Showing error 1824

User: Jiri Slaby
Error type: Invalid Pointer Dereference
Error type description: A pointer which is invalid is being dereferenced
File location: drivers/net/dl2k.c
Line in file: 886
Project: Linux Kernel
Project version: 2.6.28
Tools: Smatch (1.59)
Entered: 2013-09-11 08:47:26 UTC


Source:

   1/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   2/*
   3    Copyright (c) 2001, 2002 by D-Link Corporation
   4    Written by Edward Peng.<edward_peng@dlink.com.tw>
   5    Created 03-May-2001, base on Linux' sundance.c.
   6
   7    This program is free software; you can redistribute it and/or modify
   8    it under the terms of the GNU General Public License as published by
   9    the Free Software Foundation; either version 2 of the License, or
  10    (at your option) any later version.
  11*/
  12
  13#define DRV_NAME        "DL2000/TC902x-based linux driver"
  14#define DRV_VERSION        "v1.19"
  15#define DRV_RELDATE        "2007/08/12"
  16#include "dl2k.h"
  17#include <linux/dma-mapping.h>
  18
  19static char version[] __devinitdata =
  20      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  21#define MAX_UNITS 8
  22static int mtu[MAX_UNITS];
  23static int vlan[MAX_UNITS];
  24static int jumbo[MAX_UNITS];
  25static char *media[MAX_UNITS];
  26static int tx_flow=-1;
  27static int rx_flow=-1;
  28static int copy_thresh;
  29static int rx_coalesce=10;        /* Rx frame count each interrupt */
  30static int rx_timeout=200;        /* Rx DMA wait time in 640ns increments */
  31static int tx_coalesce=16;        /* HW xmit count each TxDMAComplete */
  32
  33
  34MODULE_AUTHOR ("Edward Peng");
  35MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  36MODULE_LICENSE("GPL");
  37module_param_array(mtu, int, NULL, 0);
  38module_param_array(media, charp, NULL, 0);
  39module_param_array(vlan, int, NULL, 0);
  40module_param_array(jumbo, int, NULL, 0);
  41module_param(tx_flow, int, 0);
  42module_param(rx_flow, int, 0);
  43module_param(copy_thresh, int, 0);
  44module_param(rx_coalesce, int, 0);        /* Rx frame count each interrupt */
  45module_param(rx_timeout, int, 0);        /* Rx DMA wait time in 64ns increments */
  46module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  47
  48
  49/* Enable the default interrupts */
  50#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  51       UpdateStats | LinkEvent)
  52#define EnableInt() \
  53writew(DEFAULT_INTR, ioaddr + IntEnable)
  54
  55static const int max_intrloop = 50;
  56static const int multicast_filter_limit = 0x40;
  57
  58static int rio_open (struct net_device *dev);
  59static void rio_timer (unsigned long data);
  60static void rio_tx_timeout (struct net_device *dev);
  61static void alloc_list (struct net_device *dev);
  62static int start_xmit (struct sk_buff *skb, struct net_device *dev);
  63static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  64static void rio_free_tx (struct net_device *dev, int irq);
  65static void tx_error (struct net_device *dev, int tx_status);
  66static int receive_packet (struct net_device *dev);
  67static void rio_error (struct net_device *dev, int int_status);
  68static int change_mtu (struct net_device *dev, int new_mtu);
  69static void set_multicast (struct net_device *dev);
  70static struct net_device_stats *get_stats (struct net_device *dev);
  71static int clear_stats (struct net_device *dev);
  72static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  73static int rio_close (struct net_device *dev);
  74static int find_miiphy (struct net_device *dev);
  75static int parse_eeprom (struct net_device *dev);
  76static int read_eeprom (long ioaddr, int eep_addr);
  77static int mii_wait_link (struct net_device *dev, int wait);
  78static int mii_set_media (struct net_device *dev);
  79static int mii_get_media (struct net_device *dev);
  80static int mii_set_media_pcs (struct net_device *dev);
  81static int mii_get_media_pcs (struct net_device *dev);
  82static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  83static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  84                      u16 data);
  85
  86static const struct ethtool_ops ethtool_ops;
  87
  88static int __devinit
  89rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
  90{
  91        struct net_device *dev;
  92        struct netdev_private *np;
  93        static int card_idx;
  94        int chip_idx = ent->driver_data;
  95        int err, irq;
  96        long ioaddr;
  97        static int version_printed;
  98        void *ring_space;
  99        dma_addr_t ring_dma;
 100        DECLARE_MAC_BUF(mac);
 101
 102        if (!version_printed++)
 103                printk ("%s", version);
 104
 105        err = pci_enable_device (pdev);
 106        if (err)
 107                return err;
 108
 109        irq = pdev->irq;
 110        err = pci_request_regions (pdev, "dl2k");
 111        if (err)
 112                goto err_out_disable;
 113
 114        pci_set_master (pdev);
 115        dev = alloc_etherdev (sizeof (*np));
 116        if (!dev) {
 117                err = -ENOMEM;
 118                goto err_out_res;
 119        }
 120        SET_NETDEV_DEV(dev, &pdev->dev);
 121
 122#ifdef MEM_MAPPING
 123        ioaddr = pci_resource_start (pdev, 1);
 124        ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
 125        if (!ioaddr) {
 126                err = -ENOMEM;
 127                goto err_out_dev;
 128        }
 129#else
 130        ioaddr = pci_resource_start (pdev, 0);
 131#endif
 132        dev->base_addr = ioaddr;
 133        dev->irq = irq;
 134        np = netdev_priv(dev);
 135        np->chip_id = chip_idx;
 136        np->pdev = pdev;
 137        spin_lock_init (&np->tx_lock);
 138        spin_lock_init (&np->rx_lock);
 139
 140        /* Parse manual configuration */
 141        np->an_enable = 1;
 142        np->tx_coalesce = 1;
 143        if (card_idx < MAX_UNITS) {
 144                if (media[card_idx] != NULL) {
 145                        np->an_enable = 0;
 146                        if (strcmp (media[card_idx], "auto") == 0 ||
 147                            strcmp (media[card_idx], "autosense") == 0 ||
 148                            strcmp (media[card_idx], "0") == 0 ) {
 149                                np->an_enable = 2;
 150                        } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 151                            strcmp (media[card_idx], "4") == 0) {
 152                                np->speed = 100;
 153                                np->full_duplex = 1;
 154                        } else if (strcmp (media[card_idx], "100mbps_hd") == 0
 155                                   || strcmp (media[card_idx], "3") == 0) {
 156                                np->speed = 100;
 157                                np->full_duplex = 0;
 158                        } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 159                                   strcmp (media[card_idx], "2") == 0) {
 160                                np->speed = 10;
 161                                np->full_duplex = 1;
 162                        } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 163                                   strcmp (media[card_idx], "1") == 0) {
 164                                np->speed = 10;
 165                                np->full_duplex = 0;
 166                        } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 167                                 strcmp (media[card_idx], "6") == 0) {
 168                                np->speed=1000;
 169                                np->full_duplex=1;
 170                        } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 171                                 strcmp (media[card_idx], "5") == 0) {
 172                                np->speed = 1000;
 173                                np->full_duplex = 0;
 174                        } else {
 175                                np->an_enable = 1;
 176                        }
 177                }
 178                if (jumbo[card_idx] != 0) {
 179                        np->jumbo = 1;
 180                        dev->mtu = MAX_JUMBO;
 181                } else {
 182                        np->jumbo = 0;
 183                        if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 184                                dev->mtu = mtu[card_idx];
 185                }
 186                np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 187                    vlan[card_idx] : 0;
 188                if (rx_coalesce > 0 && rx_timeout > 0) {
 189                        np->rx_coalesce = rx_coalesce;
