Showing error 554

User: Jiri Slaby
Error type: Calling function from invalid context
Error type description: Some function is called at inappropriate place like sleep inside critical sections or interrupt handlers
File location: mm/hugetlb.c
Line in file: 122
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2011-11-07 22:19:02 UTC


Source:

   1/*
   2 * Generic hugetlb support.
   3 * (C) William Irwin, April 2004
   4 */
   5#include <linux/gfp.h>
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/module.h>
   9#include <linux/mm.h>
  10#include <linux/seq_file.h>
  11#include <linux/sysctl.h>
  12#include <linux/highmem.h>
  13#include <linux/mmu_notifier.h>
  14#include <linux/nodemask.h>
  15#include <linux/pagemap.h>
  16#include <linux/mempolicy.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/bootmem.h>
  20#include <linux/sysfs.h>
  21
  22#include <asm/page.h>
  23#include <asm/pgtable.h>
  24#include <asm/io.h>
  25
  26#include <linux/hugetlb.h>
  27#include "internal.h"
  28
  29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  31unsigned long hugepages_treat_as_movable;
  32
  33static int max_hstate;
  34unsigned int default_hstate_idx;
  35struct hstate hstates[HUGE_MAX_HSTATE];
  36
  37__initdata LIST_HEAD(huge_boot_pages);
  38
  39/* for command line parsing */
  40static struct hstate * __initdata parsed_hstate;
  41static unsigned long __initdata default_hstate_max_huge_pages;
  42static unsigned long __initdata default_hstate_size;
  43
  44#define for_each_hstate(h) \
  45        for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
  46
  47/*
  48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  49 */
  50static DEFINE_SPINLOCK(hugetlb_lock);
  51
  52/*
  53 * Region tracking -- allows tracking of reservations and instantiated pages
  54 *                    across the pages in a mapping.
  55 *
  56 * The region data structures are protected by a combination of the mmap_sem
  57 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
  58 * must either hold the mmap_sem for write, or the mmap_sem for read and
  59 * the hugetlb_instantiation mutex:
  60 *
  61 *         down_write(&mm->mmap_sem);
  62 * or
  63 *         down_read(&mm->mmap_sem);
  64 *         mutex_lock(&hugetlb_instantiation_mutex);
  65 */
  66struct file_region {
  67        struct list_head link;
  68        long from;
  69        long to;
  70};
  71
  72static long region_add(struct list_head *head, long f, long t)
  73{
  74        struct file_region *rg, *nrg, *trg;
  75
  76        /* Locate the region we are either in or before. */
  77        list_for_each_entry(rg, head, link)
  78                if (f <= rg->to)
  79                        break;
  80
  81        /* Round our left edge to the current segment if it encloses us. */
  82        if (f > rg->from)
  83                f = rg->from;
  84
  85        /* Check for and consume any regions we now overlap with. */
  86        nrg = rg;
  87        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  88                if (&rg->link == head)
  89                        break;
  90                if (rg->from > t)
  91                        break;
  92
  93                /* If this area reaches higher then extend our area to
  94                 * include it completely.  If this is not the first area
  95                 * which we intend to reuse, free it. */
  96                if (rg->to > t)
  97                        t = rg->to;
  98                if (rg != nrg) {
  99                        list_del(&rg->link);
 100                        kfree(rg);
 101                }
 102        }
 103        nrg->from = f;
 104        nrg->to = t;
 105        return 0;
 106}
 107
 108static long region_chg(struct list_head *head, long f, long t)
 109{
 110        struct file_region *rg, *nrg;
 111        long chg = 0;
 112
 113        /* Locate the region we are before or in. */
 114        list_for_each_entry(rg, head, link)
 115                if (f <= rg->to)
 116                        break;
 117
 118        /* If we are below the current region then a new region is required.
 119         * Subtle, allocate a new region at the position but make it zero
 120         * size such that we can guarantee to record the reservation. */
 121        if (&rg->link == head || t < rg->from) {
 122                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 123                if (!nrg)
 124                        return -ENOMEM;
 125                nrg->from = f;
 126                nrg->to   = f;
 127                INIT_LIST_HEAD(&nrg->link);
 128                list_add(&nrg->link, rg->link.prev);
 129
 130                return t - f;
 131        }
 132
 133        /* Round our left edge to the current segment if it encloses us. */
 134        if (f > rg->from)
 135                f = rg->from;
 136        chg = t - f;
 137
 138        /* Check for and consume any regions we now overlap with. */
 139        list_for_each_entry(rg, rg->link.prev, link) {
 140                if (&rg->link == head)
 141                        break;
 142                if (rg->from > t)
 143                        return chg;
 144
 145                /* We overlap with this area, if it extends futher than
 146                 * us then we must extend ourselves.  Account for its
 147                 * existing reservation. */
 148                if (rg->to > t) {
 149                        chg += rg->to - t;
 150                        t = rg->to;
 151                }
 152                chg -= rg->to - rg->from;
 153        }
 154        return chg;
 155}
 156
 157static long region_truncate(struct list_head *head, long end)
 158{
 159        struct file_region *rg, *trg;
 160        long chg = 0;
 161
 162        /* Locate the region we are either in or before. */
 163        list_for_each_entry(rg, head, link)
 164                if (end <= rg->to)
 165                        break;
 166        if (&rg->link == head)
 167                return 0;
 168
 169        /* If we are in the middle of a region then adjust it. */
 170        if (end > rg->from) {
 171                chg = rg->to - end;
 172                rg->to = end;
 173                rg = list_entry(rg->link.next, typeof(*rg), link);
 174        }
 175
 176        /* Drop any remaining regions. */
 177        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 178                if (&rg->link == head)
 179                        break;
 180                chg += rg->to - rg->from;
 181                list_del(&rg->link);
 182                kfree(rg);
 183        }
 184        return chg;
 185}
 186
 187static long region_count(struct list_head *head, long f, long t)
 188{
 189        struct file_region *rg;
 190        long chg = 0;
 191
 192        /* Locate each segment we overlap with, and count that overlap. */
 193        list_for_each_entry(rg, head, link) {
 194                int seg_from;
 195                int seg_to;
 196
 197                if (rg->to <= f)
 198                        continue;
 199                if (rg->from >= t)
 200                        break;
 201
 202                seg_from = max(rg->from, f);
 203                seg_to = min(rg->to, t);
 204
 205                chg += seg_to - seg_from;
 206        }
 207
 208        return chg;
 209}
 210
 211/*
 212 * Convert the address within this vma to the page offset within
 213 * the mapping, in pagecache page units; huge pages here.
 214 */
 215static pgoff_t vma_hugecache_offset(struct hstate *h,
 216                        struct vm_area_struct *vma, unsigned long address)
 217{
 218        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 219                        (vma->vm_pgoff >> huge_page_order(h));
 220}
 221
 222/*
 223 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 224 * bits of the reservation map pointer, which are always clear due to
 225 * alignment.
 226 */
 227#define HPAGE_RESV_OWNER    (1UL << 0)
 228#define HPAGE_RESV_UNMAPPED (1UL << 1)
 229#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 230
 231/*
 232 * These helpers are used to track how many pages are reserved for
 233 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 234 * is guaranteed to have their future faults succeed.
 235 *
 236 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 237 * the reserve counters are updated with the hugetlb_lock held. It is safe
 238 * to reset the VMA at fork() time as it is not in use yet and there is no
 239 * chance of the global counters getting corrupted as a result of the values.
 240 *
 241 * The private mapping reservation is represented in a subtly different
 242 * manner to a shared mapping.  A shared mapping has a region map associated
 243 * with the underlying file, this region map represents the backing file
 244 * pages which have ever had a reservation assigned which this persists even
 245 * after the page is instantiated.  A private mapping has a region map
 246 * associated with the original mmap which is attached to all VMAs which
 247 * reference it, this region map represents those offsets which have consumed
 248 * reservation ie. where pages have been instantiated.
 249 */
 250static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 251{
 252        return (unsigned long)vma->vm_private_data;
 253}
 254
 255static void set_vma_private_data(struct vm_area_struct *vma,
 256                                                        unsigned long value)
 257{
 258        vma->vm_private_data = (void *)value;
 259}
 260
 261struct resv_map {
 262        struct kref refs;
 263        struct list_head regions;
 264};
 265
 266static struct resv_map *resv_map_alloc(void)
 267{
 268        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 269        if (!resv_map)
 270                return NULL;
 271
 272        kref_init(&resv_map->refs);
 273        INIT_LIST_HEAD(&resv_map->regions);
 274
 275        return resv_map;
 276}
 277
 278static void resv_map_release(struct kref *ref)
 279{
 280        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 281
 282        /* Clear out any active regions before we release the map. */
 283        region_truncate(&resv_map->regions, 0);
 284        kfree(resv_map);
 285}
 286
 287static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 288{
 289        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 290        if (!(vma->vm_flags & VM_SHARED))
 291                return (struct resv_map *)(get_vma_private_data(vma) &
 292                                                        ~HPAGE_RESV_MASK);
 293        return NULL;
 294}
 295
 296static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 297{
 298        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 299        VM_BUG_ON(vma->vm_flags & VM_SHARED);
 300
 301        set_vma_private_data(vma, (get_vma_private_data(vma) &
 302                                HPAGE_RESV_MASK) | (unsigned long)map);
 303}
 304
 305static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 306{
 307        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 308        VM_BUG_ON(vma->vm_flags & VM_SHARED);
 309
 310        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 311}
 312
 313static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 314{
 315        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 316
 317        return (get_vma_private_data(vma) & flag) != 0;
 318}
 319
 320/* Decrement the reserved pages in the hugepage pool by one */
 321static void decrement_hugepage_resv_vma(struct hstate *h,
 322                        struct vm_area_struct *vma)
 323{
 324        if (vma->vm_flags & VM_NORESERVE)
 325                return;
 326
 327        if (vma->vm_flags & VM_SHARED) {
 328                /* Shared mappings always use reserves */
 329                h->resv_huge_pages--;
 330        } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 331                /*
 332                 * Only the process that called mmap() has reserves for
 333                 * private mappings.
