Showing error 584

User: Jiri Slaby
Error type: Double Lock
Error type description: Some lock is locked twice unintentionally in a sequence
File location: drivers/net/ns83820.c
Line in file: 596
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2011-11-07 22:19:59 UTC


Source:

   1#define VERSION "0.23"
   2/* ns83820.c by Benjamin LaHaise with contributions.
   3 *
   4 * Questions/comments/discussion to linux-ns83820@kvack.org.
   5 *
   6 * $Revision: 1.34.2.23 $
   7 *
   8 * Copyright 2001 Benjamin LaHaise.
   9 * Copyright 2001, 2002 Red Hat.
  10 *
  11 * Mmmm, chocolate vanilla mocha...
  12 *
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License
  25 * along with this program; if not, write to the Free Software
  26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  27 *
  28 *
  29 * ChangeLog
  30 * =========
  31 *        20010414        0.1 - created
  32 *        20010622        0.2 - basic rx and tx.
  33 *        20010711        0.3 - added duplex and link state detection support.
  34 *        20010713        0.4 - zero copy, no hangs.
  35 *                        0.5 - 64 bit dma support (davem will hate me for this)
  36 *                            - disable jumbo frames to avoid tx hangs
  37 *                            - work around tx deadlocks on my 1.02 card via
  38 *                              fiddling with TXCFG
  39 *        20010810        0.6 - use pci dma api for ringbuffers, work on ia64
  40 *        20010816        0.7 - misc cleanups
  41 *        20010826        0.8 - fix critical zero copy bugs
  42 *                        0.9 - internal experiment
  43 *        20010827        0.10 - fix ia64 unaligned access.
  44 *        20010906        0.11 - accept all packets with checksum errors as
  45 *                               otherwise fragments get lost
  46 *                             - fix >> 32 bugs
  47 *                        0.12 - add statistics counters
  48 *                             - add allmulti/promisc support
  49 *        20011009        0.13 - hotplug support, other smaller pci api cleanups
  50 *        20011204        0.13a - optical transceiver support added
  51 *                                by Michael Clark <michael@metaparadigm.com>
  52 *        20011205        0.13b - call register_netdev earlier in initialization
  53 *                                suppress duplicate link status messages
  54 *        20011117         0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  55 *        20011204         0.15        get ppc (big endian) working
  56 *        20011218        0.16        various cleanups
  57 *        20020310        0.17        speedups
  58 *        20020610        0.18 -        actually use the pci dma api for highmem
  59 *                             -        remove pci latency register fiddling
  60 *                        0.19 -        better bist support
  61 *                             -        add ihr and reset_phy parameters
  62 *                             -        gmii bus probing
  63 *                             -        fix missed txok introduced during performance
  64 *                                tuning
  65 *                        0.20 -        fix stupid RFEN thinko.  i am such a smurf.
  66 *        20040828        0.21 -        add hardware vlan accleration
  67 *                                by Neil Horman <nhorman@redhat.com>
  68 *        20050406        0.22 -        improved DAC ifdefs from Andi Kleen
  69 *                             -        removal of dead code from Adrian Bunk
  70 *                             -        fix half duplex collision behaviour
  71 * Driver Overview
  72 * ===============
  73 *
  74 * This driver was originally written for the National Semiconductor
  75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
  76 * this code will turn out to be a) clean, b) correct, and c) fast.
  77 * With that in mind, I'm aiming to split the code up as much as
  78 * reasonably possible.  At present there are X major sections that
  79 * break down into a) packet receive, b) packet transmit, c) link
  80 * management, d) initialization and configuration.  Where possible,
  81 * these code paths are designed to run in parallel.
  82 *
  83 * This driver has been tested and found to work with the following
  84 * cards (in no particular order):
  85 *
  86 *        Cameo                SOHO-GA2000T        SOHO-GA2500T
  87 *        D-Link                DGE-500T
  88 *        PureData        PDP8023Z-TG
  89 *        SMC                SMC9452TX        SMC9462TX
  90 *        Netgear                GA621
  91 *
  92 * Special thanks to SMC for providing hardware to test this driver on.
  93 *
  94 * Reports of success or failure would be greatly appreciated.
  95 */
  96//#define dprintk                printk
  97#define dprintk(x...)                do { } while (0)
  98
  99#include <linux/module.h>
 100#include <linux/moduleparam.h>
 101#include <linux/types.h>
 102#include <linux/pci.h>
 103#include <linux/dma-mapping.h>
 104#include <linux/netdevice.h>
 105#include <linux/etherdevice.h>
 106#include <linux/delay.h>
 107#include <linux/workqueue.h>
 108#include <linux/init.h>
 109#include <linux/ip.h>        /* for iph */
 110#include <linux/in.h>        /* for IPPROTO_... */
 111#include <linux/compiler.h>
 112#include <linux/prefetch.h>
 113#include <linux/ethtool.h>
 114#include <linux/timer.h>
 115#include <linux/if_vlan.h>
 116#include <linux/rtnetlink.h>
 117#include <linux/jiffies.h>
 118
 119#include <asm/io.h>
 120#include <asm/uaccess.h>
 121#include <asm/system.h>
 122
 123#define DRV_NAME "ns83820"
 124
 125/* Global parameters.  See module_param near the bottom. */
 126static int ihr = 2;
 127static int reset_phy = 0;
 128static int lnksts = 0;                /* CFG_LNKSTS bit polarity */
 129
 130/* Dprintk is used for more interesting debug events */
 131#undef Dprintk
 132#define        Dprintk                        dprintk
 133
 134/* tunables */
 135#define RX_BUF_SIZE        1500        /* 8192 */
 136#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
 137#define NS83820_VLAN_ACCEL_SUPPORT
 138#endif
 139
 140/* Must not exceed ~65000. */
 141#define NR_RX_DESC        64
 142#define NR_TX_DESC        128
 143
 144/* not tunable */
 145#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)        /* rx/tx mac addr + type */
 146
 147#define MIN_TX_DESC_FREE        8
 148
 149/* register defines */
 150#define CFGCS                0x04
 151
 152#define CR_TXE                0x00000001
 153#define CR_TXD                0x00000002
 154/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
 155 * The Receive engine skips one descriptor and moves
 156 * onto the next one!! */
 157#define CR_RXE                0x00000004
 158#define CR_RXD                0x00000008
 159#define CR_TXR                0x00000010
 160#define CR_RXR                0x00000020
 161#define CR_SWI                0x00000080
 162#define CR_RST                0x00000100
 163
 164#define PTSCR_EEBIST_FAIL       0x00000001
 165#define PTSCR_EEBIST_EN         0x00000002
 166#define PTSCR_EELOAD_EN         0x00000004
 167#define PTSCR_RBIST_FAIL        0x000001b8
 168#define PTSCR_RBIST_DONE        0x00000200
 169#define PTSCR_RBIST_EN          0x00000400
 170#define PTSCR_RBIST_RST         0x00002000
 171
 172#define MEAR_EEDI                0x00000001
 173#define MEAR_EEDO                0x00000002
 174#define MEAR_EECLK                0x00000004
 175#define MEAR_EESEL                0x00000008
 176#define MEAR_MDIO                0x00000010
 177#define MEAR_MDDIR                0x00000020
 178#define MEAR_MDC                0x00000040
 179
 180#define ISR_TXDESC3        0x40000000
 181#define ISR_TXDESC2        0x20000000
 182#define ISR_TXDESC1        0x10000000
 183#define ISR_TXDESC0        0x08000000
 184#define ISR_RXDESC3        0x04000000
 185#define ISR_RXDESC2        0x02000000
 186#define ISR_RXDESC1        0x01000000
 187#define ISR_RXDESC0        0x00800000
 188#define ISR_TXRCMP        0x00400000
 189#define ISR_RXRCMP        0x00200000
 190#define ISR_DPERR        0x00100000
 191#define ISR_SSERR        0x00080000
 192#define ISR_RMABT        0x00040000
 193#define ISR_RTABT        0x00020000
 194#define ISR_RXSOVR        0x00010000
 195#define ISR_HIBINT        0x00008000
 196#define ISR_PHY                0x00004000
 197#define ISR_PME                0x00002000
 198#define ISR_SWI                0x00001000
 199#define ISR_MIB                0x00000800
 200#define ISR_TXURN        0x00000400
 201#define ISR_TXIDLE        0x00000200
 202#define ISR_TXERR        0x00000100
 203#define ISR_TXDESC        0x00000080
 204#define ISR_TXOK        0x00000040
 205#define ISR_RXORN        0x00000020
 206#define ISR_RXIDLE        0x00000010
 207#define ISR_RXEARLY        0x00000008
 208#define ISR_RXERR        0x00000004
 209#define ISR_RXDESC        0x00000002
 210#define ISR_RXOK        0x00000001
 211
 212#define TXCFG_CSI        0x80000000
 213#define TXCFG_HBI        0x40000000
 214#define TXCFG_MLB        0x20000000
 215#define TXCFG_ATP        0x10000000
 216#define TXCFG_ECRETRY        0x00800000
 217#define TXCFG_BRST_DIS        0x00080000
 218#define TXCFG_MXDMA1024        0x00000000
 219#define TXCFG_MXDMA512        0x00700000
 220#define TXCFG_MXDMA256        0x00600000
 221#define TXCFG_MXDMA128        0x00500000
 222#define TXCFG_MXDMA64        0x00400000
 223#define TXCFG_MXDMA32        0x00300000
 224#define TXCFG_MXDMA16        0x00200000
 225#define TXCFG_MXDMA8        0x00100000
 226
 227#define CFG_LNKSTS        0x80000000
 228#define CFG_SPDSTS        0x60000000
 229#define CFG_SPDSTS1        0x40000000
 230#define CFG_SPDSTS0        0x20000000
 231#define CFG_DUPSTS        0x10000000
 232#define CFG_TBI_EN        0x01000000
 233#define CFG_MODE_1000        0x00400000
 234/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
 235 * Read the Phy response and then configure the MAC accordingly */
 236#define CFG_AUTO_1000        0x00200000
 237#define CFG_PINT_CTL        0x001c0000
 238#define CFG_PINT_DUPSTS        0x00100000
 239#define CFG_PINT_LNKSTS        0x00080000