 190                        np->rx_timeout = rx_timeout;
 191                        np->coalesce = 1;
 192                }
 193                np->tx_flow = (tx_flow == 0) ? 0 : 1;
 194                np->rx_flow = (rx_flow == 0) ? 0 : 1;
 195
 196                if (tx_coalesce < 1)
 197                        tx_coalesce = 1;
 198                else if (tx_coalesce > TX_RING_SIZE-1)
 199                        tx_coalesce = TX_RING_SIZE - 1;
 200        }
 201        dev->open = &rio_open;
 202        dev->hard_start_xmit = &start_xmit;
 203        dev->stop = &rio_close;
 204        dev->get_stats = &get_stats;
 205        dev->set_multicast_list = &set_multicast;
 206        dev->do_ioctl = &rio_ioctl;
 207        dev->tx_timeout = &rio_tx_timeout;
 208        dev->watchdog_timeo = TX_TIMEOUT;
 209        dev->change_mtu = &change_mtu;
 210        SET_ETHTOOL_OPS(dev, &ethtool_ops);
 211#if 0
 212        dev->features = NETIF_F_IP_CSUM;
 213#endif
 214        pci_set_drvdata (pdev, dev);
 215
 216        ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 217        if (!ring_space)
 218                goto err_out_iounmap;
 219        np->tx_ring = (struct netdev_desc *) ring_space;
 220        np->tx_ring_dma = ring_dma;
 221
 222        ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 223        if (!ring_space)
 224                goto err_out_unmap_tx;
 225        np->rx_ring = (struct netdev_desc *) ring_space;
 226        np->rx_ring_dma = ring_dma;
 227
 228        /* Parse eeprom data */
 229        parse_eeprom (dev);
 230
 231        /* Find PHY address */
 232        err = find_miiphy (dev);
 233        if (err)
 234                goto err_out_unmap_rx;
 235
 236        /* Fiber device? */
 237        np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
 238        np->link_status = 0;
 239        /* Set media and reset PHY */
 240        if (np->phy_media) {
 241                /* default Auto-Negotiation for fiber deivices */
 242                 if (np->an_enable == 2) {
 243                        np->an_enable = 1;
 244                }
 245                mii_set_media_pcs (dev);
 246        } else {
 247                /* Auto-Negotiation is mandatory for 1000BASE-T,
 248                   IEEE 802.3ab Annex 28D page 14 */
 249                if (np->speed == 1000)
 250                        np->an_enable = 1;
 251                mii_set_media (dev);
 252        }
 253
 254        err = register_netdev (dev);
 255        if (err)
 256                goto err_out_unmap_rx;
 257
 258        card_idx++;
 259
 260        printk (KERN_INFO "%s: %s, %s, IRQ %d\n",
 261                dev->name, np->name, print_mac(mac, dev->dev_addr), irq);
 262        if (tx_coalesce > 1)
 263                printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 264                                tx_coalesce);
 265        if (np->coalesce)
 266                printk(KERN_INFO "rx_coalesce:\t%d packets\n"
 267                       KERN_INFO "rx_timeout: \t%d ns\n",
 268                                np->rx_coalesce, np->rx_timeout*640);
 269        if (np->vlan)
 270                printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 271        return 0;
 272
 273      err_out_unmap_rx:
 274        pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 275      err_out_unmap_tx:
 276        pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 277      err_out_iounmap:
 278#ifdef MEM_MAPPING
 279        iounmap ((void *) ioaddr);
 280
 281      err_out_dev:
 282#endif
 283        free_netdev (dev);
 284
 285      err_out_res:
 286        pci_release_regions (pdev);
 287
 288      err_out_disable:
 289        pci_disable_device (pdev);
 290        return err;
 291}
 292
 293static int
 294find_miiphy (struct net_device *dev)
 295{
 296        int i, phy_found = 0;
 297        struct netdev_private *np;
 298        long ioaddr;
 299        np = netdev_priv(dev);
 300        ioaddr = dev->base_addr;
 301        np->phy_addr = 1;
 302
 303        for (i = 31; i >= 0; i--) {
 304                int mii_status = mii_read (dev, i, 1);
 305                if (mii_status != 0xffff && mii_status != 0x0000) {
 306                        np->phy_addr = i;
 307                        phy_found++;
 308                }
 309        }
 310        if (!phy_found) {
 311                printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 312                return -ENODEV;
 313        }
 314        return 0;
 315}
 316
 317static int
 318parse_eeprom (struct net_device *dev)
 319{
 320        int i, j;
 321        long ioaddr = dev->base_addr;
 322        u8 sromdata[256];
 323        u8 *psib;
 324        u32 crc;
 325        PSROM_t psrom = (PSROM_t) sromdata;
 326        struct netdev_private *np = netdev_priv(dev);
 327
 328        int cid, next;
 329
 330#ifdef        MEM_MAPPING
 331        ioaddr = pci_resource_start (np->pdev, 0);
 332#endif
 333        /* Read eeprom */
 334        for (i = 0; i < 128; i++) {
 335                ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
 336        }
 337#ifdef        MEM_MAPPING
 338        ioaddr = dev->base_addr;
 339#endif
 340        if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {        /* D-Link Only */
 341                /* Check CRC */
 342                crc = ~ether_crc_le (256 - 4, sromdata);
 343                if (psrom->crc != crc) {
 344                        printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 345                                        dev->name);
 346                        return -1;
 347                }
 348        }
 349
 350        /* Set MAC address */
 351        for (i = 0; i < 6; i++)
 352                dev->dev_addr[i] = psrom->mac_addr[i];
 353
 354        if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 355                return 0;
 356        }
 357
 358        /* Parse Software Information Block */
 359        i = 0x30;
 360        psib = (u8 *) sromdata;
 361        do {
 362                cid = psib[i++];
 363                next = psib[i++];
 364                if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 365                        printk (KERN_ERR "Cell data error\n");
 366                        return -1;
 367                }
 368                switch (cid) {
 369                case 0:        /* Format version */
 370                        break;
 371                case 1:        /* End of cell */
 372                        return 0;
 373                case 2:        /* Duplex Polarity */
 374                        np->duplex_polarity = psib[i];
 375                        writeb (readb (ioaddr + PhyCtrl) | psib[i],
 376                                ioaddr + PhyCtrl);
 377                        break;
 378                case 3:        /* Wake Polarity */
 379                        np->wake_polarity = psib[i];
 380                        break;
 381                case 9:        /* Adapter description */
 382                        j = (next - i > 255) ? 255 : next - i;
 383                        memcpy (np->name, &(psib[i]), j);
 384                        break;
 385                case 4:
 386                case 5:
 387                case 6:
 388                case 7:
 389                case 8:        /* Reversed */
 390                        break;
 391                default:        /* Unknown cell */
 392                        return -1;
 393                }
 394                i = next;
 395        } while (1);
 396
 397        return 0;
 398}
 399
 400static int
 401rio_open (struct net_device *dev)
 402{
 403        struct netdev_private *np = netdev_priv(dev);
 404        long ioaddr = dev->base_addr;
 405        int i;
 406        u16 macctrl;
 407
 408        i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
 409        if (i)
 410                return i;
 411
 412        /* Reset all logic functions */
 413        writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
 414                ioaddr + ASICCtrl + 2);
 415        mdelay(10);
 416
 417        /* DebugCtrl bit 4, 5, 9 must set */
 418        writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
 419
 420        /* Jumbo frame */
 421        if (np->jumbo != 0)
 422                writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
 423
 424        alloc_list (dev);
 425
 426        /* Get station address */
 427        for (i = 0; i < 6; i++)
 428                writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
 429
 430        set_multicast (dev);
 431        if (np->coalesce) {
 432                writel (np->rx_coalesce | np->rx_timeout << 16,
 433                        ioaddr + RxDMAIntCtrl);