 334                 */
 335                h->resv_huge_pages--;
 336        }
 337}
 338
 339/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 340void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 341{
 342        VM_BUG_ON(!is_vm_hugetlb_page(vma));
 343        if (!(vma->vm_flags & VM_SHARED))
 344                vma->vm_private_data = (void *)0;
 345}
 346
 347/* Returns true if the VMA has associated reserve pages */
 348static int vma_has_reserves(struct vm_area_struct *vma)
 349{
 350        if (vma->vm_flags & VM_SHARED)
 351                return 1;
 352        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 353                return 1;
 354        return 0;
 355}
 356
 357static void clear_gigantic_page(struct page *page,
 358                        unsigned long addr, unsigned long sz)
 359{
 360        int i;
 361        struct page *p = page;
 362
 363        might_sleep();
 364        for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
 365                cond_resched();
 366                clear_user_highpage(p, addr + i * PAGE_SIZE);
 367        }
 368}
 369static void clear_huge_page(struct page *page,
 370                        unsigned long addr, unsigned long sz)
 371{
 372        int i;
 373
 374        if (unlikely(sz > MAX_ORDER_NR_PAGES))
 375                return clear_gigantic_page(page, addr, sz);
 376
 377        might_sleep();
 378        for (i = 0; i < sz/PAGE_SIZE; i++) {
 379                cond_resched();
 380                clear_user_highpage(page + i, addr + i * PAGE_SIZE);
 381        }
 382}
 383
 384static void copy_gigantic_page(struct page *dst, struct page *src,
 385                           unsigned long addr, struct vm_area_struct *vma)
 386{
 387        int i;
 388        struct hstate *h = hstate_vma(vma);
 389        struct page *dst_base = dst;
 390        struct page *src_base = src;
 391        might_sleep();
 392        for (i = 0; i < pages_per_huge_page(h); ) {
 393                cond_resched();
 394                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
 395
 396                i++;
 397                dst = mem_map_next(dst, dst_base, i);
 398                src = mem_map_next(src, src_base, i);
 399        }
 400}
 401static void copy_huge_page(struct page *dst, struct page *src,
 402                           unsigned long addr, struct vm_area_struct *vma)
 403{
 404        int i;
 405        struct hstate *h = hstate_vma(vma);
 406
 407        if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
 408                return copy_gigantic_page(dst, src, addr, vma);
 409
 410        might_sleep();
 411        for (i = 0; i < pages_per_huge_page(h); i++) {
 412                cond_resched();
 413                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
 414        }
 415}
 416
 417static void enqueue_huge_page(struct hstate *h, struct page *page)
 418{
 419        int nid = page_to_nid(page);
 420        list_add(&page->lru, &h->hugepage_freelists[nid]);
 421        h->free_huge_pages++;
 422        h->free_huge_pages_node[nid]++;
 423}
 424
 425static struct page *dequeue_huge_page(struct hstate *h)
 426{
 427        int nid;
 428        struct page *page = NULL;
 429
 430        for (nid = 0; nid < MAX_NUMNODES; ++nid) {
 431                if (!list_empty(&h->hugepage_freelists[nid])) {
 432                        page = list_entry(h->hugepage_freelists[nid].next,
 433                                          struct page, lru);
 434                        list_del(&page->lru);
 435                        h->free_huge_pages--;
 436                        h->free_huge_pages_node[nid]--;
 437                        break;
 438                }
 439        }
 440        return page;
 441}
 442
 443static struct page *dequeue_huge_page_vma(struct hstate *h,
 444                                struct vm_area_struct *vma,
 445                                unsigned long address, int avoid_reserve)
 446{
 447        int nid;
 448        struct page *page = NULL;
 449        struct mempolicy *mpol;
 450        nodemask_t *nodemask;
 451        struct zonelist *zonelist = huge_zonelist(vma, address,
 452                                        htlb_alloc_mask, &mpol, &nodemask);
 453        struct zone *zone;
 454        struct zoneref *z;
 455
 456        /*
 457         * A child process with MAP_PRIVATE mappings created by their parent
 458         * have no page reserves. This check ensures that reservations are
 459         * not "stolen". The child may still get SIGKILLed
 460         */
 461        if (!vma_has_reserves(vma) &&
 462                        h->free_huge_pages - h->resv_huge_pages == 0)
 463                return NULL;
 464
 465        /* If reserves cannot be used, ensure enough pages are in the pool */
 466        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 467                return NULL;
 468
 469        for_each_zone_zonelist_nodemask(zone, z, zonelist,
 470                                                MAX_NR_ZONES - 1, nodemask) {
 471                nid = zone_to_nid(zone);
 472                if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
 473                    !list_empty(&h->hugepage_freelists[nid])) {
 474                        page = list_entry(h->hugepage_freelists[nid].next,
 475                                          struct page, lru);
 476                        list_del(&page->lru);
 477                        h->free_huge_pages--;
 478                        h->free_huge_pages_node[nid]--;
 479
 480                        if (!avoid_reserve)
 481                                decrement_hugepage_resv_vma(h, vma);
 482
 483                        break;
 484                }
 485        }
 486        mpol_cond_put(mpol);
 487        return page;
 488}
 489
 490static void update_and_free_page(struct hstate *h, struct page *page)
 491{
 492        int i;
 493
 494        VM_BUG_ON(h->order >= MAX_ORDER);
 495
 496        h->nr_huge_pages--;
 497        h->nr_huge_pages_node[page_to_nid(page)]--;
 498        for (i = 0; i < pages_per_huge_page(h); i++) {
 499                page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
 500                                1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
 501                                1 << PG_private | 1<< PG_writeback);
 502        }
 503        set_compound_page_dtor(page, NULL);
 504        set_page_refcounted(page);
 505        arch_release_hugepage(page);
 506        __free_pages(page, huge_page_order(h));
 507}
 508
 509struct hstate *size_to_hstate(unsigned long size)
 510{
 511        struct hstate *h;
 512
 513        for_each_hstate(h) {
 514                if (huge_page_size(h) == size)
 515                        return h;
 516        }
 517        return NULL;
 518}
 519
 520static void free_huge_page(struct page *page)
 521{
 522        /*
 523         * Can't pass hstate in here because it is called from the
 524         * compound page destructor.
 525         */
 526        struct hstate *h = page_hstate(page);
 527        int nid = page_to_nid(page);
 528        struct address_space *mapping;
 529
 530        mapping = (struct address_space *) page_private(page);
 531        set_page_private(page, 0);
 532        BUG_ON(page_count(page));
 533        INIT_LIST_HEAD(&page->lru);
 534
 535        spin_lock(&hugetlb_lock);
 536        if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
 537                update_and_free_page(h, page);
 538                h->surplus_huge_pages--;
 539                h->surplus_huge_pages_node[nid]--;
 540        } else {
 541                enqueue_huge_page(h, page);
 542        }
 543        spin_unlock(&hugetlb_lock);
 544        if (mapping)
 545                hugetlb_put_quota(mapping, 1);
 546}
 547
 548/*
 549 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 550 * balanced by operating on them in a round-robin fashion.
 551 * Returns 1 if an adjustment was made.
 552 */
 553static int adjust_pool_surplus(struct hstate *h, int delta)
 554{
 555        static int prev_nid;
 556        int nid = prev_nid;
 557        int ret = 0;
 558
 559        VM_BUG_ON(delta != -1 && delta != 1);
 560        do {
 561                nid = next_node(nid, node_online_map);
 562                if (nid == MAX_NUMNODES)
 563                        nid = first_node(node_online_map);
 564
 565                /* To shrink on this node, there must be a surplus page */
 566                if (delta < 0 && !h->surplus_huge_pages_node[nid])
 567                        continue;
 568                /* Surplus cannot exceed the total number of pages */
 569                if (delta > 0 && h->surplus_huge_pages_node[nid] >=
 570                                                h->nr_huge_pages_node[nid])
 571                        continue;
 572
 573                h->surplus_huge_pages += delta;
 574                h->surplus_huge_pages_node[nid] += delta;
 575                ret = 1;
 576                break;
 577        } while (nid != prev_nid);
 578
 579        prev_nid = nid;
 580        return ret;
 581}
 582
 583static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 584{
 585        set_compound_page_dtor(page, free_huge_page);
 586        spin_lock(&hugetlb_lock);
 587        h->nr_huge_pages++;
 588        h->nr_huge_pages_node[nid]++;
 589        spin_unlock(&hugetlb_lock);
 590        put_page(page); /* free it into the hugepage allocator */
 591}
 592
 593static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
 594{
 595        struct page *page;
 596
 597        if (h->order >= MAX_ORDER)
 598                return NULL;
 599
 600        page = alloc_pages_node(nid,
 601                htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
 602                                                __GFP_REPEAT|__GFP_NOWARN,
 603                huge_page_order(h));
 604        if (page) {
 605                if (arch_prepare_hugepage(page)) {
 606                        __free_pages(page, huge_page_order(h));
 607                        return NULL;
 608                }
 609                prep_new_huge_page(h, page, nid);
 610        }
 611
 612        return page;
 613}
 614
 615/*
 616 * Use a helper variable to find the next node and then
 617 * copy it back to hugetlb_next_nid afterwards:
 618 * otherwise there's a window in which a racer might
 619 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 620 * But we don't need to use a spin_lock here: it really
 621 * doesn't matter if occasionally a racer chooses the
 622 * same nid as we do.  Move nid forward in the mask even
 623 * if we just successfully allocated a hugepage so that
 624 * the next caller gets hugepages on the next node.