 240#define CFG_PINT_SPDSTS        0x00040000
 241#define CFG_TMRTEST        0x00020000
 242#define CFG_MRM_DIS        0x00010000
 243#define CFG_MWI_DIS        0x00008000
 244#define CFG_T64ADDR        0x00004000
 245#define CFG_PCI64_DET        0x00002000
 246#define CFG_DATA64_EN        0x00001000
 247#define CFG_M64ADDR        0x00000800
 248#define CFG_PHY_RST        0x00000400
 249#define CFG_PHY_DIS        0x00000200
 250#define CFG_EXTSTS_EN        0x00000100
 251#define CFG_REQALG        0x00000080
 252#define CFG_SB                0x00000040
 253#define CFG_POW                0x00000020
 254#define CFG_EXD                0x00000010
 255#define CFG_PESEL        0x00000008
 256#define CFG_BROM_DIS        0x00000004
 257#define CFG_EXT_125        0x00000002
 258#define CFG_BEM                0x00000001
 259
 260#define EXTSTS_UDPPKT        0x00200000
 261#define EXTSTS_TCPPKT        0x00080000
 262#define EXTSTS_IPPKT        0x00020000
 263#define EXTSTS_VPKT        0x00010000
 264#define EXTSTS_VTG_MASK        0x0000ffff
 265
 266#define SPDSTS_POLARITY        (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
 267
 268#define MIBC_MIBS        0x00000008
 269#define MIBC_ACLR        0x00000004
 270#define MIBC_FRZ        0x00000002
 271#define MIBC_WRN        0x00000001
 272
 273#define PCR_PSEN        (1 << 31)
 274#define PCR_PS_MCAST        (1 << 30)
 275#define PCR_PS_DA        (1 << 29)
 276#define PCR_STHI_8        (3 << 23)
 277#define PCR_STLO_4        (1 << 23)
 278#define PCR_FFHI_8K        (3 << 21)
 279#define PCR_FFLO_4K        (1 << 21)
 280#define PCR_PAUSE_CNT        0xFFFE
 281
 282#define RXCFG_AEP        0x80000000
 283#define RXCFG_ARP        0x40000000
 284#define RXCFG_STRIPCRC        0x20000000
 285#define RXCFG_RX_FD        0x10000000
 286#define RXCFG_ALP        0x08000000
 287#define RXCFG_AIRL        0x04000000
 288#define RXCFG_MXDMA512        0x00700000
 289#define RXCFG_DRTH        0x0000003e
 290#define RXCFG_DRTH0        0x00000002
 291
 292#define RFCR_RFEN        0x80000000
 293#define RFCR_AAB        0x40000000
 294#define RFCR_AAM        0x20000000
 295#define RFCR_AAU        0x10000000
 296#define RFCR_APM        0x08000000
 297#define RFCR_APAT        0x07800000
 298#define RFCR_APAT3        0x04000000
 299#define RFCR_APAT2        0x02000000
 300#define RFCR_APAT1        0x01000000
 301#define RFCR_APAT0        0x00800000
 302#define RFCR_AARP        0x00400000
 303#define RFCR_MHEN        0x00200000
 304#define RFCR_UHEN        0x00100000
 305#define RFCR_ULM        0x00080000
 306
 307#define VRCR_RUDPE        0x00000080
 308#define VRCR_RTCPE        0x00000040
 309#define VRCR_RIPE        0x00000020
 310#define VRCR_IPEN        0x00000010
 311#define VRCR_DUTF        0x00000008
 312#define VRCR_DVTF        0x00000004
 313#define VRCR_VTREN        0x00000002
 314#define VRCR_VTDEN        0x00000001
 315
 316#define VTCR_PPCHK        0x00000008
 317#define VTCR_GCHK        0x00000004
 318#define VTCR_VPPTI        0x00000002
 319#define VTCR_VGTI        0x00000001
 320
 321#define CR                0x00
 322#define CFG                0x04
 323#define MEAR                0x08
 324#define PTSCR                0x0c
 325#define        ISR                0x10
 326#define        IMR                0x14
 327#define        IER                0x18
 328#define        IHR                0x1c
 329#define TXDP                0x20
 330#define TXDP_HI                0x24
 331#define TXCFG                0x28
 332#define GPIOR                0x2c
 333#define RXDP                0x30
 334#define RXDP_HI                0x34
 335#define RXCFG                0x38
 336#define PQCR                0x3c
 337#define WCSR                0x40
 338#define PCR                0x44
 339#define RFCR                0x48
 340#define RFDR                0x4c
 341
 342#define SRR                0x58
 343
 344#define VRCR                0xbc
 345#define VTCR                0xc0
 346#define VDR                0xc4
 347#define CCSR                0xcc
 348
 349#define TBICR                0xe0
 350#define TBISR                0xe4
 351#define TANAR                0xe8
 352#define TANLPAR                0xec
 353#define TANER                0xf0
 354#define TESR                0xf4
 355
 356#define TBICR_MR_AN_ENABLE        0x00001000
 357#define TBICR_MR_RESTART_AN        0x00000200
 358
 359#define TBISR_MR_LINK_STATUS        0x00000020
 360#define TBISR_MR_AN_COMPLETE        0x00000004
 361
 362#define TANAR_PS2                 0x00000100
 363#define TANAR_PS1                 0x00000080
 364#define TANAR_HALF_DUP                 0x00000040
 365#define TANAR_FULL_DUP                 0x00000020
 366
 367#define GPIOR_GP5_OE                0x00000200
 368#define GPIOR_GP4_OE                0x00000100
 369#define GPIOR_GP3_OE                0x00000080
 370#define GPIOR_GP2_OE                0x00000040
 371#define GPIOR_GP1_OE                0x00000020
 372#define GPIOR_GP3_OUT                0x00000004
 373#define GPIOR_GP1_OUT                0x00000001
 374
 375#define LINK_AUTONEGOTIATE        0x01
 376#define LINK_DOWN                0x02
 377#define LINK_UP                        0x04
 378
 379#define HW_ADDR_LEN        sizeof(dma_addr_t)
 380#define desc_addr_set(desc, addr)                                \
 381        do {                                                        \
 382                ((desc)[0] = cpu_to_le32(addr));                \
 383                if (HW_ADDR_LEN == 8)                                 \
 384                        (desc)[1] = cpu_to_le32(((u64)addr) >> 32);        \
 385        } while(0)
 386#define desc_addr_get(desc)                                        \
 387        (le32_to_cpu((desc)[0]) | \
 388        (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
 389
 390#define DESC_LINK                0
 391#define DESC_BUFPTR                (DESC_LINK + HW_ADDR_LEN/4)
 392#define DESC_CMDSTS                (DESC_BUFPTR + HW_ADDR_LEN/4)
 393#define DESC_EXTSTS                (DESC_CMDSTS + 4/4)
 394
 395#define CMDSTS_OWN        0x80000000
 396#define CMDSTS_MORE        0x40000000
 397#define CMDSTS_INTR        0x20000000
 398#define CMDSTS_ERR        0x10000000
 399#define CMDSTS_OK        0x08000000
 400#define CMDSTS_RUNT        0x00200000
 401#define CMDSTS_LEN_MASK        0x0000ffff
 402
 403#define CMDSTS_DEST_MASK        0x01800000
 404#define CMDSTS_DEST_SELF        0x00800000
 405#define CMDSTS_DEST_MULTI        0x01000000
 406
 407#define DESC_SIZE        8                /* Should be cache line sized */
 408
 409struct rx_info {
 410        spinlock_t        lock;
 411        int                up;
 412        long                idle;
 413
 414        struct sk_buff        *skbs[NR_RX_DESC];
 415
 416        __le32                *next_rx_desc;
 417        u16                next_rx, next_empty;
 418
 419        __le32                *descs;
 420        dma_addr_t        phy_descs;
 421};
 422
 423
 424struct ns83820 {
 425        struct net_device_stats        stats;
 426        u8                        __iomem *base;
 427
 428        struct pci_dev                *pci_dev;
 429        struct net_device        *ndev;
 430
 431#ifdef NS83820_VLAN_ACCEL_SUPPORT
 432        struct vlan_group        *vlgrp;
 433#endif
 434
 435        struct rx_info                rx_info;
 436        struct tasklet_struct        rx_tasklet;
 437
 438        unsigned                ihr;
 439        struct work_struct        tq_refill;
 440
 441        /* protects everything below.  irqsave when using. */
 442        spinlock_t                misc_lock;
 443
 444        u32                        CFG_cache;
 445
 446        u32                        MEAR_cache;
 447        u32                        IMR_cache;
 448
 449        unsigned                linkstate;
 450
 451        spinlock_t        tx_lock;
 452
 453        u16                tx_done_idx;
 454        u16                tx_idx;
 455        volatile u16        tx_free_idx;        /* idx of free desc chain */
 456        u16                tx_intr_idx;
 457
 458        atomic_t        nr_tx_skbs;
 459        struct sk_buff        *tx_skbs[NR_TX_DESC];
 460
 461        char                pad[16] __attribute__((aligned(16)));
 462        __le32                *tx_descs;
 463        dma_addr_t        tx_phy_descs;
 464
 465        struct timer_list        tx_watchdog;
 466};
 467
 468static inline struct ns83820 *PRIV(struct net_device *dev)
 469{
 470        return netdev_priv(dev);
 471}
 472
 473#define __kick_rx(dev)        writel(CR_RXE, dev->base + CR)
 474
 475static inline void kick_rx(struct net_device *ndev)
 476{
 477        struct ns83820 *dev = PRIV(ndev);
 478        dprintk("kick_rx: maybe kicking\n");
 479        if (test_and_clear_bit(0, &dev->rx_info.idle)) {
 480                dprintk("actually kicking\n");
 481                writel(dev->rx_info.phy_descs +
 482                        (4 * DESC_SIZE * dev->rx_info.next_rx),
 483                       dev->base + RXDP);
 484                if (dev->rx_info.next_rx == dev->rx_info.next_empty)
 485                        printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
 486                                ndev->name);
 487                __kick_rx(dev);
 488        }
 489}
 490
 491//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
 492#define start_tx_okay(dev)        \
 493        (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
 494
 495
 496#ifdef NS83820_VLAN_ACCEL_SUPPORT
 497static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
 498{
 499        struct ns83820 *dev = PRIV(ndev);
 500
 501        spin_lock_irq(&dev->misc_lock);
 502        spin_lock(&dev->tx_lock);
 503
 504        dev->vlgrp = grp;
 505
 506        spin_unlock(&dev->tx_lock);
 507        spin_unlock_irq(&dev->misc_lock);
 508}
 509#endif
 510
 511/* Packet Receiver
 512 *
 513 * The hardware supports linked lists of receive descriptors for
 514 * which ownership is transfered back and forth by means of an
 515 * ownership bit.  While the hardware does support the use of a
 516 * ring for receive descriptors, we only make use of a chain in
 517 * an attempt to reduce bus traffic under heavy load scenarios.