 434        }
 435        /* Set RIO to poll every N*320nsec. */
 436        writeb (0x20, ioaddr + RxDMAPollPeriod);
 437        writeb (0xff, ioaddr + TxDMAPollPeriod);
 438        writeb (0x30, ioaddr + RxDMABurstThresh);
 439        writeb (0x30, ioaddr + RxDMAUrgentThresh);
 440        writel (0x0007ffff, ioaddr + RmonStatMask);
 441        /* clear statistics */
 442        clear_stats (dev);
 443
 444        /* VLAN supported */
 445        if (np->vlan) {
 446                /* priority field in RxDMAIntCtrl  */
 447                writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
 448                        ioaddr + RxDMAIntCtrl);
 449                /* VLANId */
 450                writew (np->vlan, ioaddr + VLANId);
 451                /* Length/Type should be 0x8100 */
 452                writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
 453                /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 454                   VLAN information tagged by TFC' VID, CFI fields. */
 455                writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
 456                        ioaddr + MACCtrl);
 457        }
 458
 459        init_timer (&np->timer);
 460        np->timer.expires = jiffies + 1*HZ;
 461        np->timer.data = (unsigned long) dev;
 462        np->timer.function = &rio_timer;
 463        add_timer (&np->timer);
 464
 465        /* Start Tx/Rx */
 466        writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
 467                        ioaddr + MACCtrl);
 468
 469        macctrl = 0;
 470        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 471        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 472        macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 473        macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 474        writew(macctrl,        ioaddr + MACCtrl);
 475
 476        netif_start_queue (dev);
 477
 478        /* Enable default interrupts */
 479        EnableInt ();
 480        return 0;
 481}
 482
 483static void
 484rio_timer (unsigned long data)
 485{
 486        struct net_device *dev = (struct net_device *)data;
 487        struct netdev_private *np = netdev_priv(dev);
 488        unsigned int entry;
 489        int next_tick = 1*HZ;
 490        unsigned long flags;
 491
 492        spin_lock_irqsave(&np->rx_lock, flags);
 493        /* Recover rx ring exhausted error */
 494        if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 495                printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 496                /* Re-allocate skbuffs to fill the descriptor ring */
 497                for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 498                        struct sk_buff *skb;
 499                        entry = np->old_rx % RX_RING_SIZE;
 500                        /* Dropped packets don't need to re-allocate */
 501                        if (np->rx_skbuff[entry] == NULL) {
 502                                skb = netdev_alloc_skb (dev, np->rx_buf_sz);
 503                                if (skb == NULL) {
 504                                        np->rx_ring[entry].fraginfo = 0;
 505                                        printk (KERN_INFO
 506                                                "%s: Still unable to re-allocate Rx skbuff.#%d\n",
 507                                                dev->name, entry);
 508                                        break;
 509                                }
 510                                np->rx_skbuff[entry] = skb;
 511                                /* 16 byte align the IP header */
 512                                skb_reserve (skb, 2);
 513                                np->rx_ring[entry].fraginfo =
 514                                    cpu_to_le64 (pci_map_single
 515                                         (np->pdev, skb->data, np->rx_buf_sz,
 516                                          PCI_DMA_FROMDEVICE));
 517                        }
 518                        np->rx_ring[entry].fraginfo |=
 519                            cpu_to_le64((u64)np->rx_buf_sz << 48);
 520                        np->rx_ring[entry].status = 0;
 521                } /* end for */
 522        } /* end if */
 523        spin_unlock_irqrestore (&np->rx_lock, flags);
 524        np->timer.expires = jiffies + next_tick;
 525        add_timer(&np->timer);
 526}
 527
 528static void
 529rio_tx_timeout (struct net_device *dev)
 530{
 531        long ioaddr = dev->base_addr;
 532
 533        printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 534                dev->name, readl (ioaddr + TxStatus));
 535        rio_free_tx(dev, 0);
 536        dev->if_port = 0;
 537        dev->trans_start = jiffies;
 538}
 539
 540 /* allocate and initialize Tx and Rx descriptors */
 541static void
 542alloc_list (struct net_device *dev)
 543{
 544        struct netdev_private *np = netdev_priv(dev);
 545        int i;
 546
 547        np->cur_rx = np->cur_tx = 0;
 548        np->old_rx = np->old_tx = 0;
 549        np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 550
 551        /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 552        for (i = 0; i < TX_RING_SIZE; i++) {
 553                np->tx_skbuff[i] = NULL;
 554                np->tx_ring[i].status = cpu_to_le64 (TFDDone);
 555                np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
 556                                              ((i+1)%TX_RING_SIZE) *
 557                                              sizeof (struct netdev_desc));
 558        }
 559
 560        /* Initialize Rx descriptors */
 561        for (i = 0; i < RX_RING_SIZE; i++) {
 562                np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
 563                                                ((i + 1) % RX_RING_SIZE) *
 564                                                sizeof (struct netdev_desc));
 565                np->rx_ring[i].status = 0;
 566                np->rx_ring[i].fraginfo = 0;
 567                np->rx_skbuff[i] = NULL;
 568        }
 569
 570        /* Allocate the rx buffers */
 571        for (i = 0; i < RX_RING_SIZE; i++) {
 572                /* Allocated fixed size of skbuff */
 573                struct sk_buff *skb = netdev_alloc_skb (dev, np->rx_buf_sz);
 574                np->rx_skbuff[i] = skb;
 575                if (skb == NULL) {
 576                        printk (KERN_ERR
 577                                "%s: alloc_list: allocate Rx buffer error! ",
 578                                dev->name);
 579                        break;
 580                }
 581                skb_reserve (skb, 2);        /* 16 byte align the IP header. */
 582                /* Rubicon now supports 40 bits of addressing space. */
 583                np->rx_ring[i].fraginfo =
 584                    cpu_to_le64 ( pci_map_single (
 585                                   np->pdev, skb->data, np->rx_buf_sz,
 586                                  PCI_DMA_FROMDEVICE));
 587                np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 588        }
 589
 590        /* Set RFDListPtr */
 591        writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
 592        writel (0, dev->base_addr + RFDListPtr1);
 593
 594        return;
 595}
 596
 597static int
 598start_xmit (struct sk_buff *skb, struct net_device *dev)
 599{
 600        struct netdev_private *np = netdev_priv(dev);
 601        struct netdev_desc *txdesc;
 602        unsigned entry;
 603        u32 ioaddr;
 604        u64 tfc_vlan_tag = 0;
 605
 606        if (np->link_status == 0) {        /* Link Down */
 607                dev_kfree_skb(skb);
 608                return 0;
 609        }
 610        ioaddr = dev->base_addr;
 611        entry = np->cur_tx % TX_RING_SIZE;
 612        np->tx_skbuff[entry] = skb;
 613        txdesc = &np->tx_ring[entry];
 614
 615#if 0
 616        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 617                txdesc->status |=
 618                    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 619                                 IPChecksumEnable);
 620        }
 621#endif
 622        if (np->vlan) {
 623                tfc_vlan_tag = VLANTagInsert |
 624                    ((u64)np->vlan << 32) |
 625                    ((u64)skb->priority << 45);
 626        }
 627        txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 628                                                        skb->len,
 629                                                        PCI_DMA_TODEVICE));
 630        txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 631