 625 */
 626static int hstate_next_node(struct hstate *h)
 627{
 628        int next_nid;
 629        next_nid = next_node(h->hugetlb_next_nid, node_online_map);
 630        if (next_nid == MAX_NUMNODES)
 631                next_nid = first_node(node_online_map);
 632        h->hugetlb_next_nid = next_nid;
 633        return next_nid;
 634}
 635
 636static int alloc_fresh_huge_page(struct hstate *h)
 637{
 638        struct page *page;
 639        int start_nid;
 640        int next_nid;
 641        int ret = 0;
 642
 643        start_nid = h->hugetlb_next_nid;
 644
 645        do {
 646                page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
 647                if (page)
 648                        ret = 1;
 649                next_nid = hstate_next_node(h);
 650        } while (!page && h->hugetlb_next_nid != start_nid);
 651
 652        if (ret)
 653                count_vm_event(HTLB_BUDDY_PGALLOC);
 654        else
 655                count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 656
 657        return ret;
 658}
 659
 660static struct page *alloc_buddy_huge_page(struct hstate *h,
 661                        struct vm_area_struct *vma, unsigned long address)
 662{
 663        struct page *page;
 664        unsigned int nid;
 665
 666        if (h->order >= MAX_ORDER)
 667                return NULL;
 668
 669        /*
 670         * Assume we will successfully allocate the surplus page to
 671         * prevent racing processes from causing the surplus to exceed
 672         * overcommit
 673         *
 674         * This however introduces a different race, where a process B
 675         * tries to grow the static hugepage pool while alloc_pages() is
 676         * called by process A. B will only examine the per-node
 677         * counters in determining if surplus huge pages can be
 678         * converted to normal huge pages in adjust_pool_surplus(). A
 679         * won't be able to increment the per-node counter, until the
 680         * lock is dropped by B, but B doesn't drop hugetlb_lock until
 681         * no more huge pages can be converted from surplus to normal
 682         * state (and doesn't try to convert again). Thus, we have a
 683         * case where a surplus huge page exists, the pool is grown, and
 684         * the surplus huge page still exists after, even though it
 685         * should just have been converted to a normal huge page. This
 686         * does not leak memory, though, as the hugepage will be freed
 687         * once it is out of use. It also does not allow the counters to
 688         * go out of whack in adjust_pool_surplus() as we don't modify
 689         * the node values until we've gotten the hugepage and only the
 690         * per-node value is checked there.
 691         */
 692        spin_lock(&hugetlb_lock);
 693        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
 694                spin_unlock(&hugetlb_lock);
 695                return NULL;
 696        } else {
 697                h->nr_huge_pages++;
 698                h->surplus_huge_pages++;
 699        }
 700        spin_unlock(&hugetlb_lock);
 701
 702        page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
 703                                        __GFP_REPEAT|__GFP_NOWARN,
 704                                        huge_page_order(h));
 705
 706        if (page && arch_prepare_hugepage(page)) {
 707                __free_pages(page, huge_page_order(h));
 708                return NULL;
 709        }
 710
 711        spin_lock(&hugetlb_lock);
 712        if (page) {
 713                /*
 714                 * This page is now managed by the hugetlb allocator and has
 715                 * no users -- drop the buddy allocator's reference.
 716                 */
 717                put_page_testzero(page);
 718                VM_BUG_ON(page_count(page));
 719                nid = page_to_nid(page);
 720                set_compound_page_dtor(page, free_huge_page);
 721                /*
 722                 * We incremented the global counters already
 723                 */
 724                h->nr_huge_pages_node[nid]++;
 725                h->surplus_huge_pages_node[nid]++;
 726                __count_vm_event(HTLB_BUDDY_PGALLOC);
 727        } else {
 728                h->nr_huge_pages--;
 729                h->surplus_huge_pages--;
 730                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 731        }
 732        spin_unlock(&hugetlb_lock);
 733
 734        return page;
 735}
 736
 737/*
 738 * Increase the hugetlb pool such that it can accomodate a reservation
 739 * of size 'delta'.
 740 */
 741static int gather_surplus_pages(struct hstate *h, int delta)
 742{
 743        struct list_head surplus_list;
 744        struct page *page, *tmp;
 745        int ret, i;
 746        int needed, allocated;
 747
 748        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
 749        if (needed <= 0) {
 750                h->resv_huge_pages += delta;
 751                return 0;
 752        }
 753
 754        allocated = 0;
 755        INIT_LIST_HEAD(&surplus_list);
 756
 757        ret = -ENOMEM;
 758retry:
 759        spin_unlock(&hugetlb_lock);
 760        for (i = 0; i < needed; i++) {
 761                page = alloc_buddy_huge_page(h, NULL, 0);
 762                if (!page) {
 763                        /*
 764                         * We were not able to allocate enough pages to
 765                         * satisfy the entire reservation so we free what
 766                         * we've allocated so far.
 767                         */
 768                        spin_lock(&hugetlb_lock);
 769                        needed = 0;
 770                        goto free;
 771                }
 772
 773                list_add(&page->lru, &surplus_list);
 774        }
 775        allocated += needed;
 776
 777        /*
 778         * After retaking hugetlb_lock, we need to recalculate 'needed'
 779         * because either resv_huge_pages or free_huge_pages may have changed.
 780         */
 781        spin_lock(&hugetlb_lock);
 782        needed = (h->resv_huge_pages + delta) -
 783                        (h->free_huge_pages + allocated);
 784        if (needed > 0)
 785                goto retry;
 786
 787        /*
 788         * The surplus_list now contains _at_least_ the number of extra pages
 789         * needed to accomodate the reservation.  Add the appropriate number
 790         * of pages to the hugetlb pool and free the extras back to the buddy
 791         * allocator.  Commit the entire reservation here to prevent another
 792         * process from stealing the pages as they are added to the pool but
 793         * before they are reserved.
 794         */
 795        needed += allocated;
 796        h->resv_huge_pages += delta;
 797        ret = 0;
 798free:
 799        /* Free the needed pages to the hugetlb pool */
 800        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 801                if ((--needed) < 0)
 802                        break;
 803                list_del(&page->lru);
 804                enqueue_huge_page(h, page);
 805        }
 806
 807        /* Free unnecessary surplus pages to the buddy allocator */
 808        if (!list_empty(&surplus_list)) {
 809                spin_unlock(&hugetlb_lock);
 810                list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 811                        list_del(&page->lru);
 812                        /*
 813                         * The page has a reference count of zero already, so
 814                         * call free_huge_page directly instead of using
 815                         * put_page.  This must be done with hugetlb_lock
 816                         * unlocked which is safe because free_huge_page takes
 817                         * hugetlb_lock before deciding how to free the page.
 818                         */
 819                        free_huge_page(page);
 820                }
 821                spin_lock(&hugetlb_lock);
 822        }
 823
 824        return ret;
 825}
 826
 827/*
 828 * When releasing a hugetlb pool reservation, any surplus pages that were
 829 * allocated to satisfy the reservation must be explicitly freed if they were
 830 * never used.
 831 */
 832static void return_unused_surplus_pages(struct hstate *h,
 833                                        unsigned long unused_resv_pages)
 834{
 835        static int nid = -1;
 836        struct page *page;
 837        unsigned long nr_pages;
 838
 839        /*
 840         * We want to release as many surplus pages as possible, spread
 841         * evenly across all nodes. Iterate across all nodes until we
 842         * can no longer free unreserved surplus pages. This occurs when
 843         * the nodes with surplus pages have no free pages.
 844         */
 845        unsigned long remaining_iterations = num_online_nodes();
 846
 847        /* Uncommit the reservation */
 848        h->resv_huge_pages -= unused_resv_pages;
 849
 850        /* Cannot return gigantic pages currently */
 851        if (h->order >= MAX_ORDER)
 852                return;
 853
 854        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
 855
 856        while (remaining_iterations-- && nr_pages) {
 857                nid = next_node(nid, node_online_map);
 858                if (nid == MAX_NUMNODES)
 859                        nid = first_node(node_online_map);
 860
 861                if (!h->surplus_huge_pages_node[nid])
 862                        continue;
 863
 864                if (!list_empty(&h->hugepage_freelists[nid])) {
 865                        page = list_entry(h->hugepage_freelists[nid].next,
 866                                          struct page, lru);
 867                        list_del(&page->lru);
 868                        update_and_free_page(h, page);
 869                        h->free_huge_pages--;
 870                        h->free_huge_pages_node[nid]--;
 871                        h->surplus_huge_pages--;
 872                        h->surplus_huge_pages_node[nid]--;
 873                        nr_pages--;
 874                        remaining_iterations = num_online_nodes();
 875                }
 876        }
 877}
 878
 879/*
 880 * Determine if the huge page at addr within the vma has an associated
 881 * reservation.  Where it does not we will need to logically increase
 882 * reservation and actually increase quota before an allocation can occur.