 518 * This will also make bugs a bit more obvious.  The current code
 519 * only makes use of a single rx chain; I hope to implement
 520 * priority based rx for version 1.0.  Goal: even under overload
 521 * conditions, still route realtime traffic with as low jitter as
 522 * possible.
 523 */
 524static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
 525{
 526        desc_addr_set(desc + DESC_LINK, link);
 527        desc_addr_set(desc + DESC_BUFPTR, buf);
 528        desc[DESC_EXTSTS] = cpu_to_le32(extsts);
 529        mb();
 530        desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
 531}
 532
 533#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
 534static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
 535{
 536        unsigned next_empty;
 537        u32 cmdsts;
 538        __le32 *sg;
 539        dma_addr_t buf;
 540
 541        next_empty = dev->rx_info.next_empty;
 542
 543        /* don't overrun last rx marker */
 544        if (unlikely(nr_rx_empty(dev) <= 2)) {
 545                kfree_skb(skb);
 546                return 1;
 547        }
 548
 549#if 0
 550        dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
 551                dev->rx_info.next_empty,
 552                dev->rx_info.nr_used,
 553                dev->rx_info.next_rx
 554                );
 555#endif
 556
 557        sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
 558        BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
 559        dev->rx_info.skbs[next_empty] = skb;
 560
 561        dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
 562        cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
 563        buf = pci_map_single(dev->pci_dev, skb->data,
 564                             REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 565        build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
 566        /* update link of previous rx */
 567        if (likely(next_empty != dev->rx_info.next_rx))
 568                dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
 569
 570        return 0;
 571}
 572
 573static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
 574{
 575        struct ns83820 *dev = PRIV(ndev);
 576        unsigned i;
 577        unsigned long flags = 0;
 578
 579        if (unlikely(nr_rx_empty(dev) <= 2))
 580                return 0;
 581
 582        dprintk("rx_refill(%p)\n", ndev);
 583        if (gfp == GFP_ATOMIC)
 584                spin_lock_irqsave(&dev->rx_info.lock, flags);
 585        for (i=0; i<NR_RX_DESC; i++) {
 586                struct sk_buff *skb;
 587                long res;
 588
 589                /* extra 16 bytes for alignment */
 590                skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
 591                if (unlikely(!skb))
 592                        break;
 593
 594                skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
 595                if (gfp != GFP_ATOMIC)
 596                        spin_lock_irqsave(&dev->rx_info.lock, flags);
 597                res = ns83820_add_rx_skb(dev, skb);
 598                if (gfp != GFP_ATOMIC)
 599                        spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 600                if (res) {
 601                        i = 1;
 602                        break;
 603                }
 604        }
 605        if (gfp == GFP_ATOMIC)
 606                spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 607
 608        return i ? 0 : -ENOMEM;
 609}
 610
 611static void rx_refill_atomic(struct net_device *ndev)
 612{
 613        rx_refill(ndev, GFP_ATOMIC);
 614}
 615
 616/* REFILL */
 617static inline void queue_refill(struct work_struct *work)
 618{
 619        struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
 620        struct net_device *ndev = dev->ndev;
 621
 622        rx_refill(ndev, GFP_KERNEL);
 623        if (dev->rx_info.up)
 624                kick_rx(ndev);
 625}
 626
 627static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
 628{
 629        build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
 630}
 631
 632static void phy_intr(struct net_device *ndev)
 633{
 634        struct ns83820 *dev = PRIV(ndev);
 635        static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
 636        u32 cfg, new_cfg;
 637        u32 tbisr, tanar, tanlpar;
 638        int speed, fullduplex, newlinkstate;
 639
 640        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
 641
 642        if (dev->CFG_cache & CFG_TBI_EN) {
 643                /* we have an optical transceiver */
 644                tbisr = readl(dev->base + TBISR);
 645                tanar = readl(dev->base + TANAR);
 646                tanlpar = readl(dev->base + TANLPAR);
 647                dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
 648                        tbisr, tanar, tanlpar);
 649
 650                if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
 651                      && (tanar & TANAR_FULL_DUP)) ) {
 652
 653                        /* both of us are full duplex */
 654                        writel(readl(dev->base + TXCFG)
 655                               | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
 656                               dev->base + TXCFG);
 657                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 658                               dev->base + RXCFG);
 659                        /* Light up full duplex LED */
 660                        writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
 661                               dev->base + GPIOR);
 662
 663                } else if(((tanlpar & TANAR_HALF_DUP)
 664                           && (tanar & TANAR_HALF_DUP))
 665                        || ((tanlpar & TANAR_FULL_DUP)
 666                            && (tanar & TANAR_HALF_DUP))
 667                        || ((tanlpar & TANAR_HALF_DUP)
 668                            && (tanar & TANAR_FULL_DUP))) {
 669
 670                        /* one or both of us are half duplex */
 671                        writel((readl(dev->base + TXCFG)
 672                                & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
 673                               dev->base + TXCFG);
 674                        writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
 675                               dev->base + RXCFG);
 676                        /* Turn off full duplex LED */
 677                        writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
 678                               dev->base + GPIOR);
 679                }
 680
 681                speed = 4; /* 1000F */
 682
 683        } else {
 684                /* we have a copper transceiver */
 685                new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
 686
 687                if (cfg & CFG_SPDSTS1)
 688                        new_cfg |= CFG_MODE_1000;
 689                else
 690                        new_cfg &= ~CFG_MODE_1000;
 691
 692                speed = ((cfg / CFG_SPDSTS0) & 3);
 693                fullduplex = (cfg & CFG_DUPSTS);
 694
 695                if (fullduplex) {
 696                        new_cfg |= CFG_SB;
 697                        writel(readl(dev->base + TXCFG)
 698                                        | TXCFG_CSI | TXCFG_HBI,
 699                               dev->base + TXCFG);
 700                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 701                               dev->base + RXCFG);
 702                } else {
 703                        writel(readl(dev->base + TXCFG)
 704                                        & ~(TXCFG_CSI | TXCFG_HBI),
 705                               dev->base + TXCFG);
 706                        writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
 707                               dev->base + RXCFG);
 708                }
 709
 710                if ((cfg & CFG_LNKSTS) &&
 711                    ((new_cfg ^ dev->CFG_cache) != 0)) {
 712                        writel(new_cfg, dev->base + CFG);
 713                        dev->CFG_cache = new_cfg;
 714                }
 715
 716                dev->CFG_cache &= ~CFG_SPDSTS;
 717                dev->CFG_cache |= cfg & CFG_SPDSTS;
 718        }
 719
 720        newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
 721
 722        if (newlinkstate & LINK_UP
 723            && dev->linkstate != newlinkstate) {
 724                netif_start_queue(ndev);
 725                netif_wake_queue(ndev);
 726                printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
 727                        ndev->name,
 728                        speeds[speed],
 729                        fullduplex ? "full" : "half");
 730        } else if (newlinkstate & LINK_DOWN
 731                   && dev->linkstate != newlinkstate) {
 732                netif_stop_queue(ndev);
 733                printk(KERN_INFO "%s: link now down.\n", ndev->name);
 734        }
 735
 736        dev->linkstate = newlinkstate;
 737}
 738
 739static int ns83820_setup_rx(struct net_device *ndev)
 740{
 741        struct ns83820 *dev = PRIV(ndev);
 742        unsigned i;
 743        int ret;
 744
 745        dprintk("ns83820_setup_rx(%p)\n", ndev);
 746
 747        dev->rx_info.idle = 1;
 748        dev->rx_info.next_rx = 0;
 749        dev->rx_info.next_rx_desc = dev->rx_info.descs;
 750        dev->rx_info.next_empty = 0;
 751
 752        for (i=0; i<NR_RX_DESC; i++)
 753                clear_rx_desc(dev, i);
 754
 755        writel(0, dev->base + RXDP_HI);
 756        writel(dev->rx_info.phy_descs, dev->base + RXDP);
 757
 758        ret = rx_refill(ndev, GFP_KERNEL);
 759        if (!ret) {
 760                dprintk("starting receiver\n");
 761                /* prevent the interrupt handler from stomping on us */
 762                spin_lock_irq(&dev->rx_info.lock);
 763
 764                writel(0x0001, dev->base + CCSR);
 765                writel(0, dev->base + RFCR);
 766                writel(0x7fc00000, dev->base + RFCR);
 767                writel(0xffc00000, dev->base + RFCR);
 768
 769                dev->rx_info.up = 1;
 770
 771                phy_intr(ndev);
 772
 773                /* Okay, let it rip */
 774                spin_lock_irq(&dev->misc_lock);
 775                dev->IMR_cache |= ISR_PHY;
 776                dev->IMR_cache |= ISR_RXRCMP;
 777                //dev->IMR_cache |= ISR_RXERR;
 778                //dev->IMR_cache |= ISR_RXOK;
 779                dev->IMR_cache |= ISR_RXORN;
 780                dev->IMR_cache |= ISR_RXSOVR;
 781                dev->IMR_cache |= ISR_RXDESC;
 782                dev->IMR_cache |= ISR_RXIDLE;
 783                dev->IMR_cache |= ISR_TXDESC;
 784                dev->IMR_cache |= ISR_TXIDLE;
 785
 786                writel(dev->IMR_cache, dev->base + IMR);
 787                writel(1, dev->base + IER);
 788                spin_unlock(&dev->misc_lock);
 789
 790                kick_rx(ndev);
 791
 792                spin_unlock_irq(&dev->rx_info.lock);
 793        }
 794        return ret;
 795}
 796
 797static void ns83820_cleanup_rx(struct ns83820 *dev)
 798{
 799        unsigned i;
 800        unsigned long flags;
 801
 802        dprintk("ns83820_cleanup_rx(%p)\n", dev);
 803
 804        /* disable receive interrupts */