 632        /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 633         * Work around: Always use 1 descriptor in 10Mbps mode */
 634        if (entry % np->tx_coalesce == 0 || np->speed == 10)
 635                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 636                                              WordAlignDisable |
 637                                              TxDMAIndicate |
 638                                              (1 << FragCountShift));
 639        else
 640                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 641                                              WordAlignDisable |
 642                                              (1 << FragCountShift));
 643
 644        /* TxDMAPollNow */
 645        writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
 646        /* Schedule ISR */
 647        writel(10000, ioaddr + CountDown);
 648        np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 649        if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 650                        < TX_QUEUE_LEN - 1 && np->speed != 10) {
 651                /* do nothing */
 652        } else if (!netif_queue_stopped(dev)) {
 653                netif_stop_queue (dev);
 654        }
 655
 656        /* The first TFDListPtr */
 657        if (readl (dev->base_addr + TFDListPtr0) == 0) {
 658                writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
 659                        dev->base_addr + TFDListPtr0);
 660                writel (0, dev->base_addr + TFDListPtr1);
 661        }
 662
 663        /* NETDEV WATCHDOG timer */
 664        dev->trans_start = jiffies;
 665        return 0;
 666}
 667
 668static irqreturn_t
 669rio_interrupt (int irq, void *dev_instance)
 670{
 671        struct net_device *dev = dev_instance;
 672        struct netdev_private *np;
 673        unsigned int_status;
 674        long ioaddr;
 675        int cnt = max_intrloop;
 676        int handled = 0;
 677
 678        ioaddr = dev->base_addr;
 679        np = netdev_priv(dev);
 680        while (1) {
 681                int_status = readw (ioaddr + IntStatus);
 682                writew (int_status, ioaddr + IntStatus);
 683                int_status &= DEFAULT_INTR;
 684                if (int_status == 0 || --cnt < 0)
 685                        break;
 686                handled = 1;
 687                /* Processing received packets */
 688                if (int_status & RxDMAComplete)
 689                        receive_packet (dev);
 690                /* TxDMAComplete interrupt */
 691                if ((int_status & (TxDMAComplete|IntRequested))) {
 692                        int tx_status;
 693                        tx_status = readl (ioaddr + TxStatus);
 694                        if (tx_status & 0x01)
 695                                tx_error (dev, tx_status);
 696                        /* Free used tx skbuffs */
 697                        rio_free_tx (dev, 1);
 698                }
 699
 700                /* Handle uncommon events */
 701                if (int_status &
 702                    (HostError | LinkEvent | UpdateStats))
 703                        rio_error (dev, int_status);
 704        }
 705        if (np->cur_tx != np->old_tx)
 706                writel (100, ioaddr + CountDown);
 707        return IRQ_RETVAL(handled);
 708}
 709
 710static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 711{
 712        return le64_to_cpu(desc->fraginfo) & DMA_48BIT_MASK;
 713}
 714
 715static void
 716rio_free_tx (struct net_device *dev, int irq)
 717{
 718        struct netdev_private *np = netdev_priv(dev);
 719        int entry = np->old_tx % TX_RING_SIZE;
 720        int tx_use = 0;
 721        unsigned long flag = 0;
 722
 723        if (irq)
 724                spin_lock(&np->tx_lock);
 725        else
 726                spin_lock_irqsave(&np->tx_lock, flag);
 727
 728        /* Free used tx skbuffs */
 729        while (entry != np->cur_tx) {
 730                struct sk_buff *skb;
 731
 732                if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 733                        break;
 734                skb = np->tx_skbuff[entry];
 735                pci_unmap_single (np->pdev,
 736                                  desc_to_dma(&np->tx_ring[entry]),
 737                                  skb->len, PCI_DMA_TODEVICE);
 738                if (irq)
 739                        dev_kfree_skb_irq (skb);
 740                else
 741                        dev_kfree_skb (skb);
 742
 743                np->tx_skbuff[entry] = NULL;
 744                entry = (entry + 1) % TX_RING_SIZE;
 745                tx_use++;
 746        }
 747        if (irq)
 748                spin_unlock(&np->tx_lock);
 749        else
 750                spin_unlock_irqrestore(&np->tx_lock, flag);
 751        np->old_tx = entry;
 752
 753        /* If the ring is no longer full, clear tx_full and
 754           call netif_wake_queue() */
 755
 756        if (netif_queue_stopped(dev) &&
 757            ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 758            < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 759                netif_wake_queue (dev);
 760        }
 761}
 762
 763static void
 764tx_error (struct net_device *dev, int tx_status)
 765{
 766        struct netdev_private *np;
 767        long ioaddr = dev->base_addr;
 768        int frame_id;
 769        int i;
 770
 771        np = netdev_priv(dev);
 772
 773        frame_id = (tx_status & 0xffff0000);
 774        printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 775                dev->name, tx_status, frame_id);
 776        np->stats.tx_errors++;
 777        /* Ttransmit Underrun */
 778        if (tx_status & 0x10) {
 779                np->stats.tx_fifo_errors++;
 780                writew (readw (ioaddr + TxStartThresh) + 0x10,
 781                        ioaddr + TxStartThresh);
 782                /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 783                writew (TxReset | DMAReset | FIFOReset | NetworkReset,
 784                        ioaddr + ASICCtrl + 2);
 785                /* Wait for ResetBusy bit clear */
 786                for (i = 50; i > 0; i--) {
 787                        if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
 788                                break;
 789                        mdelay (1);
 790                }
 791                rio_free_tx (dev, 1);
 792                /* Reset TFDListPtr */
 793                writel (np->tx_ring_dma +
 794                        np->old_tx * sizeof (struct netdev_desc),
 795                        dev->base_addr + TFDListPtr0);
 796                writel (0, dev->base_addr + TFDListPtr1);
 797
 798                /* Let TxStartThresh stay default value */
 799        }
 800        /* Late Collision */
 801        if (tx_status & 0x04) {
 802                np->stats.tx_fifo_errors++;
 803                /* TxReset and clear FIFO */
 804                writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
 805                /* Wait reset done */
 806                for (i = 50; i > 0; i--) {
 807                        if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
 808                                break;
 809                        mdelay (1);
 810                }
 811                /* Let TxStartThresh stay default value */
 812        }
 813        /* Maximum Collisions */
 814#ifdef ETHER_STATS
 815        if (tx_status & 0x08)
 816                np->stats.collisions16++;
 817#else
 818        if (tx_status & 0x08)
 819                np->stats.collisions++;
 820#endif
 821        /* Restart the Tx */
 822        writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
 823}
 824
 825static int
 826receive_packet (struct net_device *dev)
 827{
 828        struct netdev_private *np = netdev_priv(dev);
 829        int entry = np->cur_rx % RX_RING_SIZE;
 830        int cnt = 30;
 831
 832        /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 833        while (1) {
 834                struct netdev_desc *desc = &np->rx_ring[entry];
 835                int pkt_len;
 836                u64 frame_status;
 837
 838                if (!(desc->status & cpu_to_le64(RFDDone)) ||
 839                    !(desc->status & cpu_to_le64(FrameStart)) ||
 840                    !(desc->status & cpu_to_le64(FrameEnd)))
 841                        break;
 842
 843                /* Chip omits the CRC. */
 844                frame_status = le64_to_cpu(desc->status);
 845                pkt_len = frame_status & 0xffff;
 846                if (--cnt < 0)
 847                        break;
 848                /* Update rx error statistics, drop packet. */