 883 * Where any new reservation would be required the reservation change is
 884 * prepared, but not committed.  Once the page has been quota'd allocated
 885 * an instantiated the change should be committed via vma_commit_reservation.
 886 * No action is required on failure.
 887 */
 888static int vma_needs_reservation(struct hstate *h,
 889                        struct vm_area_struct *vma, unsigned long addr)
 890{
 891        struct address_space *mapping = vma->vm_file->f_mapping;
 892        struct inode *inode = mapping->host;
 893
 894        if (vma->vm_flags & VM_SHARED) {
 895                pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 896                return region_chg(&inode->i_mapping->private_list,
 897                                                        idx, idx + 1);
 898
 899        } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 900                return 1;
 901
 902        } else  {
 903                int err;
 904                pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 905                struct resv_map *reservations = vma_resv_map(vma);
 906
 907                err = region_chg(&reservations->regions, idx, idx + 1);
 908                if (err < 0)
 909                        return err;
 910                return 0;
 911        }
 912}
 913static void vma_commit_reservation(struct hstate *h,
 914                        struct vm_area_struct *vma, unsigned long addr)
 915{
 916        struct address_space *mapping = vma->vm_file->f_mapping;
 917        struct inode *inode = mapping->host;
 918
 919        if (vma->vm_flags & VM_SHARED) {
 920                pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 921                region_add(&inode->i_mapping->private_list, idx, idx + 1);
 922
 923        } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 924                pgoff_t idx = vma_hugecache_offset(h, vma, addr);
 925                struct resv_map *reservations = vma_resv_map(vma);
 926
 927                /* Mark this page used in the map. */
 928                region_add(&reservations->regions, idx, idx + 1);
 929        }
 930}
 931
 932static struct page *alloc_huge_page(struct vm_area_struct *vma,
 933                                    unsigned long addr, int avoid_reserve)
 934{
 935        struct hstate *h = hstate_vma(vma);
 936        struct page *page;
 937        struct address_space *mapping = vma->vm_file->f_mapping;
 938        struct inode *inode = mapping->host;
 939        unsigned int chg;
 940
 941        /*
 942         * Processes that did not create the mapping will have no reserves and
 943         * will not have accounted against quota. Check that the quota can be
 944         * made before satisfying the allocation
 945         * MAP_NORESERVE mappings may also need pages and quota allocated
 946         * if no reserve mapping overlaps.
 947         */
 948        chg = vma_needs_reservation(h, vma, addr);
 949        if (chg < 0)
 950                return ERR_PTR(chg);
 951        if (chg)
 952                if (hugetlb_get_quota(inode->i_mapping, chg))
 953                        return ERR_PTR(-ENOSPC);
 954
 955        spin_lock(&hugetlb_lock);
 956        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
 957        spin_unlock(&hugetlb_lock);
 958
 959        if (!page) {
 960                page = alloc_buddy_huge_page(h, vma, addr);
 961                if (!page) {
 962                        hugetlb_put_quota(inode->i_mapping, chg);
 963                        return ERR_PTR(-VM_FAULT_OOM);
 964                }
 965        }
 966
 967        set_page_refcounted(page);
 968        set_page_private(page, (unsigned long) mapping);
 969
 970        vma_commit_reservation(h, vma, addr);
 971
 972        return page;
 973}
 974
 975__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
 976{
 977        struct huge_bootmem_page *m;
 978        int nr_nodes = nodes_weight(node_online_map);
 979
 980        while (nr_nodes) {
 981                void *addr;
 982
 983                addr = __alloc_bootmem_node_nopanic(
 984                                NODE_DATA(h->hugetlb_next_nid),
 985                                huge_page_size(h), huge_page_size(h), 0);
 986
 987                if (addr) {
 988                        /*
 989                         * Use the beginning of the huge page to store the
 990                         * huge_bootmem_page struct (until gather_bootmem
 991                         * puts them into the mem_map).
 992                         */
 993                        m = addr;
 994                        if (m)
 995                                goto found;
 996                }
 997                hstate_next_node(h);
 998                nr_nodes--;
 999        }
1000        return 0;
1001
1002found:
1003        BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1004        /* Put them into a private list first because mem_map is not up yet */
1005        list_add(&m->list, &huge_boot_pages);
1006        m->hstate = h;
1007        return 1;
1008}
1009
1010static void prep_compound_huge_page(struct page *page, int order)
1011{
1012        if (unlikely(order > (MAX_ORDER - 1)))
1013                prep_compound_gigantic_page(page, order);
1014        else
1015                prep_compound_page(page, order);
1016}
1017
1018/* Put bootmem huge pages into the standard lists after mem_map is up */
1019static void __init gather_bootmem_prealloc(void)
1020{
1021        struct huge_bootmem_page *m;
1022
1023        list_for_each_entry(m, &huge_boot_pages, list) {
1024                struct page *page = virt_to_page(m);
1025                struct hstate *h = m->hstate;
1026                __ClearPageReserved(page);
1027                WARN_ON(page_count(page) != 1);
1028                prep_compound_huge_page(page, h->order);
1029                prep_new_huge_page(h, page, page_to_nid(page));
1030        }
1031}
1032
1033static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1034{
1035        unsigned long i;
1036
1037        for (i = 0; i < h->max_huge_pages; ++i) {
1038                if (h->order >= MAX_ORDER) {
1039                        if (!alloc_bootmem_huge_page(h))
1040                                break;
1041                } else if (!alloc_fresh_huge_page(h))
1042                        break;
1043        }
1044        h->max_huge_pages = i;
1045}
1046
1047static void __init hugetlb_init_hstates(void)
1048{
1049        struct hstate *h;
1050
1051        for_each_hstate(h) {
1052                /* oversize hugepages were init'ed in early boot */
1053                if (h->order < MAX_ORDER)
1054                        hugetlb_hstate_alloc_pages(h);
1055        }
1056}
1057
1058static char * __init memfmt(char *buf, unsigned long n)
1059{
1060        if (n >= (1UL << 30))
1061                sprintf(buf, "%lu GB", n >> 30);
1062        else if (n >= (1UL << 20))
1063                sprintf(buf, "%lu MB", n >> 20);
1064        else
1065                sprintf(buf, "%lu KB", n >> 10);
1066        return buf;
1067}
1068
1069static void __init report_hugepages(void)
1070{
1071        struct hstate *h;
1072
1073        for_each_hstate(h) {
1074                char buf[32];
1075                printk(KERN_INFO "HugeTLB registered %s page size, "
1076                                 "pre-allocated %ld pages\n",
1077                        memfmt(buf, huge_page_size(h)),
1078                        h->free_huge_pages);
1079        }
1080}
1081
1082#ifdef CONFIG_HIGHMEM
1083static void try_to_free_low(struct hstate *h, unsigned long count)
1084{
1085        int i;
1086
1087        if (h->order >= MAX_ORDER)
1088                return;
1089
1090        for (i = 0; i < MAX_NUMNODES; ++i) {
1091                struct page *page, *next;
1092                struct list_head *freel = &h->hugepage_freelists[i];
1093                list_for_each_entry_safe(page, next, freel, lru) {
1094                        if (count >= h->nr_huge_pages)
1095                                return;
1096                        if (PageHighMem(page))
1097                                continue;
1098                        list_del(&page->lru);
1099                        update_and_free_page(h, page);
1100                        h->free_huge_pages--;
1101                        h->free_huge_pages_node[page_to_nid(page)]--;
1102                }
1103        }
1104}
1105#else
1106static inline void try_to_free_low(struct hstate *h, unsigned long count)
1107{
1108}
1109#endif
1110
1111#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1112static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1113{
1114        unsigned long min_count, ret;
1115
1116        if (h->order >= MAX_ORDER)
1117                return h->max_huge_pages;
1118
1119        /*
1120         * Increase the pool size
1121         * First take pages out of surplus state.  Then make up the
1122         * remaining difference by allocating fresh huge pages.
1123         *
1124         * We might race with alloc_buddy_huge_page() here and be unable
1125         * to convert a surplus huge page to a normal huge page. That is
1126         * not critical, though, it just means the overall size of the
1127         * pool might be one hugepage larger than it needs to be, but
1128         * within all the constraints specified by the sysctls.
1129         */
1130        spin_lock(&hugetlb_lock);
1131        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1132                if (!adjust_pool_surplus(h, -1))
1133                        break;
1134        }
1135
1136        while (count > persistent_huge_pages(h)) {
1137                /*
1138                 * If this allocation races such that we no longer need the
1139                 * page, free_huge_page will handle it by freeing the page
1140                 * and reducing the surplus.