 805        spin_lock_irqsave(&dev->misc_lock, flags);
 806        dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
 807        writel(dev->IMR_cache, dev->base + IMR);
 808        spin_unlock_irqrestore(&dev->misc_lock, flags);
 809
 810        /* synchronize with the interrupt handler and kill it */
 811        dev->rx_info.up = 0;
 812        synchronize_irq(dev->pci_dev->irq);
 813
 814        /* touch the pci bus... */
 815        readl(dev->base + IMR);
 816
 817        /* assumes the transmitter is already disabled and reset */
 818        writel(0, dev->base + RXDP_HI);
 819        writel(0, dev->base + RXDP);
 820
 821        for (i=0; i<NR_RX_DESC; i++) {
 822                struct sk_buff *skb = dev->rx_info.skbs[i];
 823                dev->rx_info.skbs[i] = NULL;
 824                clear_rx_desc(dev, i);
 825                if (skb)
 826                        kfree_skb(skb);
 827        }
 828}
 829
 830static void ns83820_rx_kick(struct net_device *ndev)
 831{
 832        struct ns83820 *dev = PRIV(ndev);
 833        /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
 834                if (dev->rx_info.up) {
 835                        rx_refill_atomic(ndev);
 836                        kick_rx(ndev);
 837                }
 838        }
 839
 840        if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
 841                schedule_work(&dev->tq_refill);
 842        else
 843                kick_rx(ndev);
 844        if (dev->rx_info.idle)
 845                printk(KERN_DEBUG "%s: BAD\n", ndev->name);
 846}
 847
 848/* rx_irq
 849 *
 850 */
 851static void rx_irq(struct net_device *ndev)
 852{
 853        struct ns83820 *dev = PRIV(ndev);
 854        struct rx_info *info = &dev->rx_info;
 855        unsigned next_rx;
 856        int rx_rc, len;
 857        u32 cmdsts;
 858        __le32 *desc;
 859        unsigned long flags;
 860        int nr = 0;
 861
 862        dprintk("rx_irq(%p)\n", ndev);
 863        dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
 864                readl(dev->base + RXDP),
 865                (long)(dev->rx_info.phy_descs),
 866                (int)dev->rx_info.next_rx,
 867                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
 868                (int)dev->rx_info.next_empty,
 869                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
 870                );
 871
 872        spin_lock_irqsave(&info->lock, flags);
 873        if (!info->up)
 874                goto out;
 875
 876        dprintk("walking descs\n");
 877        next_rx = info->next_rx;
 878        desc = info->next_rx_desc;
 879        while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
 880               (cmdsts != CMDSTS_OWN)) {
 881                struct sk_buff *skb;
 882                u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
 883                dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
 884
 885                dprintk("cmdsts: %08x\n", cmdsts);
 886                dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
 887                dprintk("extsts: %08x\n", extsts);
 888
 889                skb = info->skbs[next_rx];
 890                info->skbs[next_rx] = NULL;
 891                info->next_rx = (next_rx + 1) % NR_RX_DESC;
 892
 893                mb();
 894                clear_rx_desc(dev, next_rx);
 895
 896                pci_unmap_single(dev->pci_dev, bufptr,
 897                                 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 898                len = cmdsts & CMDSTS_LEN_MASK;
 899#ifdef NS83820_VLAN_ACCEL_SUPPORT
 900                /* NH: As was mentioned below, this chip is kinda
 901                 * brain dead about vlan tag stripping.  Frames
 902                 * that are 64 bytes with a vlan header appended
 903                 * like arp frames, or pings, are flagged as Runts
 904                 * when the tag is stripped and hardware.  This
 905                 * also means that the OK bit in the descriptor
 906                 * is cleared when the frame comes in so we have
 907                 * to do a specific length check here to make sure
 908                 * the frame would have been ok, had we not stripped
 909                 * the tag.
 910                 */
 911                if (likely((CMDSTS_OK & cmdsts) ||
 912                        ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
 913#else
 914                if (likely(CMDSTS_OK & cmdsts)) {
 915#endif
 916                        skb_put(skb, len);
 917                        if (unlikely(!skb))
 918                                goto netdev_mangle_me_harder_failed;
 919                        if (cmdsts & CMDSTS_DEST_MULTI)
 920                                dev->stats.multicast ++;
 921                        dev->stats.rx_packets ++;
 922                        dev->stats.rx_bytes += len;
 923                        if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
 924                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 925                        } else {
 926                                skb->ip_summed = CHECKSUM_NONE;
 927                        }
 928                        skb->protocol = eth_type_trans(skb, ndev);
 929#ifdef NS83820_VLAN_ACCEL_SUPPORT
 930                        if(extsts & EXTSTS_VPKT) {
 931                                unsigned short tag;
 932                                tag = ntohs(extsts & EXTSTS_VTG_MASK);
 933                                rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
 934                        } else {
 935                                rx_rc = netif_rx(skb);
 936                        }
 937#else
 938                        rx_rc = netif_rx(skb);
 939#endif
 940                        if (NET_RX_DROP == rx_rc) {
 941netdev_mangle_me_harder_failed:
 942                                dev->stats.rx_dropped ++;
 943                        }
 944                } else {
 945                        kfree_skb(skb);
 946                }
 947
 948                nr++;
 949                next_rx = info->next_rx;
 950                desc = info->descs + (DESC_SIZE * next_rx);
 951        }
 952        info->next_rx = next_rx;
 953        info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
 954
 955out:
 956        if (0 && !nr) {
 957                Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
 958        }
 959
 960        spin_unlock_irqrestore(&info->lock, flags);
 961}
 962
 963static void rx_action(unsigned long _dev)
 964{
 965        struct net_device *ndev = (void *)_dev;
 966        struct ns83820 *dev = PRIV(ndev);
 967        rx_irq(ndev);
 968        writel(ihr, dev->base + IHR);
 969
 970        spin_lock_irq(&dev->misc_lock);
 971        dev->IMR_cache |= ISR_RXDESC;
 972        writel(dev->IMR_cache, dev->base + IMR);
 973        spin_unlock_irq(&dev->misc_lock);
 974
 975        rx_irq(ndev);
 976        ns83820_rx_kick(ndev);
 977}
 978
 979/* Packet Transmit code
 980 */
 981static inline void kick_tx(struct ns83820 *dev)
 982{
 983        dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
 984                dev, dev->tx_idx, dev->tx_free_idx);
 985        writel(CR_TXE, dev->base + CR);
 986}
 987
 988/* No spinlock needed on the transmit irq path as the interrupt handler is
 989 * serialized.
 990 */
 991static void do_tx_done(struct net_device *ndev)
 992{
 993        struct ns83820 *dev = PRIV(ndev);
 994        u32 cmdsts, tx_done_idx;
 995        __le32 *desc;
 996
 997        dprintk("do_tx_done(%p)\n", ndev);
 998        tx_done_idx = dev->tx_done_idx;
 999        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1000
1001        dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1002                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1003        while ((tx_done_idx != dev->tx_free_idx) &&
1004               !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1005                struct sk_buff *skb;
1006                unsigned len;
1007                dma_addr_t addr;
1008
1009                if (cmdsts & CMDSTS_ERR)
1010                        dev->stats.tx_errors ++;
1011                if (cmdsts & CMDSTS_OK)
1012                        dev->stats.tx_packets ++;
1013                if (cmdsts & CMDSTS_OK)
1014                        dev->stats.tx_bytes += cmdsts & 0xffff;
1015
1016                dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1017                        tx_done_idx, dev->tx_free_idx, cmdsts);
1018                skb = dev->tx_skbs[tx_done_idx];
1019                dev->tx_skbs[tx_done_idx] = NULL;
1020                dprintk("done(%p)\n", skb);
1021
1022                len = cmdsts & CMDSTS_LEN_MASK;
1023                addr = desc_addr_get(desc + DESC_BUFPTR);
1024                if (skb) {
1025                        pci_unmap_single(dev->pci_dev,
1026                                        addr,
1027                                        len,
1028                                        PCI_DMA_TODEVICE);
1029                        dev_kfree_skb_irq(skb);
1030                        atomic_dec(&dev->nr_tx_skbs);
1031                } else
1032                        pci_unmap_page(dev->pci_dev,
1033                                        addr,
1034                                        len,
1035                                        PCI_DMA_TODEVICE);
1036
1037                tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1038                dev->tx_done_idx = tx_done_idx;
1039                desc[DESC_CMDSTS] = cpu_to_le32(0);
1040                mb();
1041                desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1042        }
1043
1044        /* Allow network stack to resume queueing packets after we've
1045         * finished transmitting at least 1/4 of the packets in the queue.
1046         */
1047        if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1048                dprintk("start_queue(%p)\n", ndev);
1049                netif_start_queue(ndev);
1050                netif_wake_queue(ndev);
1051        }
1052}
1053
1054static void ns83820_cleanup_tx(struct ns83820 *dev)
1055{
1056        unsigned i;
1057
1058        for (i=0; i<NR_TX_DESC; i++) {
1059                struct sk_buff *skb = dev->tx_skbs[i];
1060                dev->tx_skbs[i] = NULL;
1061                if (skb) {
1062                        __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1063                        pci_unmap_single(dev->pci_dev,
1064                                        desc_addr_get(desc + DESC_BUFPTR),
1065                                        le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1066                                        PCI_DMA_TODEVICE);
1067                        dev_kfree_skb_irq(skb);
1068                        atomic_dec(&dev->nr_tx_skbs);
1069                }
1070        }
1071
1072        memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1073}
1074
1075/* transmit routine.  This code relies on the network layer serializing
1076 * its calls in, but will run happily in parallel with the interrupt
1077 * handler.  This code currently has provisions for fragmenting tx buffers
1078 * while trying to track down a bug in either the zero copy code or
1079 * the tx fifo (hence the MAX_FRAG_LEN).