 849                if (frame_status & RFS_Errors) {
 850                        np->stats.rx_errors++;
 851                        if (frame_status & (RxRuntFrame | RxLengthError))
 852                                np->stats.rx_length_errors++;
 853                        if (frame_status & RxFCSError)
 854                                np->stats.rx_crc_errors++;
 855                        if (frame_status & RxAlignmentError && np->speed != 1000)
 856                                np->stats.rx_frame_errors++;
 857                        if (frame_status & RxFIFOOverrun)
 858                                 np->stats.rx_fifo_errors++;
 859                } else {
 860                        struct sk_buff *skb;
 861
 862                        /* Small skbuffs for short packets */
 863                        if (pkt_len > copy_thresh) {
 864                                pci_unmap_single (np->pdev,
 865                                                  desc_to_dma(desc),
 866                                                  np->rx_buf_sz,
 867                                                  PCI_DMA_FROMDEVICE);
 868                                skb_put (skb = np->rx_skbuff[entry], pkt_len);
 869                                np->rx_skbuff[entry] = NULL;
 870                        } else if ((skb = netdev_alloc_skb(dev, pkt_len + 2))) {
 871                                pci_dma_sync_single_for_cpu(np->pdev,
 872                                                            desc_to_dma(desc),
 873                                                            np->rx_buf_sz,
 874                                                            PCI_DMA_FROMDEVICE);
 875                                /* 16 byte align the IP header */
 876                                skb_reserve (skb, 2);
 877                                skb_copy_to_linear_data (skb,
 878                                                  np->rx_skbuff[entry]->data,
 879                                                  pkt_len);
 880                                skb_put (skb, pkt_len);
 881                                pci_dma_sync_single_for_device(np->pdev,
 882                                                               desc_to_dma(desc),
 883                                                               np->rx_buf_sz,
 884                                                               PCI_DMA_FROMDEVICE);
 885                        }
 886                        skb->protocol = eth_type_trans (skb, dev);
 887#if 0
 888                        /* Checksum done by hw, but csum value unavailable. */
 889                        if (np->pdev->pci_rev_id >= 0x0c &&
 890                                !(frame_status & (TCPError | UDPError | IPError))) {
 891                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 892                        }
 893#endif
 894                        netif_rx (skb);
 895                        dev->last_rx = jiffies;
 896                }
 897                entry = (entry + 1) % RX_RING_SIZE;
 898        }
 899        spin_lock(&np->rx_lock);
 900        np->cur_rx = entry;
 901        /* Re-allocate skbuffs to fill the descriptor ring */
 902        entry = np->old_rx;
 903        while (entry != np->cur_rx) {
 904                struct sk_buff *skb;
 905                /* Dropped packets don't need to re-allocate */
 906                if (np->rx_skbuff[entry] == NULL) {
 907                        skb = netdev_alloc_skb(dev, np->rx_buf_sz);
 908                        if (skb == NULL) {
 909                                np->rx_ring[entry].fraginfo = 0;
 910                                printk (KERN_INFO
 911                                        "%s: receive_packet: "
 912                                        "Unable to re-allocate Rx skbuff.#%d\n",
 913                                        dev->name, entry);
 914                                break;
 915                        }
 916                        np->rx_skbuff[entry] = skb;
 917                        /* 16 byte align the IP header */
 918                        skb_reserve (skb, 2);
 919                        np->rx_ring[entry].fraginfo =
 920                            cpu_to_le64 (pci_map_single
 921                                         (np->pdev, skb->data, np->rx_buf_sz,
 922                                          PCI_DMA_FROMDEVICE));
 923                }
 924                np->rx_ring[entry].fraginfo |=
 925                    cpu_to_le64((u64)np->rx_buf_sz << 48);
 926                np->rx_ring[entry].status = 0;
 927                entry = (entry + 1) % RX_RING_SIZE;
 928        }
 929        np->old_rx = entry;
 930        spin_unlock(&np->rx_lock);
 931        return 0;
 932}
 933
 934static void
 935rio_error (struct net_device *dev, int int_status)
 936{
 937        long ioaddr = dev->base_addr;
 938        struct netdev_private *np = netdev_priv(dev);
 939        u16 macctrl;
 940
 941        /* Link change event */
 942        if (int_status & LinkEvent) {
 943                if (mii_wait_link (dev, 10) == 0) {
 944                        printk (KERN_INFO "%s: Link up\n", dev->name);
 945                        if (np->phy_media)
 946                                mii_get_media_pcs (dev);
 947                        else
 948                                mii_get_media (dev);
 949                        if (np->speed == 1000)
 950                                np->tx_coalesce = tx_coalesce;
 951                        else
 952                                np->tx_coalesce = 1;
 953                        macctrl = 0;
 954                        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 955                        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 956                        macctrl |= (np->tx_flow) ?
 957                                TxFlowControlEnable : 0;
 958                        macctrl |= (np->rx_flow) ?
 959                                RxFlowControlEnable : 0;
 960                        writew(macctrl,        ioaddr + MACCtrl);
 961                        np->link_status = 1;
 962                        netif_carrier_on(dev);
 963                } else {
 964                        printk (KERN_INFO "%s: Link off\n", dev->name);
 965                        np->link_status = 0;
 966                        netif_carrier_off(dev);
 967                }
 968        }
 969
 970        /* UpdateStats statistics registers */
 971        if (int_status & UpdateStats) {
 972                get_stats (dev);
 973        }
 974
 975        /* PCI Error, a catastronphic error related to the bus interface
 976           occurs, set GlobalReset and HostReset to reset. */
 977        if (int_status & HostError) {
 978                printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
 979                        dev->name, int_status);
 980                writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
 981                mdelay (500);
 982        }
 983}
 984
 985static struct net_device_stats *
 986get_stats (struct net_device *dev)
 987{
 988        long ioaddr = dev->base_addr;
 989        struct netdev_private *np = netdev_priv(dev);
 990#ifdef MEM_MAPPING
 991        int i;
 992#endif
 993        unsigned int stat_reg;
 994
 995        /* All statistics registers need to be acknowledged,
 996           else statistic overflow could cause problems */
 997
 998        np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
 999        np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
1000        np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
1001        np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
1002
1003        np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1004        np->stats.collisions += readl (ioaddr + SingleColFrames)
1005                             +  readl (ioaddr + MultiColFrames);
1006
1007        /* detailed tx errors */
1008        stat_reg = readw (ioaddr + FramesAbortXSColls);
1009        np->stats.tx_aborted_errors += stat_reg;
1010        np->stats.tx_errors += stat_reg;
1011
1012        stat_reg = readw (ioaddr + CarrierSenseErrors);
1013        np->stats.tx_carrier_errors += stat_reg;
1014        np->stats.tx_errors += stat_reg;
1015
1016        /* Clear all other statistic register. */
1017        readl (ioaddr + McstOctetXmtOk);
1018        readw (ioaddr + BcstFramesXmtdOk);
1019        readl (ioaddr + McstFramesXmtdOk);
1020        readw (ioaddr + BcstFramesRcvdOk);
1021        readw (ioaddr + MacControlFramesRcvd);
1022        readw (ioaddr + FrameTooLongErrors);
1023        readw (ioaddr + InRangeLengthErrors);
1024        readw (ioaddr + FramesCheckSeqErrors);