1141                 */
1142                spin_unlock(&hugetlb_lock);
1143                ret = alloc_fresh_huge_page(h);
1144                spin_lock(&hugetlb_lock);
1145                if (!ret)
1146                        goto out;
1147
1148        }
1149
1150        /*
1151         * Decrease the pool size
1152         * First return free pages to the buddy allocator (being careful
1153         * to keep enough around to satisfy reservations).  Then place
1154         * pages into surplus state as needed so the pool will shrink
1155         * to the desired size as pages become free.
1156         *
1157         * By placing pages into the surplus state independent of the
1158         * overcommit value, we are allowing the surplus pool size to
1159         * exceed overcommit. There are few sane options here. Since
1160         * alloc_buddy_huge_page() is checking the global counter,
1161         * though, we'll note that we're not allowed to exceed surplus
1162         * and won't grow the pool anywhere else. Not until one of the
1163         * sysctls are changed, or the surplus pages go out of use.
1164         */
1165        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1166        min_count = max(count, min_count);
1167        try_to_free_low(h, min_count);
1168        while (min_count < persistent_huge_pages(h)) {
1169                struct page *page = dequeue_huge_page(h);
1170                if (!page)
1171                        break;
1172                update_and_free_page(h, page);
1173        }
1174        while (count < persistent_huge_pages(h)) {
1175                if (!adjust_pool_surplus(h, 1))
1176                        break;
1177        }
1178out:
1179        ret = persistent_huge_pages(h);
1180        spin_unlock(&hugetlb_lock);
1181        return ret;
1182}
1183
1184#define HSTATE_ATTR_RO(_name) \
1185        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1186
1187#define HSTATE_ATTR(_name) \
1188        static struct kobj_attribute _name##_attr = \
1189                __ATTR(_name, 0644, _name##_show, _name##_store)
1190
1191static struct kobject *hugepages_kobj;
1192static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1193
1194static struct hstate *kobj_to_hstate(struct kobject *kobj)
1195{
1196        int i;
1197        for (i = 0; i < HUGE_MAX_HSTATE; i++)
1198                if (hstate_kobjs[i] == kobj)
1199                        return &hstates[i];
1200        BUG();
1201        return NULL;
1202}
1203
1204static ssize_t nr_hugepages_show(struct kobject *kobj,
1205                                        struct kobj_attribute *attr, char *buf)
1206{
1207        struct hstate *h = kobj_to_hstate(kobj);
1208        return sprintf(buf, "%lu\n", h->nr_huge_pages);
1209}
1210static ssize_t nr_hugepages_store(struct kobject *kobj,
1211                struct kobj_attribute *attr, const char *buf, size_t count)
1212{
1213        int err;
1214        unsigned long input;
1215        struct hstate *h = kobj_to_hstate(kobj);
1216
1217        err = strict_strtoul(buf, 10, &input);
1218        if (err)
1219                return 0;
1220
1221        h->max_huge_pages = set_max_huge_pages(h, input);
1222
1223        return count;
1224}
1225HSTATE_ATTR(nr_hugepages);
1226
1227static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1228                                        struct kobj_attribute *attr, char *buf)
1229{
1230        struct hstate *h = kobj_to_hstate(kobj);
1231        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1232}
1233static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1234                struct kobj_attribute *attr, const char *buf, size_t count)
1235{
1236        int err;
1237        unsigned long input;
1238        struct hstate *h = kobj_to_hstate(kobj);
1239
1240        err = strict_strtoul(buf, 10, &input);
1241        if (err)
1242                return 0;
1243
1244        spin_lock(&hugetlb_lock);
1245        h->nr_overcommit_huge_pages = input;
1246        spin_unlock(&hugetlb_lock);
1247
1248        return count;
1249}
1250HSTATE_ATTR(nr_overcommit_hugepages);
1251
1252static ssize_t free_hugepages_show(struct kobject *kobj,
1253                                        struct kobj_attribute *attr, char *buf)
1254{
1255        struct hstate *h = kobj_to_hstate(kobj);
1256        return sprintf(buf, "%lu\n", h->free_huge_pages);
1257}
1258HSTATE_ATTR_RO(free_hugepages);
1259
1260static ssize_t resv_hugepages_show(struct kobject *kobj,
1261                                        struct kobj_attribute *attr, char *buf)
1262{
1263        struct hstate *h = kobj_to_hstate(kobj);
1264        return sprintf(buf, "%lu\n", h->resv_huge_pages);
1265}
1266HSTATE_ATTR_RO(resv_hugepages);
1267
1268static ssize_t surplus_hugepages_show(struct kobject *kobj,
1269                                        struct kobj_attribute *attr, char *buf)
1270{
1271        struct hstate *h = kobj_to_hstate(kobj);
1272        return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1273}
1274HSTATE_ATTR_RO(surplus_hugepages);
1275
1276static struct attribute *hstate_attrs[] = {
1277        &nr_hugepages_attr.attr,
1278        &nr_overcommit_hugepages_attr.attr,
1279        &free_hugepages_attr.attr,
1280        &resv_hugepages_attr.attr,
1281        &surplus_hugepages_attr.attr,
1282        NULL,
1283};
1284
1285static struct attribute_group hstate_attr_group = {
1286        .attrs = hstate_attrs,
1287};
1288
1289static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1290{
1291        int retval;
1292
1293        hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1294                                                        hugepages_kobj);
1295        if (!hstate_kobjs[h - hstates])
1296                return -ENOMEM;
1297
1298        retval = sysfs_create_group(hstate_kobjs[h - hstates],
1299                                                        &hstate_attr_group);
1300        if (retval)
1301                kobject_put(hstate_kobjs[h - hstates]);
1302
1303        return retval;
1304}
1305
1306static void __init hugetlb_sysfs_init(void)
1307{
1308        struct hstate *h;
1309        int err;
1310
1311        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1312        if (!hugepages_kobj)
1313                return;
1314
1315        for_each_hstate(h) {
1316                err = hugetlb_sysfs_add_hstate(h);
1317                if (err)
1318                        printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1319                                                                h->name);
1320        }
1321}
1322
1323static void __exit hugetlb_exit(void)
1324{
1325        struct hstate *h;
1326
1327        for_each_hstate(h) {
1328                kobject_put(hstate_kobjs[h - hstates]);
1329        }
1330
1331        kobject_put(hugepages_kobj);
1332}
1333module_exit(hugetlb_exit);
1334
1335static int __init hugetlb_init(void)
1336{
1337        /* Some platform decide whether they support huge pages at boot
1338         * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1339         * there is no such support
1340         */
1341        if (HPAGE_SHIFT == 0)
1342                return 0;
1343
1344        if (!size_to_hstate(default_hstate_size)) {
1345                default_hstate_size = HPAGE_SIZE;
1346                if (!size_to_hstate(default_hstate_size))
1347                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1348        }
1349        default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1350        if (default_hstate_max_huge_pages)
1351                default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1352
1353        hugetlb_init_hstates();
1354
1355        gather_bootmem_prealloc();
1356
1357        report_hugepages();
1358
1359        hugetlb_sysfs_init();
1360
1361        return 0;
1362}
1363module_init(hugetlb_init);
1364
1365/* Should be called on processing a hugepagesz=... option */
1366void __init hugetlb_add_hstate(unsigned order)
1367{
1368        struct hstate *h;
1369        unsigned long i;
1370
1371        if (size_to_hstate(PAGE_SIZE << order)) {
1372                printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1373                return;
1374        }
1375        BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1376        BUG_ON(order == 0);
1377        h = &hstates[max_hstate++];
1378        h->order = order;
1379        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1380        h->nr_huge_pages = 0;
1381        h->free_huge_pages = 0;
1382        for (i = 0; i < MAX_NUMNODES; ++i)
1383                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1384        h->hugetlb_next_nid = first_node(node_online_map);
1385        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1386                                        huge_page_size(h)/1024);
1387
1388        parsed_hstate = h;
1389}
1390
1391static int __init hugetlb_nrpages_setup(char *s)
1392{
1393        unsigned long *mhp;
1394        static unsigned long *last_mhp;
1395
1396        /*
1397         * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1398         * so this hugepages= parameter goes to the "default hstate".
1399         */
1400        if (!max_hstate)
1401                mhp = &default_hstate_max_huge_pages;
1402        else
1403                mhp = &parsed_hstate->max_huge_pages;
1404
1405        if (mhp == last_mhp) {
1406                printk(KERN_WARNING "hugepages= specified twice without "
1407                        "interleaving hugepagesz=, ignoring\n");
1408                return 1;
1409        }
1410
1411        if (sscanf(s, "%lu", mhp) <= 0)
1412                *mhp = 0;
1413
1414        /*
1415         * Global state is always initialized later in hugetlb_init.
1416         * But we need to allocate >= MAX_ORDER hstates here early to still
1417         * use the bootmem allocator.