1080 */
1081static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1082{
1083        struct ns83820 *dev = PRIV(ndev);
1084        u32 free_idx, cmdsts, extsts;
1085        int nr_free, nr_frags;
1086        unsigned tx_done_idx, last_idx;
1087        dma_addr_t buf;
1088        unsigned len;
1089        skb_frag_t *frag;
1090        int stopped = 0;
1091        int do_intr = 0;
1092        volatile __le32 *first_desc;
1093
1094        dprintk("ns83820_hard_start_xmit\n");
1095
1096        nr_frags =  skb_shinfo(skb)->nr_frags;
1097again:
1098        if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1099                netif_stop_queue(ndev);
1100                if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1101                        return 1;
1102                netif_start_queue(ndev);
1103        }
1104
1105        last_idx = free_idx = dev->tx_free_idx;
1106        tx_done_idx = dev->tx_done_idx;
1107        nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1108        nr_free -= 1;
1109        if (nr_free <= nr_frags) {
1110                dprintk("stop_queue - not enough(%p)\n", ndev);
1111                netif_stop_queue(ndev);
1112
1113                /* Check again: we may have raced with a tx done irq */
1114                if (dev->tx_done_idx != tx_done_idx) {
1115                        dprintk("restart queue(%p)\n", ndev);
1116                        netif_start_queue(ndev);
1117                        goto again;
1118                }
1119                return 1;
1120        }
1121
1122        if (free_idx == dev->tx_intr_idx) {
1123                do_intr = 1;
1124                dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1125        }
1126
1127        nr_free -= nr_frags;
1128        if (nr_free < MIN_TX_DESC_FREE) {
1129                dprintk("stop_queue - last entry(%p)\n", ndev);
1130                netif_stop_queue(ndev);
1131                stopped = 1;
1132        }
1133
1134        frag = skb_shinfo(skb)->frags;
1135        if (!nr_frags)
1136                frag = NULL;
1137        extsts = 0;
1138        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1139                extsts |= EXTSTS_IPPKT;
1140                if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1141                        extsts |= EXTSTS_TCPPKT;
1142                else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1143                        extsts |= EXTSTS_UDPPKT;
1144        }
1145
1146#ifdef NS83820_VLAN_ACCEL_SUPPORT
1147        if(vlan_tx_tag_present(skb)) {
1148                /* fetch the vlan tag info out of the
1149                 * ancilliary data if the vlan code
1150                 * is using hw vlan acceleration
1151                 */
1152                short tag = vlan_tx_tag_get(skb);
1153                extsts |= (EXTSTS_VPKT | htons(tag));
1154        }
1155#endif
1156
1157        len = skb->len;
1158        if (nr_frags)
1159                len -= skb->data_len;
1160        buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1161
1162        first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1163
1164        for (;;) {
1165                volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1166
1167                dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1168                        (unsigned long long)buf);
1169                last_idx = free_idx;
1170                free_idx = (free_idx + 1) % NR_TX_DESC;
1171                desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1172                desc_addr_set(desc + DESC_BUFPTR, buf);
1173                desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1174
1175                cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1176                cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1177                cmdsts |= len;
1178                desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1179
1180                if (!nr_frags)
1181                        break;
1182
1183                buf = pci_map_page(dev->pci_dev, frag->page,
1184                                   frag->page_offset,
1185                                   frag->size, PCI_DMA_TODEVICE);
1186                dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1187                        (long long)buf, (long) page_to_pfn(frag->page),
1188                        frag->page_offset);
1189                len = frag->size;
1190                frag++;
1191                nr_frags--;
1192        }
1193        dprintk("done pkt\n");
1194
1195        spin_lock_irq(&dev->tx_lock);
1196        dev->tx_skbs[last_idx] = skb;
1197        first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1198        dev->tx_free_idx = free_idx;
1199        atomic_inc(&dev->nr_tx_skbs);
1200        spin_unlock_irq(&dev->tx_lock);
1201
1202        kick_tx(dev);
1203
1204        /* Check again: we may have raced with a tx done irq */
1205        if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1206                netif_start_queue(ndev);
1207
1208        /* set the transmit start time to catch transmit timeouts */
1209        ndev->trans_start = jiffies;
1210        return 0;
1211}
1212
1213static void ns83820_update_stats(struct ns83820 *dev)
1214{
1215        u8 __iomem *base = dev->base;
1216
1217        /* the DP83820 will freeze counters, so we need to read all of them */
1218        dev->stats.rx_errors                += readl(base + 0x60) & 0xffff;
1219        dev->stats.rx_crc_errors        += readl(base + 0x64) & 0xffff;
1220        dev->stats.rx_missed_errors        += readl(base + 0x68) & 0xffff;
1221        dev->stats.rx_frame_errors        += readl(base + 0x6c) & 0xffff;
1222        /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1223        dev->stats.rx_length_errors        += readl(base + 0x74) & 0xffff;
1224        dev->stats.rx_length_errors        += readl(base + 0x78) & 0xffff;
1225        /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1226        /*dev->stats.rx_pause_count += */  readl(base + 0x80);
1227        /*dev->stats.tx_pause_count += */  readl(base + 0x84);
1228        dev->stats.tx_carrier_errors        += readl(base + 0x88) & 0xff;
1229}
1230
1231static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1232{
1233        struct ns83820 *dev = PRIV(ndev);
1234
1235        /* somewhat overkill */
1236        spin_lock_irq(&dev->misc_lock);
1237        ns83820_update_stats(dev);
1238        spin_unlock_irq(&dev->misc_lock);
1239
1240        return &dev->stats;
1241}
1242
1243/* Let ethtool retrieve info */
1244static int ns83820_get_settings(struct net_device *ndev,
1245                                struct ethtool_cmd *cmd)
1246{
1247        struct ns83820 *dev = PRIV(ndev);
1248        u32 cfg, tanar, tbicr;
1249        int have_optical = 0;
1250        int fullduplex   = 0;
1251
1252        /*
1253         * Here's the list of available ethtool commands from other drivers:
1254         *        cmd->advertising =
1255         *        cmd->speed =
1256         *        cmd->duplex =
1257         *        cmd->port = 0;
1258         *        cmd->phy_address =
1259         *        cmd->transceiver = 0;
1260         *        cmd->autoneg =
1261         *        cmd->maxtxpkt = 0;
1262         *        cmd->maxrxpkt = 0;
1263         */
1264
1265        /* read current configuration */
1266        cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1267        tanar = readl(dev->base + TANAR);
1268        tbicr = readl(dev->base + TBICR);
1269
1270        if (dev->CFG_cache & CFG_TBI_EN) {
1271                /* we have an optical interface */
1272                have_optical = 1;
1273                fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1274
1275        } else {
1276                /* We have copper */
1277                fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1278        }
1279
1280        cmd->supported = SUPPORTED_Autoneg;
1281
1282        /* we have optical interface */
1283        if (dev->CFG_cache & CFG_TBI_EN) {
1284                cmd->supported |= SUPPORTED_1000baseT_Half |
1285                                        SUPPORTED_1000baseT_Full |
1286                                        SUPPORTED_FIBRE;
1287                cmd->port       = PORT_FIBRE;
1288        } /* TODO: else copper related  support */
1289
1290        cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1291        switch (cfg / CFG_SPDSTS0 & 3) {
1292        case 2:
1293                cmd->speed = SPEED_1000;
1294                break;
1295        case 1:
1296                cmd->speed = SPEED_100;
1297                break;
1298        default:
1299                cmd->speed = SPEED_10;
1300                break;
1301        }
1302        cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? 1: 0;
1303        return 0;
1304}
1305
1306/* Let ethool change settings*/
1307static int ns83820_set_settings(struct net_device *ndev,
1308                                struct ethtool_cmd *cmd)
1309{
1310        struct ns83820 *dev = PRIV(ndev);
1311        u32 cfg, tanar;
1312        int have_optical = 0;
1313        int fullduplex   = 0;
1314
1315        /* read current configuration */
1316        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1317        tanar = readl(dev->base + TANAR);
1318
1319        if (dev->CFG_cache & CFG_TBI_EN) {
1320                /* we have optical */
1321                have_optical = 1;
1322                fullduplex   = (tanar & TANAR_FULL_DUP);
1323
1324        } else {
1325                /* we have copper */
1326                fullduplex = cfg & CFG_DUPSTS;
1327        }
1328
1329        spin_lock_irq(&dev->misc_lock);
1330        spin_lock(&dev->tx_lock);
1331
1332        /* Set duplex */
1333        if (cmd->duplex != fullduplex) {
1334                if (have_optical) {
1335                        /*set full duplex*/
1336                        if (cmd->duplex == DUPLEX_FULL) {
1337                                /* force full duplex */
1338                                writel(readl(dev->base + TXCFG)
1339                                        | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1340                                        dev->base + TXCFG);
1341                                writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1342                                        dev->base + RXCFG);
1343                                /* Light up full duplex LED */
1344                                writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1345                                        dev->base + GPIOR);
1346                        } else {
1347                                /*TODO: set half duplex */
1348                        }
1349
1350                } else {
1351                        /*we have copper*/
1352                        /* TODO: Set duplex for copper cards */
1353                }
1354                printk(KERN_INFO "%s: Duplex set via ethtool\n",
1355                ndev->name);
1356        }
1357
1358        /* Set autonegotiation */
1359        if (1) {
1360                if (cmd->autoneg == AUTONEG_ENABLE) {
1361                        /* restart auto negotiation */
1362                        writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1363                                dev->base + TBICR);
1364                        writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1365                                dev->linkstate = LINK_AUTONEGOTIATE;
1366
1367                        printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1368                                ndev->name);