1025        readw (ioaddr + FramesLostRxErrors);
1026        readl (ioaddr + McstOctetXmtOk);
1027        readl (ioaddr + BcstOctetXmtOk);
1028        readl (ioaddr + McstFramesXmtdOk);
1029        readl (ioaddr + FramesWDeferredXmt);
1030        readl (ioaddr + LateCollisions);
1031        readw (ioaddr + BcstFramesXmtdOk);
1032        readw (ioaddr + MacControlFramesXmtd);
1033        readw (ioaddr + FramesWEXDeferal);
1034
1035#ifdef MEM_MAPPING
1036        for (i = 0x100; i <= 0x150; i += 4)
1037                readl (ioaddr + i);
1038#endif
1039        readw (ioaddr + TxJumboFrames);
1040        readw (ioaddr + RxJumboFrames);
1041        readw (ioaddr + TCPCheckSumErrors);
1042        readw (ioaddr + UDPCheckSumErrors);
1043        readw (ioaddr + IPCheckSumErrors);
1044        return &np->stats;
1045}
1046
1047static int
1048clear_stats (struct net_device *dev)
1049{
1050        long ioaddr = dev->base_addr;
1051#ifdef MEM_MAPPING
1052        int i;
1053#endif
1054
1055        /* All statistics registers need to be acknowledged,
1056           else statistic overflow could cause problems */
1057        readl (ioaddr + FramesRcvOk);
1058        readl (ioaddr + FramesXmtOk);
1059        readl (ioaddr + OctetRcvOk);
1060        readl (ioaddr + OctetXmtOk);
1061
1062        readl (ioaddr + McstFramesRcvdOk);
1063        readl (ioaddr + SingleColFrames);
1064        readl (ioaddr + MultiColFrames);
1065        readl (ioaddr + LateCollisions);
1066        /* detailed rx errors */
1067        readw (ioaddr + FrameTooLongErrors);
1068        readw (ioaddr + InRangeLengthErrors);
1069        readw (ioaddr + FramesCheckSeqErrors);
1070        readw (ioaddr + FramesLostRxErrors);
1071
1072        /* detailed tx errors */
1073        readw (ioaddr + FramesAbortXSColls);
1074        readw (ioaddr + CarrierSenseErrors);
1075
1076        /* Clear all other statistic register. */
1077        readl (ioaddr + McstOctetXmtOk);
1078        readw (ioaddr + BcstFramesXmtdOk);
1079        readl (ioaddr + McstFramesXmtdOk);
1080        readw (ioaddr + BcstFramesRcvdOk);
1081        readw (ioaddr + MacControlFramesRcvd);
1082        readl (ioaddr + McstOctetXmtOk);
1083        readl (ioaddr + BcstOctetXmtOk);
1084        readl (ioaddr + McstFramesXmtdOk);
1085        readl (ioaddr + FramesWDeferredXmt);
1086        readw (ioaddr + BcstFramesXmtdOk);
1087        readw (ioaddr + MacControlFramesXmtd);
1088        readw (ioaddr + FramesWEXDeferal);
1089#ifdef MEM_MAPPING
1090        for (i = 0x100; i <= 0x150; i += 4)
1091                readl (ioaddr + i);
1092#endif
1093        readw (ioaddr + TxJumboFrames);
1094        readw (ioaddr + RxJumboFrames);
1095        readw (ioaddr + TCPCheckSumErrors);
1096        readw (ioaddr + UDPCheckSumErrors);
1097        readw (ioaddr + IPCheckSumErrors);
1098        return 0;
1099}
1100
1101
1102static int
1103change_mtu (struct net_device *dev, int new_mtu)
1104{
1105        struct netdev_private *np = netdev_priv(dev);
1106        int max = (np->jumbo) ? MAX_JUMBO : 1536;
1107
1108        if ((new_mtu < 68) || (new_mtu > max)) {
1109                return -EINVAL;
1110        }
1111
1112        dev->mtu = new_mtu;
1113
1114        return 0;
1115}
1116
1117static void
1118set_multicast (struct net_device *dev)
1119{
1120        long ioaddr = dev->base_addr;
1121        u32 hash_table[2];
1122        u16 rx_mode = 0;
1123        struct netdev_private *np = netdev_priv(dev);
1124
1125        hash_table[0] = hash_table[1] = 0;
1126        /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1127        hash_table[1] |= 0x02000000;
1128        if (dev->flags & IFF_PROMISC) {
1129                /* Receive all frames promiscuously. */
1130                rx_mode = ReceiveAllFrames;
1131        } else if ((dev->flags & IFF_ALLMULTI) ||
1132                        (dev->mc_count > multicast_filter_limit)) {
1133                /* Receive broadcast and multicast frames */
1134                rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1135        } else if (dev->mc_count > 0) {
1136                int i;
1137                struct dev_mc_list *mclist;
1138                /* Receive broadcast frames and multicast frames filtering
1139                   by Hashtable */
1140                rx_mode =
1141                    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1142                for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1143                                i++, mclist=mclist->next)
1144                {
1145                        int bit, index = 0;
1146                        int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1147                        /* The inverted high significant 6 bits of CRC are
1148                           used as an index to hashtable */
1149                        for (bit = 0; bit < 6; bit++)
1150                                if (crc & (1 << (31 - bit)))
1151                                        index |= (1 << bit);
1152                        hash_table[index / 32] |= (1 << (index % 32));
1153                }
1154        } else {
1155                rx_mode = ReceiveBroadcast | ReceiveUnicast;
1156        }
1157        if (np->vlan) {
1158                /* ReceiveVLANMatch field in ReceiveMode */
1159                rx_mode |= ReceiveVLANMatch;
1160        }
1161
1162        writel (hash_table[0], ioaddr + HashTable0);
1163        writel (hash_table[1], ioaddr + HashTable1);
1164        writew (rx_mode, ioaddr + ReceiveMode);
1165}
1166
1167static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1168{
1169        struct netdev_private *np = netdev_priv(dev);
1170        strcpy(info->driver, "dl2k");
1171        strcpy(info->version, DRV_VERSION);
1172        strcpy(info->bus_info, pci_name(np->pdev));
1173}
1174
1175static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1176{
1177        struct netdev_private *np = netdev_priv(dev);
1178        if (np->phy_media) {
1179                /* fiber device */
1180                cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1181                cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1182                cmd->port = PORT_FIBRE;
1183                cmd->transceiver = XCVR_INTERNAL;
1184        } else {
1185                /* copper device */
1186                cmd->supported = SUPPORTED_10baseT_Half |
1187                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1188                        | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1189                        SUPPORTED_Autoneg | SUPPORTED_MII;
1190                cmd->advertising = ADVERTISED_10baseT_Half |
1191                        ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1192                        ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1193                        ADVERTISED_Autoneg | ADVERTISED_MII;
1194                cmd->port = PORT_MII;
1195                cmd->transceiver = XCVR_INTERNAL;
1196        }
1197        if ( np->link_status ) {
1198                cmd->speed = np->speed;
1199                cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1200        } else {
1201                cmd->speed = -1;
1202                cmd->duplex = -1;
1203        }
1204        if ( np->an_enable)
1205                cmd->autoneg = AUTONEG_ENABLE;
1206        else
1207                cmd->autoneg = AUTONEG_DISABLE;
1208
1209        cmd->phy_address = np->phy_addr;
1210        return 0;
1211}
1212
1213static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1214{
1215        struct netdev_private *np = netdev_priv(dev);
1216        netif_carrier_off(dev);
1217        if (cmd->autoneg == AUTONEG_ENABLE) {
1218                if (np->an_enable)
1219                        return 0;
1220                else {
1221                        np->an_enable = 1;
1222                        mii_set_media(dev);
1223                        return 0;
1224                }
1225        } else {
1226                np->an_enable = 0;
1227                if (np->speed == 1000) {
1228                        cmd->speed = SPEED_100;
1229                        cmd->duplex = DUPLEX_FULL;
1230                        printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1231                }
1232                switch(cmd->speed + cmd->duplex) {
1233
1234                case SPEED_10 + DUPLEX_HALF:
1235                        np->speed = 10;
1236                        np->full_duplex = 0;
1237                        break;
1238
1239                case SPEED_10 + DUPLEX_FULL:
1240                        np->speed = 10;
1241                        np->full_duplex = 1;
1242                        break;
