cache_entry_release_unlock(ce);
497}
498
499
500/*
501 * mb_cache_entry_get()
502 *
503 * Get a cache entry  by device / block number. (There can only be one entry
504 * in the cache per device and block.) Returns NULL if no such cache entry
505 * exists. The returned cache entry is locked for exclusive access ("single
506 * writer").
507 */
508struct mb_cache_entry *
509mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
510                   sector_t block)
511{
512        unsigned int bucket;
513        struct list_head *l;
514        struct mb_cache_entry *ce;
515
516        bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
517                           cache->c_bucket_bits);
518        spin_lock(&mb_cache_spinlock);
519        list_for_each(l, &cache->c_block_hash[bucket]) {
520                ce = list_entry(l, struct mb_cache_entry, e_block_list);
521                if (ce->e_bdev == bdev && ce->e_block == block) {
522                        DEFINE_WAIT(wait);
523
524                        if (!list_empty(&ce->e_lru_list))
525                                list_del_init(&ce->e_lru_list);
526
527                        while (ce->e_used > 0) {
528                                ce->e_queued++;
529                                prepare_to_wait(&mb_cache_queue, &wait,
530                                                TASK_UNINTERRUPTIBLE);
531                                spin_unlock(&mb_cache_spinlock);
532                                schedule();
533                                spin_lock(&mb_cache_spinlock);
534                                ce->e_queued--;
535                        }
536                        finish_wait(&mb_cache_queue, &wait);
537                        ce->e_used += 1 + MB_CACHE_WRITER;
538
539                        if (!__mb_cache_entry_is_hashed(ce)) {
540                                __mb_cache_entry_release_unlock(ce);
541                                return NULL;
542                        }
543                        goto cleanup;
544                }
545        }
546        ce = NULL;
547
548cleanup:
549        spin_unlock(&mb_cache_spinlock);
550        return ce;
551}
552
553#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
554
555static struct mb_cache_entry *
556__mb_cache_entry_find(struct list_head *l, struct list_head *head,
557                      int index, struct block_device *bdev, unsigned int key)
558{
559        while (l != head) {
560                struct mb_cache_entry *ce =
561                        list_entry(l, struct mb_cache_entry,
562                                   e_indexes[index].o_list);
563                if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) {
564                        DEFINE_WAIT(wait);
565
566                        if (!list_empty(&ce->e_lru_list))
567                                list_del_init(&ce->e_lru_list);
568
569                        /* Incrementing before holding the lock gives readers
570                           priority over writers. */
571                        ce->e_used++;
572                        while (ce->e_used >= MB_CACHE_WRITER) {
573                                ce->e_queued++;
574                                prepare_to_wait(&mb_cache_queue, &wait,
575                                                TASK_UNINTERRUPTIBLE);
576                                spin_unlock(&mb_cache_spinlock);
577                                schedule();
578                                spin_lock(&mb_cache_spinlock);
579                                ce->e_queued--;
580                        }
581                        finish_wait(&mb_cache_queue, &wait);
582
583                        if (!__mb_cache_entry_is_hashed(ce)) {
584                                __mb_cache_entry_release_unlock(ce);
585                                spin_lock(&mb_cache_spinlock);
586                                return ERR_PTR(-EAGAIN);
587                        }
588                        return ce;
589                }
590                l = l->next;
591        }
592        return NULL;
593}
594
595
596/*
597 * mb_cache_entry_find_first()
598 *
599 * Find the first cache entry on a given device with a certain key in
600 * an additional index. Additonal matches can be found with
601 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
602 * returned cache entry is locked for shared access ("multiple readers").
603 *
604 * @cache: the cache to search
605 * @index: the number of the additonal index to search (0<=index<indexes_count)
606 * @bdev: the device the cache entry should belong to
607 * @key: the key in the index
608 */
609struct mb_cache_entry *
610mb_cache_entry_find_first(struct mb_cache *cache, int index,
611                          struct block_device *bdev, unsigned int key)
612{
613        unsigned int bucket = hash_long(key, cache->c_bucket_bits);
614        struct list_head *l;
615        struct mb_cache_entry *ce;
616
617        mb_assert(index < mb_cache_indexes(cache));
618        spin_lock(&mb_cache_spinlock);
619        l = cache->c_indexes_hash[index][bucket].next;
620        ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
621                                   index, bdev, key);
622        spin_unlock(&mb_cache_spinlock);
623        return ce;
624}
625
626
627/*
628 * mb_cache_entry_find_next()
629 *
630 * Find the next cache entry on a given device with a certain key in an
631 * additional index. Returns NULL if no match could be found. The previous
632 * entry is atomatically released, so that mb_cache_entry_find_next() can
633 * be called like this:
634 *
635 * entry = mb_cache_entry_find_first();
636 * while (entry) {
637 *         ...
638 *        entry = mb_cache_entry_find_next(entry, ...);
639 * }
640 *
641 * @prev: The previous match
642 * @index: the number of the additonal index to search (0<=index<indexes_count)
643 * @bdev: the device the cache entry should belong to
644 * @key: the key in the index
645 */
646struct mb_cache_entry *
647mb_cache_entry_find_next(struct mb_cache_entry *prev, int index,
648                         struct block_device *bdev, unsigned int key)
649{
650        struct mb_cache *cache = prev->e_cache;
651        unsigned int bucket = hash_long(key, cache->c_bucket_bits);
652        struct list_head *l;
653        struct mb_cache_entry *ce;
654
655        mb_assert(index < mb_cache_indexes(cache));
656        spin_lock(&mb_cache_spinlock);
657        l = prev->e_indexes[index].o_list.next;
658        ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
659                                   index, bdev, key);
660        __mb_cache_entry_release_unlock(prev);
661        return ce;
662}
663
664#endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
665
666static int __init init_mbcache(void)
667{
668        register_shrinker(&mb_cache_shrinker);
669        return 0;
670}
671
672static void __exit exit_mbcache(void)
673{
674        unregister_shrinker(&mb_cache_shrinker);
675}
676
677module_init(init_mbcache)
678module_exit(exit_mbcache)
679