1369                } else {
1370                        /* disable auto negotiation */
1371                        writel(0x00000000, dev->base + TBICR);
1372                }
1373
1374                printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1375                                cmd->autoneg ? "ENABLED" : "DISABLED");
1376        }
1377
1378        phy_intr(ndev);
1379        spin_unlock(&dev->tx_lock);
1380        spin_unlock_irq(&dev->misc_lock);
1381
1382        return 0;
1383}
1384/* end ethtool get/set support -df */
1385
1386static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1387{
1388        struct ns83820 *dev = PRIV(ndev);
1389        strcpy(info->driver, "ns83820");
1390        strcpy(info->version, VERSION);
1391        strcpy(info->bus_info, pci_name(dev->pci_dev));
1392}
1393
1394static u32 ns83820_get_link(struct net_device *ndev)
1395{
1396        struct ns83820 *dev = PRIV(ndev);
1397        u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1398        return cfg & CFG_LNKSTS ? 1 : 0;
1399}
1400
1401static const struct ethtool_ops ops = {
1402        .get_settings    = ns83820_get_settings,
1403        .set_settings    = ns83820_set_settings,
1404        .get_drvinfo     = ns83820_get_drvinfo,
1405        .get_link        = ns83820_get_link
1406};
1407
1408/* this function is called in irq context from the ISR */
1409static void ns83820_mib_isr(struct ns83820 *dev)
1410{
1411        unsigned long flags;
1412        spin_lock_irqsave(&dev->misc_lock, flags);
1413        ns83820_update_stats(dev);
1414        spin_unlock_irqrestore(&dev->misc_lock, flags);
1415}
1416
1417static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1418static irqreturn_t ns83820_irq(int foo, void *data)
1419{
1420        struct net_device *ndev = data;
1421        struct ns83820 *dev = PRIV(ndev);
1422        u32 isr;
1423        dprintk("ns83820_irq(%p)\n", ndev);
1424
1425        dev->ihr = 0;
1426
1427        isr = readl(dev->base + ISR);
1428        dprintk("irq: %08x\n", isr);
1429        ns83820_do_isr(ndev, isr);
1430        return IRQ_HANDLED;
1431}
1432
1433static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1434{
1435        struct ns83820 *dev = PRIV(ndev);
1436        unsigned long flags;
1437
1438#ifdef DEBUG
1439        if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1440                Dprintk("odd isr? 0x%08x\n", isr);
1441#endif
1442
1443        if (ISR_RXIDLE & isr) {
1444                dev->rx_info.idle = 1;
1445                Dprintk("oh dear, we are idle\n");
1446                ns83820_rx_kick(ndev);
1447        }
1448
1449        if ((ISR_RXDESC | ISR_RXOK) & isr) {
1450                prefetch(dev->rx_info.next_rx_desc);
1451
1452                spin_lock_irqsave(&dev->misc_lock, flags);
1453                dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1454                writel(dev->IMR_cache, dev->base + IMR);
1455                spin_unlock_irqrestore(&dev->misc_lock, flags);
1456
1457                tasklet_schedule(&dev->rx_tasklet);
1458                //rx_irq(ndev);
1459                //writel(4, dev->base + IHR);
1460        }
1461
1462        if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1463                ns83820_rx_kick(ndev);
1464
1465        if (unlikely(ISR_RXSOVR & isr)) {
1466                //printk("overrun: rxsovr\n");
1467                dev->stats.rx_fifo_errors ++;
1468        }
1469
1470        if (unlikely(ISR_RXORN & isr)) {
1471                //printk("overrun: rxorn\n");
1472                dev->stats.rx_fifo_errors ++;
1473        }
1474
1475        if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1476                writel(CR_RXE, dev->base + CR);
1477
1478        if (ISR_TXIDLE & isr) {
1479                u32 txdp;
1480                txdp = readl(dev->base + TXDP);
1481                dprintk("txdp: %08x\n", txdp);
1482                txdp -= dev->tx_phy_descs;
1483                dev->tx_idx = txdp / (DESC_SIZE * 4);
1484                if (dev->tx_idx >= NR_TX_DESC) {
1485                        printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1486                        dev->tx_idx = 0;
1487                }
1488                /* The may have been a race between a pci originated read
1489                 * and the descriptor update from the cpu.  Just in case,
1490                 * kick the transmitter if the hardware thinks it is on a
1491                 * different descriptor than we are.
1492                 */
1493                if (dev->tx_idx != dev->tx_free_idx)
1494                        kick_tx(dev);
1495        }
1496
1497        /* Defer tx ring processing until more than a minimum amount of
1498         * work has accumulated
1499         */
1500        if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1501                spin_lock_irqsave(&dev->tx_lock, flags);
1502                do_tx_done(ndev);
1503                spin_unlock_irqrestore(&dev->tx_lock, flags);
1504
1505                /* Disable TxOk if there are no outstanding tx packets.
1506                 */
1507                if ((dev->tx_done_idx == dev->tx_free_idx) &&
1508                    (dev->IMR_cache & ISR_TXOK)) {
1509                        spin_lock_irqsave(&dev->misc_lock, flags);
1510                        dev->IMR_cache &= ~ISR_TXOK;
1511                        writel(dev->IMR_cache, dev->base + IMR);
1512                        spin_unlock_irqrestore(&dev->misc_lock, flags);
1513                }
1514        }
1515
1516        /* The TxIdle interrupt can come in before the transmit has
1517         * completed.  Normally we reap packets off of the combination
1518         * of TxDesc and TxIdle and leave TxOk disabled (since it
1519         * occurs on every packet), but when no further irqs of this
1520         * nature are expected, we must enable TxOk.
1521         */
1522        if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1523                spin_lock_irqsave(&dev->misc_lock, flags);
1524                dev->IMR_cache |= ISR_TXOK;
1525                writel(dev->IMR_cache, dev->base + IMR);
1526                spin_unlock_irqrestore(&dev->misc_lock, flags);
1527        }
1528
1529        /* MIB interrupt: one of the statistics counters is about to overflow */
1530        if (unlikely(ISR_MIB & isr))
1531                ns83820_mib_isr(dev);
1532
1533        /* PHY: Link up/down/negotiation state change */
1534        if (unlikely(ISR_PHY & isr))
1535                phy_intr(ndev);
1536
1537#if 0        /* Still working on the interrupt mitigation strategy */
1538        if (dev->ihr)
1539                writel(dev->ihr, dev->base + IHR);
1540#endif
1541}
1542
1543static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1544{
1545        Dprintk("resetting chip...\n");
1546        writel(which, dev->base + CR);
1547        do {
1548                schedule();
1549        } while (readl(dev->base + CR) & which);
1550        Dprintk("okay!\n");
1551}
1552
1553static int ns83820_stop(struct net_device *ndev)
1554{
1555        struct ns83820 *dev = PRIV(ndev);
1556
1557        /* FIXME: protect against interrupt handler? */
1558        del_timer_sync(&dev->tx_watchdog);
1559
1560        /* disable interrupts */
1561        writel(0, dev->base + IMR);
1562        writel(0, dev->base + IER);
1563        readl(dev->base + IER);
1564
1565        dev->rx_info.up = 0;
1566        synchronize_irq(dev->pci_dev->irq);
1567
1568        ns83820_do_reset(dev, CR_RST);
1569
1570        synchronize_irq(dev->pci_dev->irq);
1571
1572        spin_lock_irq(&dev->misc_lock);
1573        dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1574        spin_unlock_irq(&dev->misc_lock);
1575
1576        ns83820_cleanup_rx(dev);
1577        ns83820_cleanup_tx(dev);
1578
1579        return 0;
1580}
1581
1582static void ns83820_tx_timeout(struct net_device *ndev)
1583{
1584        struct ns83820 *dev = PRIV(ndev);
1585        u32 tx_done_idx;
1586        __le32 *desc;
1587        unsigned long flags;
1588
1589        spin_lock_irqsave(&dev->tx_lock, flags);
1590
1591        tx_done_idx = dev->tx_done_idx;
1592        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1593
1594        printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1595                ndev->name,
1596                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1597
1598#if defined(DEBUG)
1599        {
1600                u32 isr;
1601                isr = readl(dev->base + ISR);
1602                printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1603                ns83820_do_isr(ndev, isr);
1604        }
1605#endif
1606
1607        do_tx_done(ndev);
1608
1609        tx_done_idx = dev->tx_done_idx;
1610        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1611
1612        printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1613                ndev->name,
1614                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1615
1616        spin_unlock_irqrestore(&dev->tx_lock, flags);
1617}
1618
1619static void ns83820_tx_watch(unsigned long data)
1620{
1621        struct net_device *ndev = (void *)data;
1622        struct ns83820 *dev = PRIV(ndev);
1623
1624#if defined(DEBUG)
1625        printk("ns83820_tx_watch: %u %u %d\n",
1626                dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1627                );
1628#endif
1629
1630        if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
1631            dev->tx_done_idx != dev->tx_free_idx) {
1632                printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1633                        ndev->name,
1634                        dev->tx_done_idx, dev->tx_free_idx,
1635                        atomic_read(&dev->nr_tx_skbs));
1636                ns83820_tx_timeout(ndev);
1637        }
1638
1639        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1640}
1641
1642static int ns83820_open(struct net_device *ndev)
1643{
1644        struct ns83820 *dev = PRIV(ndev);
1645        unsigned i;
1646        u32 desc;
1647        int ret;
1648
1649        dprintk("ns83820_open\n");
1650
1651        writel(0, dev->base + PQCR);
1652
1653        ret = ns83820_setup_rx(ndev);
1654        if (ret)
1655                goto failed;
1656
1657        memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1658        for (i=0; i<NR_TX_DESC; i++) {
1659                dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1660                                = cpu_to_le32(
1661                                  dev->tx_phy_descs
1662                                  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1663        }
1664
1665        dev->tx_idx = 0;
1666        dev->tx_done_idx = 0;
1667        desc = dev->tx_phy_descs;
1668        writel(0, dev->base + TXDP_HI);
1669        writel(desc, dev->base + TXDP);
1670
1671        init_timer(&dev->tx_watchdog);
1672        dev->tx_watchdog.data = (unsigned long)ndev;
1673        dev->tx_watchdog.function = ns83820_tx_watch;
1674        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1675
1676        netif_start_queue(ndev);        /* FIXME: wait for phy to come up */
1677
1678        return 0;
1679
1680failed:
1681        ns83820_stop(ndev);
1682        return ret;
1683}
1684
1685static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1686{
1687        unsigned i;
1688        for (i=0; i<3; i++) {
1689                u32 data;
1690
1691                /* Read from the perfect match memory: this is loaded by
1692                 * the chip from the EEPROM via the EELOAD self test.