1243                case SPEED_100 + DUPLEX_HALF:
1244                        np->speed = 100;
1245                        np->full_duplex = 0;
1246                        break;
1247                case SPEED_100 + DUPLEX_FULL:
1248                        np->speed = 100;
1249                        np->full_duplex = 1;
1250                        break;
1251                case SPEED_1000 + DUPLEX_HALF:/* not supported */
1252                case SPEED_1000 + DUPLEX_FULL:/* not supported */
1253                default:
1254                        return -EINVAL;
1255                }
1256                mii_set_media(dev);
1257        }
1258        return 0;
1259}
1260
1261static u32 rio_get_link(struct net_device *dev)
1262{
1263        struct netdev_private *np = netdev_priv(dev);
1264        return np->link_status;
1265}
1266
1267static const struct ethtool_ops ethtool_ops = {
1268        .get_drvinfo = rio_get_drvinfo,
1269        .get_settings = rio_get_settings,
1270        .set_settings = rio_set_settings,
1271        .get_link = rio_get_link,
1272};
1273
1274static int
1275rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1276{
1277        int phy_addr;
1278        struct netdev_private *np = netdev_priv(dev);
1279        struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1280
1281        struct netdev_desc *desc;
1282        int i;
1283
1284        phy_addr = np->phy_addr;
1285        switch (cmd) {
1286        case SIOCDEVPRIVATE:
1287                break;
1288
1289        case SIOCDEVPRIVATE + 1:
1290                miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1291                break;
1292        case SIOCDEVPRIVATE + 2:
1293                mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1294                break;
1295        case SIOCDEVPRIVATE + 3:
1296                break;
1297        case SIOCDEVPRIVATE + 4:
1298                break;
1299        case SIOCDEVPRIVATE + 5:
1300                netif_stop_queue (dev);
1301                break;
1302        case SIOCDEVPRIVATE + 6:
1303                netif_wake_queue (dev);
1304                break;
1305        case SIOCDEVPRIVATE + 7:
1306                printk
1307                    ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1308                     netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1309                     np->old_rx);
1310                break;
1311        case SIOCDEVPRIVATE + 8:
1312                printk("TX ring:\n");
1313                for (i = 0; i < TX_RING_SIZE; i++) {
1314                        desc = &np->tx_ring[i];
1315                        printk
1316                            ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1317                             i,
1318                             (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1319                             (u32)le64_to_cpu(desc->next_desc),
1320                             (u32)le64_to_cpu(desc->status),
1321                             (u32)(le64_to_cpu(desc->fraginfo) >> 32),
1322                             (u32)le64_to_cpu(desc->fraginfo));
1323                        printk ("\n");
1324                }
1325                printk ("\n");
1326                break;
1327
1328        default:
1329                return -EOPNOTSUPP;
1330        }
1331        return 0;
1332}
1333
1334#define EEP_READ 0x0200
1335#define EEP_BUSY 0x8000
1336/* Read the EEPROM word */
1337/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1338static int
1339read_eeprom (long ioaddr, int eep_addr)
1340{
1341        int i = 1000;
1342        outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1343        while (i-- > 0) {
1344                if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1345                        return inw (ioaddr + EepromData);
1346                }
1347        }
1348        return 0;
1349}
1350
1351enum phy_ctrl_bits {
1352        MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1353        MII_DUPLEX = 0x08,
1354};
1355
1356#define mii_delay() readb(ioaddr)
1357static void
1358mii_sendbit (struct net_device *dev, u32 data)
1359{
1360        long ioaddr = dev->base_addr + PhyCtrl;
1361        data = (data) ? MII_DATA1 : 0;
1362        data |= MII_WRITE;
1363        data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1364        writeb (data, ioaddr);
1365        mii_delay ();
1366        writeb (data | MII_CLK, ioaddr);
1367        mii_delay ();
1368}
1369
1370static int
1371mii_getbit (struct net_device *dev)
1372{
1373        long ioaddr = dev->base_addr + PhyCtrl;
1374        u8 data;
1375
1376        data = (readb (ioaddr) & 0xf8) | MII_READ;
1377        writeb (data, ioaddr);
1378        mii_delay ();
1379        writeb (data | MII_CLK, ioaddr);
1380        mii_delay ();
1381        return ((readb (ioaddr) >> 1) & 1);
1382}
1383
1384static void
1385mii_send_bits (struct net_device *dev, u32 data, int len)
1386{
1387        int i;
1388        for (i = len - 1; i >= 0; i--) {
1389                mii_sendbit (dev, data & (1 << i));
1390        }
1391}
1392
1393static int
1394mii_read (struct net_device *dev, int phy_addr, int reg_num)
1395{
1396        u32 cmd;
1397        int i;
1398        u32 retval = 0;
1399
1400        /* Preamble */
1401        mii_send_bits (dev, 0xffffffff, 32);
1402        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1403        /* ST,OP = 0110'b for read operation */
1404        cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1405        mii_send_bits (dev, cmd, 14);
1406        /* Turnaround */
1407        if (mii_getbit (dev))
1408                goto err_out;
1409        /* Read data */
1410        for (i = 0; i < 16; i++) {
1411                retval |= mii_getbit (dev);
1412                retval <<= 1;
1413        }
1414        /* End cycle */
1415        mii_getbit (dev);
1416        return (retval >> 1) & 0xffff;
1417
1418      err_out:
1419        return 0;
1420}
1421static int
1422mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1423{
1424        u32 cmd;
1425
1426        /* Preamble */
1427        mii_send_bits (dev, 0xffffffff, 32);
1428        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1429        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1430        cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1431        mii_send_bits (dev, cmd, 32);
1432        /* End cycle */
1433        mii_getbit (dev);
1434        return 0;
1435}
1436static int
1437mii_wait_link (struct net_device *dev, int wait)
1438{
1439        __u16 bmsr;
1440        int phy_addr;
1441        struct netdev_private *np;
1442
1443        np = netdev_priv(dev);
1444        phy_addr = np->phy_addr;
1445
1446        do {
1447                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1448                if (bmsr & MII_BMSR_LINK_STATUS)
1449                        return 0;
1450                mdelay (1);
1451        } while (--wait > 0);
1452        return -1;
1453}
1454static int
1455mii_get_media (struct net_device *dev)
1456{
1457        __u16 negotiate;
1458        __u16 bmsr;
1459        __u16 mscr;
1460        __u16 mssr;
1461        int phy_addr;
1462        struct netdev_private *np;
1463
1464        np = netdev_priv(dev);
1465        phy_addr = np->phy_addr;
1466
1467        bmsr = mii_read (dev, phy_addr, MII_BMSR);
1468        if (np->an_enable) {
1469                if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1470                        /* Auto-Negotiation not completed */
1471                        return -1;
1472                }
1473                negotiate = mii_read (dev, phy_addr, MII_ANAR) &
1474                        mii_read (dev, phy_addr, MII_ANLPAR);
1475                mscr = mii_read (dev, phy_addr, MII_MSCR);
1476                mssr = mii_read (dev, phy_addr, MII_MSSR);
1477                if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
1478                        np->speed = 1000;
1479                        np->full_duplex = 1;
1480                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1481                } else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
1482                        np->speed = 1000;
1483                        np->full_duplex = 0;
1484                        printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1485                } else if (negotiate & MII_ANAR_100BX_FD) {
1486                        np->speed = 100;
1487                        np->full_duplex = 1;
1488                        printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1489                } else if (negotiate & MII_ANAR_100BX_HD) {
1490                        np->speed = 100;