1418         */
1419        if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1420                hugetlb_hstate_alloc_pages(parsed_hstate);
1421
1422        last_mhp = mhp;
1423
1424        return 1;
1425}
1426__setup("hugepages=", hugetlb_nrpages_setup);
1427
1428static int __init hugetlb_default_setup(char *s)
1429{
1430        default_hstate_size = memparse(s, &s);
1431        return 1;
1432}
1433__setup("default_hugepagesz=", hugetlb_default_setup);
1434
1435static unsigned int cpuset_mems_nr(unsigned int *array)
1436{
1437        int node;
1438        unsigned int nr = 0;
1439
1440        for_each_node_mask(node, cpuset_current_mems_allowed)
1441                nr += array[node];
1442
1443        return nr;
1444}
1445
1446#ifdef CONFIG_SYSCTL
1447int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1448                           struct file *file, void __user *buffer,
1449                           size_t *length, loff_t *ppos)
1450{
1451        struct hstate *h = &default_hstate;
1452        unsigned long tmp;
1453
1454        if (!write)
1455                tmp = h->max_huge_pages;
1456
1457        table->data = &tmp;
1458        table->maxlen = sizeof(unsigned long);
1459        proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1460
1461        if (write)
1462                h->max_huge_pages = set_max_huge_pages(h, tmp);
1463
1464        return 0;
1465}
1466
1467int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1468                        struct file *file, void __user *buffer,
1469                        size_t *length, loff_t *ppos)
1470{
1471        proc_dointvec(table, write, file, buffer, length, ppos);
1472        if (hugepages_treat_as_movable)
1473                htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1474        else
1475                htlb_alloc_mask = GFP_HIGHUSER;
1476        return 0;
1477}
1478
1479int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1480                        struct file *file, void __user *buffer,
1481                        size_t *length, loff_t *ppos)
1482{
1483        struct hstate *h = &default_hstate;
1484        unsigned long tmp;
1485
1486        if (!write)
1487                tmp = h->nr_overcommit_huge_pages;
1488
1489        table->data = &tmp;
1490        table->maxlen = sizeof(unsigned long);
1491        proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1492
1493        if (write) {
1494                spin_lock(&hugetlb_lock);
1495                h->nr_overcommit_huge_pages = tmp;
1496                spin_unlock(&hugetlb_lock);
1497        }
1498
1499        return 0;
1500}
1501
1502#endif /* CONFIG_SYSCTL */
1503
1504void hugetlb_report_meminfo(struct seq_file *m)
1505{
1506        struct hstate *h = &default_hstate;
1507        seq_printf(m,
1508                        "HugePages_Total:   %5lu\n"
1509                        "HugePages_Free:    %5lu\n"
1510                        "HugePages_Rsvd:    %5lu\n"
1511                        "HugePages_Surp:    %5lu\n"
1512                        "Hugepagesize:   %8lu kB\n",
1513                        h->nr_huge_pages,
1514                        h->free_huge_pages,
1515                        h->resv_huge_pages,
1516                        h->surplus_huge_pages,
1517                        1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1518}
1519
1520int hugetlb_report_node_meminfo(int nid, char *buf)
1521{
1522        struct hstate *h = &default_hstate;
1523        return sprintf(buf,
1524                "Node %d HugePages_Total: %5u\n"
1525                "Node %d HugePages_Free:  %5u\n"
1526                "Node %d HugePages_Surp:  %5u\n",
1527                nid, h->nr_huge_pages_node[nid],
1528                nid, h->free_huge_pages_node[nid],
1529                nid, h->surplus_huge_pages_node[nid]);
1530}
1531
1532/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1533unsigned long hugetlb_total_pages(void)
1534{
1535        struct hstate *h = &default_hstate;
1536        return h->nr_huge_pages * pages_per_huge_page(h);
1537}
1538
1539static int hugetlb_acct_memory(struct hstate *h, long delta)
1540{
1541        int ret = -ENOMEM;
1542
1543        spin_lock(&hugetlb_lock);
1544        /*
1545         * When cpuset is configured, it breaks the strict hugetlb page
1546         * reservation as the accounting is done on a global variable. Such
1547         * reservation is completely rubbish in the presence of cpuset because
1548         * the reservation is not checked against page availability for the
1549         * current cpuset. Application can still potentially OOM'ed by kernel
1550         * with lack of free htlb page in cpuset that the task is in.
1551         * Attempt to enforce strict accounting with cpuset is almost
1552         * impossible (or too ugly) because cpuset is too fluid that
1553         * task or memory node can be dynamically moved between cpusets.
1554         *
1555         * The change of semantics for shared hugetlb mapping with cpuset is
1556         * undesirable. However, in order to preserve some of the semantics,
1557         * we fall back to check against current free page availability as
1558         * a best attempt and hopefully to minimize the impact of changing
1559         * semantics that cpuset has.
1560         */
1561        if (delta > 0) {
1562                if (gather_surplus_pages(h, delta) < 0)
1563                        goto out;
1564
1565                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1566                        return_unused_surplus_pages(h, delta);
1567                        goto out;
1568                }
1569        }
1570
1571        ret = 0;
1572        if (delta < 0)
1573                return_unused_surplus_pages(h, (unsigned long) -delta);
1574
1575out:
1576        spin_unlock(&hugetlb_lock);
1577        return ret;
1578}
1579
1580static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1581{
1582        struct resv_map *reservations = vma_resv_map(vma);
1583
1584        /*
1585         * This new VMA should share its siblings reservation map if present.
1586         * The VMA will only ever have a valid reservation map pointer where
1587         * it is being copied for another still existing VMA.  As that VMA
1588         * has a reference to the reservation map it cannot dissappear until
1589         * after this open call completes.  It is therefore safe to take a
1590         * new reference here without additional locking.
1591         */
1592        if (reservations)
1593                kref_get(&reservations->refs);
1594}
1595
1596static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1597{
1598        struct hstate *h = hstate_vma(vma);
1599        struct resv_map *reservations = vma_resv_map(vma);
1600        unsigned long reserve;
1601        unsigned long start;
1602        unsigned long end;
1603
1604        if (reservations) {
1605                start = vma_hugecache_offset(h, vma, vma->vm_start);
1606                end = vma_hugecache_offset(h, vma, vma->vm_end);
1607
1608                reserve = (end - start) -
1609                        region_count(&reservations->regions, start, end);
1610
1611                kref_put(&reservations->refs, resv_map_release);
1612
1613                if (reserve) {
1614                        hugetlb_acct_memory(h, -reserve);
1615                        hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1616                }
1617        }
1618}
1619
1620/*
1621 * We cannot handle pagefaults against hugetlb pages at all.  They cause
1622 * handle_mm_fault() to try to instantiate regular-sized pages in the
1623 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1624 * this far.
1625 */
1626static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1627{
1628        BUG();
1629        return 0;
1630}
1631
1632struct vm_operations_struct hugetlb_vm_ops = {
1633        .fault = hugetlb_vm_op_fault,
1634        .open = hugetlb_vm_op_open,
1635        .close = hugetlb_vm_op_close,
1636};
1637
1638static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1639                                int writable)
1640{
1641        pte_t entry;
1642
1643        if (writable) {
1644                entry =
1645                    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1646        } else {
1647                entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1648        }
1649        entry = pte_mkyoung(entry);
1650        entry = pte_mkhuge(entry);
1651
1652        return entry;
1653}
1654
1655static void set_huge_ptep_writable(struct vm_area_struct *vma,
1656                                   unsigned long address, pte_t *ptep)
1657{
1658        pte_t entry;
1659
1660        entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1661        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1662                update_mmu_cache(vma, address, entry);
1663        }
1664}
1665
1666
1667int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1668                            struct vm_area_struct *vma)
1669{
1670        pte_t *src_pte, *dst_pte, entry;
1671        struct page *ptepage;
1672        unsigned long addr;
1673        int cow;
1674        struct hstate *h = hstate_vma(vma);
1675        unsigned long sz = huge_page_size(h);
1676
1677        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1678
1679        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1680                src_pte = huge_pte_offset(src, addr);
1681                if (!src_pte)
1682                        continue;
1683                dst_pte = huge_pte_alloc(dst, addr, sz);
1684                if (!dst_pte)
1685                        goto nomem;
1686
1687                /* If the pagetables are shared don't copy or take references */
1688                if (dst_pte == src_pte)
1689                        continue;
1690
1691                spin_lock(&dst->page_table_lock);
1692                spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1693                if (!huge_pte_none(huge_ptep_get(src_pte))) {
1694                        if (cow)
1695                                huge_ptep_set_wrprotect(src, addr, src_pte);
1696                        entry = huge_ptep_get(src_pte);
1697                        ptepage = pte_page(entry);
1698                        get_page(ptepage);
1699                        set_huge_pte_at(dst, addr, dst_pte, entry);
1700                }
1701                spin_unlock(&src->page_table_lock);
1702                spin_unlock(&dst->page_table_lock);
1703        }
1704        return 0;
1705
1706nomem:
1707        return -ENOMEM;
1708}
1709
1710void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1711                            unsigned long end, struct page *ref_page)
1712{
1713        struct mm_struct *mm = vma->vm_mm;
1714        unsigned long address;
1715        pte_t *ptep;
1716        pte_t pte;
1717        struct page *page;
1718        struct page *tmp;
1719        struct hstate *h = hstate_vma(vma);
1720        unsigned long sz = huge_page_size(h);
1721
1722        /*
1723         * A page gathering list, protected by per file i_mmap_lock. The
1724         * lock is used to avoid list corruption from multiple unmapping
1725         * of the same page since we are using page->lru.