1693                 */
1694                writel(i*2, dev->base + RFCR);
1695                data = readl(dev->base + RFDR);
1696
1697                *mac++ = data;
1698                *mac++ = data >> 8;
1699        }
1700}
1701
1702static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1703{
1704        if (new_mtu > RX_BUF_SIZE)
1705                return -EINVAL;
1706        ndev->mtu = new_mtu;
1707        return 0;
1708}
1709
1710static void ns83820_set_multicast(struct net_device *ndev)
1711{
1712        struct ns83820 *dev = PRIV(ndev);
1713        u8 __iomem *rfcr = dev->base + RFCR;
1714        u32 and_mask = 0xffffffff;
1715        u32 or_mask = 0;
1716        u32 val;
1717
1718        if (ndev->flags & IFF_PROMISC)
1719                or_mask |= RFCR_AAU | RFCR_AAM;
1720        else
1721                and_mask &= ~(RFCR_AAU | RFCR_AAM);
1722
1723        if (ndev->flags & IFF_ALLMULTI || ndev->mc_count)
1724                or_mask |= RFCR_AAM;
1725        else
1726                and_mask &= ~RFCR_AAM;
1727
1728        spin_lock_irq(&dev->misc_lock);
1729        val = (readl(rfcr) & and_mask) | or_mask;
1730        /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1731        writel(val & ~RFCR_RFEN, rfcr);
1732        writel(val, rfcr);
1733        spin_unlock_irq(&dev->misc_lock);
1734}
1735
1736static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1737{
1738        struct ns83820 *dev = PRIV(ndev);
1739        int timed_out = 0;
1740        unsigned long start;
1741        u32 status;
1742        int loops = 0;
1743
1744        dprintk("%s: start %s\n", ndev->name, name);
1745
1746        start = jiffies;
1747
1748        writel(enable, dev->base + PTSCR);
1749        for (;;) {
1750                loops++;
1751                status = readl(dev->base + PTSCR);
1752                if (!(status & enable))
1753                        break;
1754                if (status & done)
1755                        break;
1756                if (status & fail)
1757                        break;
1758                if (time_after_eq(jiffies, start + HZ)) {
1759                        timed_out = 1;
1760                        break;
1761                }
1762                schedule_timeout_uninterruptible(1);
1763        }
1764
1765        if (status & fail)
1766                printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1767                        ndev->name, name, status, fail);
1768        else if (timed_out)
1769                printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1770                        ndev->name, name, status);
1771
1772        dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1773}
1774
1775#ifdef PHY_CODE_IS_FINISHED
1776static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1777{
1778        /* drive MDC low */
1779        dev->MEAR_cache &= ~MEAR_MDC;
1780        writel(dev->MEAR_cache, dev->base + MEAR);
1781        readl(dev->base + MEAR);
1782
1783        /* enable output, set bit */
1784        dev->MEAR_cache |= MEAR_MDDIR;
1785        if (bit)
1786                dev->MEAR_cache |= MEAR_MDIO;
1787        else
1788                dev->MEAR_cache &= ~MEAR_MDIO;
1789
1790        /* set the output bit */
1791        writel(dev->MEAR_cache, dev->base + MEAR);
1792        readl(dev->base + MEAR);
1793
1794        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1795        udelay(1);
1796
1797        /* drive MDC high causing the data bit to be latched */
1798        dev->MEAR_cache |= MEAR_MDC;
1799        writel(dev->MEAR_cache, dev->base + MEAR);
1800        readl(dev->base + MEAR);
1801
1802        /* Wait again... */
1803        udelay(1);
1804}
1805
1806static int ns83820_mii_read_bit(struct ns83820 *dev)
1807{
1808        int bit;
1809
1810        /* drive MDC low, disable output */
1811        dev->MEAR_cache &= ~MEAR_MDC;
1812        dev->MEAR_cache &= ~MEAR_MDDIR;
1813        writel(dev->MEAR_cache, dev->base + MEAR);
1814        readl(dev->base + MEAR);
1815
1816        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1817        udelay(1);
1818
1819        /* drive MDC high causing the data bit to be latched */
1820        bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1821        dev->MEAR_cache |= MEAR_MDC;
1822        writel(dev->MEAR_cache, dev->base + MEAR);
1823
1824        /* Wait again... */
1825        udelay(1);
1826
1827        return bit;
1828}
1829
1830static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1831{
1832        unsigned data = 0;
1833        int i;
1834
1835        /* read some garbage so that we eventually sync up */
1836        for (i=0; i<64; i++)
1837                ns83820_mii_read_bit(dev);
1838
1839        ns83820_mii_write_bit(dev, 0);        /* start */
1840        ns83820_mii_write_bit(dev, 1);
1841        ns83820_mii_write_bit(dev, 1);        /* opcode read */
1842        ns83820_mii_write_bit(dev, 0);
1843
1844        /* write out the phy address: 5 bits, msb first */
1845        for (i=0; i<5; i++)
1846                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1847
1848        /* write out the register address, 5 bits, msb first */
1849        for (i=0; i<5; i++)
1850                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1851
1852        ns83820_mii_read_bit(dev);        /* turn around cycles */
1853        ns83820_mii_read_bit(dev);
1854
1855        /* read in the register data, 16 bits msb first */
1856        for (i=0; i<16; i++) {
1857                data <<= 1;
1858                data |= ns83820_mii_read_bit(dev);
1859        }
1860
1861        return data;
1862}
1863
1864static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1865{
1866        int i;
1867
1868        /* read some garbage so that we eventually sync up */
1869        for (i=0; i<64; i++)
1870                ns83820_mii_read_bit(dev);
1871
1872        ns83820_mii_write_bit(dev, 0);        /* start */
1873        ns83820_mii_write_bit(dev, 1);
1874        ns83820_mii_write_bit(dev, 0);        /* opcode read */
1875        ns83820_mii_write_bit(dev, 1);
1876
1877        /* write out the phy address: 5 bits, msb first */
1878        for (i=0; i<5; i++)
1879                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1880
1881        /* write out the register address, 5 bits, msb first */
1882        for (i=0; i<5; i++)
1883                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1884
1885        ns83820_mii_read_bit(dev);        /* turn around cycles */
1886        ns83820_mii_read_bit(dev);
1887
1888        /* read in the register data, 16 bits msb first */
1889        for (i=0; i<16; i++)
1890                ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1891
1892        return data;
1893}
1894
1895static void ns83820_probe_phy(struct net_device *ndev)
1896{
1897        struct ns83820 *dev = PRIV(ndev);
1898        static int first;
1899        int i;
1900#define MII_PHYIDR1        0x02
1901#define MII_PHYIDR2        0x03
1902
1903#if 0
1904        if (!first) {
1905                unsigned tmp;
1906                ns83820_mii_read_reg(dev, 1, 0x09);
1907                ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1908
1909                tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1910                ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1911                udelay(1300);
1912                ns83820_mii_read_reg(dev, 1, 0x09);
1913        }
1914#endif
1915        first = 1;
1916
1917        for (i=1; i<2; i++) {
1918                int j;
1919                unsigned a, b;
1920                a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1921                b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1922
1923                //printk("%s: phy %d: 0x%04x 0x%04x\n",
1924                //        ndev->name, i, a, b);
1925
1926                for (j=0; j<0x16; j+=4) {
1927                        dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1928                                ndev->name, j,
1929                                ns83820_mii_read_reg(dev, i, 0 + j),
1930                                ns83820_mii_read_reg(dev, i, 1 + j),
1931                                ns83820_mii_read_reg(dev, i, 2 + j),
1932                                ns83820_mii_read_reg(dev, i, 3 + j)
1933                                );
1934                }
1935        }
1936        {
1937                unsigned a, b;
1938                /* read firmware version: memory addr is 0x8402 and 0x8403 */
1939                ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1940                ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1941                a = ns83820_mii_read_reg(dev, 1, 0x1d);
1942
1943                ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1944                ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1945                b = ns83820_mii_read_reg(dev, 1, 0x1d);
1946                dprintk("version: 0x%04x 0x%04x\n", a, b);
1947        }
1948}
1949#endif
1950
1951static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
1952{
1953        struct net_device *ndev;
1954        struct ns83820 *dev;
1955        long addr;
1956        int err;
1957        int using_dac = 0;
1958        DECLARE_MAC_BUF(mac);
1959
1960        /* See if we can set the dma mask early on; failure is fatal. */
1961        if (sizeof(dma_addr_t) == 8 &&
1962                 !pci_set_dma_mask(pci_dev, DMA_64BIT_MASK)) {
1963                using_dac = 1;
1964        } else if (!pci_set_dma_mask(pci_dev, DMA_32BIT_MASK)) {
1965                using_dac = 0;
1966        } else {
1967                dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1968                return -ENODEV;
1969        }
1970
1971        ndev = alloc_etherdev(sizeof(struct ns83820));
1972        dev = PRIV(ndev);
1973
1974        err = -ENOMEM;
1975        if (!dev)
1976                goto out;
1977
1978        dev->ndev = ndev;
1979
1980        spin_lock_init(&dev->rx_info.lock);
1981        spin_lock_init(&dev->tx_lock);
1982        spin_lock_init(&dev->misc_lock);
1983        dev->pci_dev = pci_dev;
1984
1985        SET_NETDEV_DEV(ndev, &pci_dev->dev);
1986
1987        INIT_WORK(&dev->tq_refill, queue_refill);
1988        tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1989
1990        err = pci_enable_device(pci_dev);
1991        if (err) {
1992                dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1993                goto out_free;
1994        }
1995
1996        pci_set_master(pci_dev);
1997        addr = pci_resource_start(pci_dev, 1);
1998        dev->base = ioremap_nocache(addr, PAGE_SIZE);
1999        dev->tx_descs = pci_alloc_consistent(pci_dev,
2000                        4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
2001        dev->rx_info.descs = pci_alloc_consistent(pci_dev,
2002                        4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
2003        err = -ENOMEM;
2004        if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
2005                goto out_disable;
2006
2007        dprintk("%p: %08lx  %p: %08lx\n",
2008                dev->tx_descs, (long)dev->tx_phy_descs,
2009                dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2010
2011        /* disable interrupts */
2012        writel(0, dev->base + IMR);
2013        writel(0, dev->base + IER);
2014        readl(dev->base + IER);
2015
2016        dev->IMR_cache = 0;
2017
2018        err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2019                          DRV_NAME, ndev);
2020        if (err) {
2021                dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2022                        pci_dev->irq, err);
2023                goto out_disable;
2024        }
2025
2026        /*
2027         * FIXME: we are holding rtnl_lock() over obscenely long area only
2028         * because some of the setup code uses dev->name.  It's Wrong(tm) -
2029         * we should be using driver-specific names for all that stuff.