1726         */
1727        LIST_HEAD(page_list);
1728
1729        WARN_ON(!is_vm_hugetlb_page(vma));
1730        BUG_ON(start & ~huge_page_mask(h));
1731        BUG_ON(end & ~huge_page_mask(h));
1732
1733        mmu_notifier_invalidate_range_start(mm, start, end);
1734        spin_lock(&mm->page_table_lock);
1735        for (address = start; address < end; address += sz) {
1736                ptep = huge_pte_offset(mm, address);
1737                if (!ptep)
1738                        continue;
1739
1740                if (huge_pmd_unshare(mm, &address, ptep))
1741                        continue;
1742
1743                /*
1744                 * If a reference page is supplied, it is because a specific
1745                 * page is being unmapped, not a range. Ensure the page we
1746                 * are about to unmap is the actual page of interest.
1747                 */
1748                if (ref_page) {
1749                        pte = huge_ptep_get(ptep);
1750                        if (huge_pte_none(pte))
1751                                continue;
1752                        page = pte_page(pte);
1753                        if (page != ref_page)
1754                                continue;
1755
1756                        /*
1757                         * Mark the VMA as having unmapped its page so that
1758                         * future faults in this VMA will fail rather than
1759                         * looking like data was lost
1760                         */
1761                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1762                }
1763
1764                pte = huge_ptep_get_and_clear(mm, address, ptep);
1765                if (huge_pte_none(pte))
1766                        continue;
1767
1768                page = pte_page(pte);
1769                if (pte_dirty(pte))
1770                        set_page_dirty(page);
1771                list_add(&page->lru, &page_list);
1772        }
1773        spin_unlock(&mm->page_table_lock);
1774        flush_tlb_range(vma, start, end);
1775        mmu_notifier_invalidate_range_end(mm, start, end);
1776        list_for_each_entry_safe(page, tmp, &page_list, lru) {
1777                list_del(&page->lru);
1778                put_page(page);
1779        }
1780}
1781
1782void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1783                          unsigned long end, struct page *ref_page)
1784{
1785        spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1786        __unmap_hugepage_range(vma, start, end, ref_page);
1787        spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1788}
1789
1790/*
1791 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1792 * mappping it owns the reserve page for. The intention is to unmap the page
1793 * from other VMAs and let the children be SIGKILLed if they are faulting the
1794 * same region.
1795 */
1796static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1797                                struct page *page, unsigned long address)
1798{
1799        struct hstate *h = hstate_vma(vma);
1800        struct vm_area_struct *iter_vma;
1801        struct address_space *mapping;
1802        struct prio_tree_iter iter;
1803        pgoff_t pgoff;
1804
1805        /*
1806         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1807         * from page cache lookup which is in HPAGE_SIZE units.
1808         */
1809        address = address & huge_page_mask(h);
1810        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1811                + (vma->vm_pgoff >> PAGE_SHIFT);
1812        mapping = (struct address_space *)page_private(page);
1813
1814        vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1815                /* Do not unmap the current VMA */
1816                if (iter_vma == vma)
1817                        continue;
1818
1819                /*
1820                 * Unmap the page from other VMAs without their own reserves.
1821                 * They get marked to be SIGKILLed if they fault in these
1822                 * areas. This is because a future no-page fault on this VMA
1823                 * could insert a zeroed page instead of the data existing
1824                 * from the time of fork. This would look like data corruption
1825                 */
1826                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1827                        unmap_hugepage_range(iter_vma,
1828                                address, address + huge_page_size(h),
1829                                page);
1830        }
1831
1832        return 1;
1833}
1834
1835static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1836                        unsigned long address, pte_t *ptep, pte_t pte,
1837                        struct page *pagecache_page)
1838{
1839        struct hstate *h = hstate_vma(vma);
1840        struct page *old_page, *new_page;
1841        int avoidcopy;
1842        int outside_reserve = 0;
1843
1844        old_page = pte_page(pte);
1845
1846retry_avoidcopy:
1847        /* If no-one else is actually using this page, avoid the copy
1848         * and just make the page writable */
1849        avoidcopy = (page_count(old_page) == 1);
1850        if (avoidcopy) {
1851                set_huge_ptep_writable(vma, address, ptep);
1852                return 0;
1853        }
1854
1855        /*
1856         * If the process that created a MAP_PRIVATE mapping is about to
1857         * perform a COW due to a shared page count, attempt to satisfy
1858         * the allocation without using the existing reserves. The pagecache
1859         * page is used to determine if the reserve at this address was
1860         * consumed or not. If reserves were used, a partial faulted mapping
1861         * at the time of fork() could consume its reserves on COW instead
1862         * of the full address range.
1863         */
1864        if (!(vma->vm_flags & VM_SHARED) &&
1865                        is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1866                        old_page != pagecache_page)
1867                outside_reserve = 1;
1868
1869        page_cache_get(old_page);
1870        new_page = alloc_huge_page(vma, address, outside_reserve);
1871
1872        if (IS_ERR(new_page)) {
1873                page_cache_release(old_page);
1874
1875                /*
1876                 * If a process owning a MAP_PRIVATE mapping fails to COW,
1877                 * it is due to references held by a child and an insufficient
1878                 * huge page pool. To guarantee the original mappers
1879                 * reliability, unmap the page from child processes. The child
1880                 * may get SIGKILLed if it later faults.
1881                 */
1882                if (outside_reserve) {
1883                        BUG_ON(huge_pte_none(pte));
1884                        if (unmap_ref_private(mm, vma, old_page, address)) {
1885                                BUG_ON(page_count(old_page) != 1);
1886                                BUG_ON(huge_pte_none(pte));
1887                                goto retry_avoidcopy;
1888                        }
1889                        WARN_ON_ONCE(1);
1890                }
1891
1892                return -PTR_ERR(new_page);
1893        }
1894
1895        spin_unlock(&mm->page_table_lock);
1896        copy_huge_page(new_page, old_page, address, vma);
1897        __SetPageUptodate(new_page);
1898        spin_lock(&mm->page_table_lock);
1899
1900        ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1901        if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1902                /* Break COW */
1903                huge_ptep_clear_flush(vma, address, ptep);
1904                set_huge_pte_at(mm, address, ptep,
1905                                make_huge_pte(vma, new_page, 1));
1906                /* Make the old page be freed below */
1907                new_page = old_page;
1908        }
1909        page_cache_release(new_page);
1910        page_cache_release(old_page);
1911        return 0;
1912}
1913
1914/* Return the pagecache page at a given address within a VMA */
1915static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1916                        struct vm_area_struct *vma, unsigned long address)
1917{
1918        struct address_space *mapping;
1919        pgoff_t idx;
1920
1921        mapping = vma->vm_file->f_mapping;
1922        idx = vma_hugecache_offset(h, vma, address);
1923
1924        return find_lock_page(mapping, idx);
1925}
1926
1927static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1928                        unsigned long address, pte_t *ptep, int write_access)
1929{
1930        struct hstate *h = hstate_vma(vma);
1931        int ret = VM_FAULT_SIGBUS;
1932        pgoff_t idx;
1933        unsigned long size;
1934        struct page *page;
1935        struct address_space *mapping;
1936        pte_t new_pte;
1937
1938        /*
1939         * Currently, we are forced to kill the process in the event the
1940         * original mapper has unmapped pages from the child due to a failed
1941         * COW. Warn that such a situation has occured as it may not be obvious
1942         */
1943        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1944                printk(KERN_WARNING
1945                        "PID %d killed due to inadequate hugepage pool\n",
1946                        current->pid);
1947                return ret;
1948        }
1949
1950        mapping = vma->vm_file->f_mapping;
1951        idx = vma_hugecache_offset(h, vma, address);
1952
1953        /*
1954         * Use page lock to guard against racing truncation
1955         * before we get page_table_lock.
1956         */
1957retry:
1958        page = find_lock_page(mapping, idx);
1959        if (!page) {
1960                size = i_size_read(mapping->host) >> huge_page_shift(h);
1961                if (idx >= size)
1962                        goto out;
1963                page = alloc_huge_page(vma, address, 0);
1964                if (IS_ERR(page)) {
1965                        ret = -PTR_ERR(page);
1966                        goto out;
1967                }
1968                clear_huge_page(page, address, huge_page_size(h));
1969                __SetPageUptodate(page);
1970
1971                if (vma->vm_flags & VM_SHARED) {
1972                        int err;
1973                        struct inode *inode = mapping->host;
1974
1975                        err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1976                        if (err) {
1977                                put_page(page);
1978                                if (err == -EEXIST)
1979                                        goto retry;
1980                                goto out;
1981                        }
1982
1983                        spin_lock(&inode->i_lock);
1984                        inode->i_blocks += blocks_per_huge_page(h);
1985                        spin_unlock(&inode->i_lock);
1986                } else
1987                        lock_page(page);
1988        }
1989
1990        /*
1991         * If we are going to COW a private mapping later, we examine the
1992         * pending reservations for this page now. This will ensure that
1993         * any allocations necessary to record that reservation occur outside
1994         * the spinlock.
1995         */
1996        if (write_access && !(vma->vm_flags & VM_SHARED))
1997                if (vma_needs_reservation(h, vma, address) < 0) {
1998                        ret = VM_FAULT_OOM;
1999                        goto backout_unlocked;
2000                }
2001
2002        spin_lock(&mm->page_table_lock);
2003        size = i_size_read(mapping->host) >> huge_page_shift(h);
2004        if (idx >= size)
2005                goto backout;
2006
2007        ret = 0;
2008        if (!huge_pte_none(huge_ptep_get(ptep)))
2009                goto backout;
2010
2011        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2012                                && (vma->vm_flags & VM_SHARED)));
2013        set_huge_pte_at(mm, address, ptep, new_pte);
2014
2015        if (write_access && !(vma->vm_flags & VM_SHARED)) {
2016                /* Optimization, do the COW without a second fault */
2017                ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2018        }
2019
2020        spin_unlock(&mm->page_table_lock);
2021        unlock_page(page);
2022out:
2023        return ret;
2024
2025backout:
2026        spin_unlock(&mm->page_table_lock);
2027backout_unlocked:
2028        unlock_page(page);
2029        put_page(page);
2030        goto out;
2031}
2032
2033int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2034                        unsigned long address, int write_access)
2035{
2036        pte_t *ptep;
2037        pte_t entry;
2038        int ret;
2039        struct page *pagecache_page = NULL;
2040        static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2041        struct hstate *h = hstate_vma(vma);
2042
2043        ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2044        if (!ptep)
2045                return VM_FAULT_OOM;
2046
2047        /*
2048         * Serialize hugepage allocation and instantiation, so that we don't
2049         * get spurious allocation failures if two CPUs race to instantiate
2050         * the same page in the page cache.
2051         */
2052        mutex_lock(&hugetlb_instantiation_mutex);
2053        entry = huge_ptep_get(ptep);
2054        if (huge_pte_none(entry)) {
2055                ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2056                goto out_mutex;
2057        }
2058
2059        ret = 0;
2060
2061        /*
2062         * If we are going to COW the mapping later, we examine the pending
2063         * reservations for this page now. This will ensure that any
2064         * allocations necessary to record that reservation occur outside the
2065         * spinlock. For private mappings, we also lookup the pagecache
2066         * page now as it is used to determine if a reservation has been
2067         * consumed.
2068         */
2069        if (write_access && !pte_write(entry)) {
2070                if (vma_needs_reservation(h, vma, address) < 0) {
2071                        ret = VM_FAULT_OOM;
2072                        goto out_mutex;
2073                }
2074
2075                if (!(vma->vm_flags & VM_SHARED))
2076                        pagecache_page = hugetlbfs_pagecache_page(h,
2077                                                                vma, address);
2078        }
2079
2080        spin_lock(&mm->page_table_lock);
2081        /* Check for a racing update before calling hugetlb_cow */
2082        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2083                goto out_page_table_lock;
2084
2085
2086        if (write_access) {
2087                if (!pte_write(entry)) {
2088                        ret = hugetlb_cow(mm, vma, address, ptep, entry,
2089                                                        pagecache_page);
2090                        goto out_page_table_lock;
2091                }
2092                entry = pte_mkdirty(entry);
2093        }
2094        entry = pte_mkyoung(entry);
2095        if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2096                update_mmu_cache(vma, address, entry);
2097
2098out_page_table_lock:
2099        spin_unlock(&mm->page_table_lock);
2100
2101        if (pagecache_page) {
2102                unlock_page(pagecache_page);
2103                put_page(pagecache_page);
2104        }
2105
2106out_mutex:
2107        mutex_unlock(&hugetlb_instantiation_mutex);
2108
2109        return ret;
2110}
2111
2112/* Can be overriden by architectures */
2113__attribute__((weak)) struct page *
2114follow_huge_pud(struct mm_struct *mm, unsigned long address,
2115               pud_t *pud, int write)
2116{
2117        BUG();
2118        return NULL;
2119}
2120
2121static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2122{
2123        if (!ptep || write || shared)
2124                return 0;
2125        else
2126                return huge_pte_none(huge_ptep_get(ptep));
2127}
2128
2129int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2130                        struct page **pages, struct vm_area_struct **vmas,
2131                        unsigned long *position, int *length, int i,
2132                        int write)
2133{
2134        unsigned long pfn_offset;
2135        unsigned long vaddr = *position;
2136        int remainder = *length;
2137        struct hstate *h = hstate_vma(vma);
2138        int zeropage_ok = 0;
2139        int shared = vma->vm_flags & VM_SHARED;
2140
2141        spin_lock(&mm->page_table_lock);
2142        while (vaddr < vma->vm_end && remainder) {
2143                pte_t *pte;
2144                struct page *page;
2145
2146                /*
2147                 * Some archs (sparc64, sh*) have multiple pte_ts to
2148                 * each hugepage.  We have to make * sure we get the
2149                 * first, for the page indexing below to work.
2150                 */
2151                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2152                if (huge_zeropage_ok(pte, write, shared))
2153                        zeropage_ok = 1;
2154
2155                if (!pte ||
2156                    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2157                    (write && !pte_write(huge_ptep_get(pte)))) {
2158                        int ret;
2159
2160                        spin_unlock(&mm->page_table_lock);
2161                        ret = hugetlb_fault(mm, vma, vaddr, write);
2162                        spin_lock(&mm->page_table_lock);
2163                        if (!(ret & VM_FAULT_ERROR))
2164                                continue;
2165
2166                        remainder = 0;
2167                        if (!i)
2168                                i = -EFAULT;
2169                        break;
2170                }
2171
2172                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2173                page = pte_page(huge_ptep_get(pte));
2174same_page:
2175                if (pages) {
2176                        if (zeropage_ok)
2177                                pages[i] = ZERO_PAGE(0);
2178                        else
2179                                pages[i] = mem_map_offset(page, pfn_offset);
2180                        get_page(pages[i]);
2181                }
2182
2183                if (vmas)
2184                        vmas[i] = vma;
2185
2186                vaddr += PAGE_SIZE;
2187                ++pfn_offset;
2188                --remainder;
2189                ++i;
2190                if (vaddr < vma->vm_end && remainder &&
2191                                pfn_offset < pages_per_huge_page(h)) {
2192                        /*
2193                         * We use pfn_offset to avoid touching the pageframes
2194                         * of this compound page.
2195                         */
2196                        goto same_page;
2197                }
2198        }
2199        spin_unlock(&mm->page_table_lock);
2200        *length = remainder;
2201        *position = vaddr;
2202
2203        return i;
2204}
2205
2206void hugetlb_change_protection(struct vm_area_struct *vma,
2207                unsigned long address, unsigned long end, pgprot_t newprot)
2208{
2209        struct mm_struct *mm = vma->vm_mm;
2210        unsigned long start = address;
2211        pte_t *ptep;
2212        pte_t pte;
2213        struct hstate *h = hstate_vma(vma);
2214
2215        BUG_ON(address >= end);
2216        flush_cache_range(vma, address, end);
2217
2218        spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2219        spin_lock(&mm->page_table_lock);
2220        for (; address < end; address += huge_page_size(h)) {
2221                ptep = huge_pte_offset(mm, address);
2222                if (!ptep)
2223                        continue;
2224                if (huge_pmd_unshare(mm, &address, ptep))
2225                        continue;
2226                if (!huge_pte_none(huge_ptep_get(ptep))) {
2227                        pte = huge_ptep_get_and_clear(mm, address, ptep);
2228                        pte = pte_mkhuge(pte_modify(pte, newprot));
2229                        set_huge_pte_at(mm, address, ptep, pte);
2230                }
2231        }
2232        spin_unlock(&mm->page_table_lock);
2233        spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2234
2235        flush_tlb_range(vma, start, end);
2236}
2237
2238int hugetlb_reserve_pages(struct inode *inode,
2239                                        long from, long to,
2240                                        struct vm_area_struct *vma)
2241{
2242        long ret, chg;
2243        struct hstate *h = hstate_inode(inode);
2244
2245        if (vma && vma->vm_flags & VM_NORESERVE)
2246                return 0;
2247
2248        /*
2249         * Shared mappings base their reservation on the number of pages that
2250         * are already allocated on behalf of the file. Private mappings need
2251         * to reserve the full area even if read-only as mprotect() may be
2252         * called to make the mapping read-write. Assume !vma is a shm mapping
2253         */
2254        if (!vma || vma->vm_flags & VM_SHARED)
2255                chg = region_chg(&inode->i_mapping->private_list, from, to);
2256        else {
2257                struct resv_map *resv_map = resv_map_alloc();
2258                if (!resv_map)
2259                        return -ENOMEM;
2260
2261                chg = to - from;
2262
2263                set_vma_resv_map(vma, resv_map);
2264                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2265        }
2266
2267        if (chg < 0)
2268                return chg;
2269
2270        if (hugetlb_get_quota(inode->i_mapping, chg))
2271                return -ENOSPC;
2272        ret = hugetlb_acct_memory(h, chg);
2273        if (ret < 0) {
2274                hugetlb_put_quota(inode->i_mapping, chg);
2275                return ret;
2276        }
2277        if (!vma || vma->vm_flags & VM_SHARED)
2278                region_add(&inode->i_mapping->private_list, from, to);
2279        return 0;
2280}
2281
2282void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2283{
2284        struct hstate *h = hstate_inode(inode);
2285        long chg = region_truncate(&inode->i_mapping->private_list, offset);
2286
2287        spin_lock(&inode->i_lock);
2288        inode->i_blocks -= blocks_per_huge_page(h);
2289        spin_unlock(&inode->i_lock);
2290
2291        hugetlb_put_quota(inode->i_mapping, (chg - freed));
2292        hugetlb_acct_memory(h, -(chg - freed));
2293}