2030         * For now that will do, but we really need to come back and kill
2031         * most of the dev_alloc_name() users later.
2032         */
2033        rtnl_lock();
2034        err = dev_alloc_name(ndev, ndev->name);
2035        if (err < 0) {
2036                dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2037                goto out_free_irq;
2038        }
2039
2040        printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2041                ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2042                pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2043
2044        ndev->open = ns83820_open;
2045        ndev->stop = ns83820_stop;
2046        ndev->hard_start_xmit = ns83820_hard_start_xmit;
2047        ndev->get_stats = ns83820_get_stats;
2048        ndev->change_mtu = ns83820_change_mtu;
2049        ndev->set_multicast_list = ns83820_set_multicast;
2050        SET_ETHTOOL_OPS(ndev, &ops);
2051        ndev->tx_timeout = ns83820_tx_timeout;
2052        ndev->watchdog_timeo = 5 * HZ;
2053        pci_set_drvdata(pci_dev, ndev);
2054
2055        ns83820_do_reset(dev, CR_RST);
2056
2057        /* Must reset the ram bist before running it */
2058        writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2059        ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2060                         PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2061        ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2062                         PTSCR_EEBIST_FAIL);
2063        ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2064
2065        /* I love config registers */
2066        dev->CFG_cache = readl(dev->base + CFG);
2067
2068        if ((dev->CFG_cache & CFG_PCI64_DET)) {
2069                printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2070                        ndev->name);
2071                /*dev->CFG_cache |= CFG_DATA64_EN;*/
2072                if (!(dev->CFG_cache & CFG_DATA64_EN))
2073                        printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2074                                ndev->name);
2075        } else
2076                dev->CFG_cache &= ~(CFG_DATA64_EN);
2077
2078        dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2079                           CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2080                           CFG_M64ADDR);
2081        dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2082                          CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2083        dev->CFG_cache |= CFG_REQALG;
2084        dev->CFG_cache |= CFG_POW;
2085        dev->CFG_cache |= CFG_TMRTEST;
2086
2087        /* When compiled with 64 bit addressing, we must always enable
2088         * the 64 bit descriptor format.
2089         */
2090        if (sizeof(dma_addr_t) == 8)
2091                dev->CFG_cache |= CFG_M64ADDR;
2092        if (using_dac)
2093                dev->CFG_cache |= CFG_T64ADDR;
2094
2095        /* Big endian mode does not seem to do what the docs suggest */
2096        dev->CFG_cache &= ~CFG_BEM;
2097
2098        /* setup optical transceiver if we have one */
2099        if (dev->CFG_cache & CFG_TBI_EN) {
2100                printk(KERN_INFO "%s: enabling optical transceiver\n",
2101                        ndev->name);
2102                writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2103
2104                /* setup auto negotiation feature advertisement */
2105                writel(readl(dev->base + TANAR)
2106                       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2107                       dev->base + TANAR);
2108
2109                /* start auto negotiation */
2110                writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2111                       dev->base + TBICR);
2112                writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2113                dev->linkstate = LINK_AUTONEGOTIATE;
2114
2115                dev->CFG_cache |= CFG_MODE_1000;
2116        }
2117
2118        writel(dev->CFG_cache, dev->base + CFG);
2119        dprintk("CFG: %08x\n", dev->CFG_cache);
2120
2121        if (reset_phy) {
2122                printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2123                writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2124                msleep(10);
2125                writel(dev->CFG_cache, dev->base + CFG);
2126        }
2127
2128#if 0        /* Huh?  This sets the PCI latency register.  Should be done via
2129         * the PCI layer.  FIXME.
2130         */
2131        if (readl(dev->base + SRR))
2132                writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2133#endif
2134
2135        /* Note!  The DMA burst size interacts with packet
2136         * transmission, such that the largest packet that
2137         * can be transmitted is 8192 - FLTH - burst size.
2138         * If only the transmit fifo was larger...
2139         */
2140        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2141         * some DELL and COMPAQ SMP systems */
2142        writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2143                | ((1600 / 32) * 0x100),
2144                dev->base + TXCFG);
2145
2146        /* Flush the interrupt holdoff timer */
2147        writel(0x000, dev->base + IHR);
2148        writel(0x100, dev->base + IHR);
2149        writel(0x000, dev->base + IHR);
2150
2151        /* Set Rx to full duplex, don't accept runt, errored, long or length
2152         * range errored packets.  Use 512 byte DMA.
2153         */
2154        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2155         * some DELL and COMPAQ SMP systems
2156         * Turn on ALP, only we are accpeting Jumbo Packets */
2157        writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2158                | RXCFG_STRIPCRC
2159                //| RXCFG_ALP
2160                | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2161
2162        /* Disable priority queueing */
2163        writel(0, dev->base + PQCR);
2164
2165        /* Enable IP checksum validation and detetion of VLAN headers.
2166         * Note: do not set the reject options as at least the 0x102
2167         * revision of the chip does not properly accept IP fragments
2168         * at least for UDP.
2169         */
2170        /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2171         * the MAC it calculates the packetsize AFTER stripping the VLAN
2172         * header, and if a VLAN Tagged packet of 64 bytes is received (like
2173         * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2174         * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2175         * it discrards it!.  These guys......
2176         * also turn on tag stripping if hardware acceleration is enabled
2177         */
2178#ifdef NS83820_VLAN_ACCEL_SUPPORT
2179#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2180#else
2181#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2182#endif
2183        writel(VRCR_INIT_VALUE, dev->base + VRCR);
2184
2185        /* Enable per-packet TCP/UDP/IP checksumming
2186         * and per packet vlan tag insertion if
2187         * vlan hardware acceleration is enabled
2188         */
2189#ifdef NS83820_VLAN_ACCEL_SUPPORT
2190#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2191#else
2192#define VTCR_INIT_VALUE VTCR_PPCHK
2193#endif
2194        writel(VTCR_INIT_VALUE, dev->base + VTCR);
2195
2196        /* Ramit : Enable async and sync pause frames */
2197        /* writel(0, dev->base + PCR); */
2198        writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2199                PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2200                dev->base + PCR);
2201
2202        /* Disable Wake On Lan */
2203        writel(0, dev->base + WCSR);
2204
2205        ns83820_getmac(dev, ndev->dev_addr);
2206
2207        /* Yes, we support dumb IP checksum on transmit */
2208        ndev->features |= NETIF_F_SG;
2209        ndev->features |= NETIF_F_IP_CSUM;
2210
2211#ifdef NS83820_VLAN_ACCEL_SUPPORT
2212        /* We also support hardware vlan acceleration */
2213        ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2214        ndev->vlan_rx_register = ns83820_vlan_rx_register;
2215#endif
2216
2217        if (using_dac) {
2218                printk(KERN_INFO "%s: using 64 bit addressing.\n",
2219                        ndev->name);
2220                ndev->features |= NETIF_F_HIGHDMA;
2221        }
2222
2223        printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %s io=0x%08lx irq=%d f=%s\n",
2224                ndev->name,
2225                (unsigned)readl(dev->base + SRR) >> 8,
2226                (unsigned)readl(dev->base + SRR) & 0xff,
2227                print_mac(mac, ndev->dev_addr),
2228                addr, pci_dev->irq,
2229                (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2230                );
2231
2232#ifdef PHY_CODE_IS_FINISHED
2233        ns83820_probe_phy(ndev);
2234#endif
2235
2236        err = register_netdevice(ndev);
2237        if (err) {
2238                printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2239                goto out_cleanup;
2240        }
2241        rtnl_unlock();
2242
2243        return 0;
2244
2245out_cleanup:
2246        writel(0, dev->base + IMR);        /* paranoia */
2247        writel(0, dev->base + IER);
2248        readl(dev->base + IER);
2249out_free_irq:
2250        rtnl_unlock();
2251        free_irq(pci_dev->irq, ndev);
2252out_disable:
2253        if (dev->base)
2254                iounmap(dev->base);
2255        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2256        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2257        pci_disable_device(pci_dev);
2258out_free:
2259        free_netdev(ndev);
2260        pci_set_drvdata(pci_dev, NULL);
2261out:
2262        return err;
2263}
2264
2265static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2266{
2267        struct net_device *ndev = pci_get_drvdata(pci_dev);
2268        struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2269
2270        if (!ndev)                        /* paranoia */
2271                return;
2272
2273        writel(0, dev->base + IMR);        /* paranoia */
2274        writel(0, dev->base + IER);
2275        readl(dev->base + IER);
2276
2277        unregister_netdev(ndev);
2278        free_irq(dev->pci_dev->irq, ndev);
2279        iounmap(dev->base);
2280        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2281                        dev->tx_descs, dev->tx_phy_descs);
2282        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2283                        dev->rx_info.descs, dev->rx_info.phy_descs);
2284        pci_disable_device(dev->pci_dev);
2285        free_netdev(ndev);
2286        pci_set_drvdata(pci_dev, NULL);
2287}
2288
2289static struct pci_device_id ns83820_pci_tbl[] = {
2290        { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2291        { 0, },
2292};
2293
2294static struct pci_driver driver = {
2295        .name                = "ns83820",
2296        .id_table        = ns83820_pci_tbl,
2297        .probe                = ns83820_init_one,
2298        .remove                = __devexit_p(ns83820_remove_one),
2299#if 0        /* FIXME: implement */
2300        .suspend        = ,
2301        .resume                = ,
2302#endif
2303};
2304
2305
2306static int __init ns83820_init(void)
2307{
2308        printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2309        return pci_register_driver(&driver);
2310}
2311
2312static void __exit ns83820_exit(void)
2313{
2314        pci_unregister_driver(&driver);
2315}
2316
2317MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2318MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2319MODULE_LICENSE("GPL");
2320
2321MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2322
2323module_param(lnksts, int, 0);
2324MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2325
2326module_param(ihr, int, 0);
2327MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2328
2329module_param(reset_phy, int, 0);
2330MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2331
2332module_init(ns83820_init);
2333module_exit(ns83820_exit);