1491                        np->full_duplex = 0;
1492                        printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1493                } else if (negotiate & MII_ANAR_10BT_FD) {
1494                        np->speed = 10;
1495                        np->full_duplex = 1;
1496                        printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1497                } else if (negotiate & MII_ANAR_10BT_HD) {
1498                        np->speed = 10;
1499                        np->full_duplex = 0;
1500                        printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1501                }
1502                if (negotiate & MII_ANAR_PAUSE) {
1503                        np->tx_flow &= 1;
1504                        np->rx_flow &= 1;
1505                } else if (negotiate & MII_ANAR_ASYMMETRIC) {
1506                        np->tx_flow = 0;
1507                        np->rx_flow &= 1;
1508                }
1509                /* else tx_flow, rx_flow = user select  */
1510        } else {
1511                __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1512                switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
1513                case MII_BMCR_SPEED_1000:
1514                        printk (KERN_INFO "Operating at 1000 Mbps, ");
1515                        break;
1516                case MII_BMCR_SPEED_100:
1517                        printk (KERN_INFO "Operating at 100 Mbps, ");
1518                        break;
1519                case 0:
1520                        printk (KERN_INFO "Operating at 10 Mbps, ");
1521                }
1522                if (bmcr & MII_BMCR_DUPLEX_MODE) {
1523                        printk ("Full duplex\n");
1524                } else {
1525                        printk ("Half duplex\n");
1526                }
1527        }
1528        if (np->tx_flow)
1529                printk(KERN_INFO "Enable Tx Flow Control\n");
1530        else
1531                printk(KERN_INFO "Disable Tx Flow Control\n");
1532        if (np->rx_flow)
1533                printk(KERN_INFO "Enable Rx Flow Control\n");
1534        else
1535                printk(KERN_INFO "Disable Rx Flow Control\n");
1536
1537        return 0;
1538}
1539
1540static int
1541mii_set_media (struct net_device *dev)
1542{
1543        __u16 pscr;
1544        __u16 bmcr;
1545        __u16 bmsr;
1546        __u16 anar;
1547        int phy_addr;
1548        struct netdev_private *np;
1549        np = netdev_priv(dev);
1550        phy_addr = np->phy_addr;
1551
1552        /* Does user set speed? */
1553        if (np->an_enable) {
1554                /* Advertise capabilities */
1555                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1556                anar = mii_read (dev, phy_addr, MII_ANAR) &
1557                             ~MII_ANAR_100BX_FD &
1558                             ~MII_ANAR_100BX_HD &
1559                             ~MII_ANAR_100BT4 &
1560                             ~MII_ANAR_10BT_FD &
1561                             ~MII_ANAR_10BT_HD;
1562                if (bmsr & MII_BMSR_100BX_FD)
1563                        anar |= MII_ANAR_100BX_FD;
1564                if (bmsr & MII_BMSR_100BX_HD)
1565                        anar |= MII_ANAR_100BX_HD;
1566                if (bmsr & MII_BMSR_100BT4)
1567                        anar |= MII_ANAR_100BT4;
1568                if (bmsr & MII_BMSR_10BT_FD)
1569                        anar |= MII_ANAR_10BT_FD;
1570                if (bmsr & MII_BMSR_10BT_HD)
1571                        anar |= MII_ANAR_10BT_HD;
1572                anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
1573                mii_write (dev, phy_addr, MII_ANAR, anar);
1574
1575                /* Enable Auto crossover */
1576                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1577                pscr |= 3 << 5;        /* 11'b */
1578                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1579
1580                /* Soft reset PHY */
1581                mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1582                bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
1583                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1584                mdelay(1);
1585        } else {
1586                /* Force speed setting */
1587                /* 1) Disable Auto crossover */
1588                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1589                pscr &= ~(3 << 5);
1590                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1591
1592                /* 2) PHY Reset */
1593                bmcr = mii_read (dev, phy_addr, MII_BMCR);
1594                bmcr |= MII_BMCR_RESET;
1595                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1596
1597                /* 3) Power Down */
1598                bmcr = 0x1940;        /* must be 0x1940 */
1599                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1600                mdelay (100);        /* wait a certain time */
1601
1602                /* 4) Advertise nothing */
1603                mii_write (dev, phy_addr, MII_ANAR, 0);
1604
1605                /* 5) Set media and Power Up */
1606                bmcr = MII_BMCR_POWER_DOWN;
1607                if (np->speed == 100) {
1608                        bmcr |= MII_BMCR_SPEED_100;
1609                        printk (KERN_INFO "Manual 100 Mbps, ");
1610                } else if (np->speed == 10) {
1611                        printk (KERN_INFO "Manual 10 Mbps, ");
1612                }
1613                if (np->full_duplex) {
1614                        bmcr |= MII_BMCR_DUPLEX_MODE;
1615                        printk ("Full duplex\n");
1616                } else {
1617                        printk ("Half duplex\n");
1618                }
1619#if 0
1620                /* Set 1000BaseT Master/Slave setting */
1621                mscr = mii_read (dev, phy_addr, MII_MSCR);
1622                mscr |= MII_MSCR_CFG_ENABLE;
1623                mscr &= ~MII_MSCR_CFG_VALUE = 0;
1624#endif
1625                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1626                mdelay(10);
1627        }
1628        return 0;
1629}
1630
1631static int
1632mii_get_media_pcs (struct net_device *dev)
1633{
1634        __u16 negotiate;
1635        __u16 bmsr;
1636        int phy_addr;
1637        struct netdev_private *np;
1638
1639        np = netdev_priv(dev);
1640        phy_addr = np->phy_addr;
1641
1642        bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1643        if (np->an_enable) {
1644                if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1645                        /* Auto-Negotiation not completed */
1646                        return -1;
1647                }
1648                negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1649                        mii_read (dev, phy_addr, PCS_ANLPAR);
1650                np->speed = 1000;
1651                if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1652                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1653                        np->full_duplex = 1;
1654                } else {
1655                        printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1656                        np->full_duplex = 0;
1657                }
1658                if (negotiate & PCS_ANAR_PAUSE) {
1659                        np->tx_flow &= 1;
1660                        np->rx_flow &= 1;
1661                } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1662                        np->tx_flow = 0;
1663                        np->rx_flow &= 1;
1664                }
1665                /* else tx_flow, rx_flow = user select  */
1666        } else {
1667                __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1668                printk (KERN_INFO "Operating at 1000 Mbps, ");
1669                if (bmcr & MII_BMCR_DUPLEX_MODE) {
1670                        printk ("Full duplex\n");
1671                } else {
1672                        printk ("Half duplex\n");
1673                }
1674        }
1675        if (np->tx_flow)
1676                printk(KERN_INFO "Enable Tx Flow Control\n");
1677        else
1678                printk(KERN_INFO "Disable Tx Flow Control\n");
1679        if (np->rx_flow)
1680                printk(KERN_INFO "Enable Rx Flow Control\n");
1681        else
1682                printk(KERN_INFO "Disable Rx Flow Control\n");
1683
1684        return 0;
1685}
1686
1687static int
1688mii_set_media_pcs (struct net_device *dev)
1689{
1690        __u16 bmcr;
1691        __u16 esr;
1692        __u16 anar;
1693        int phy_addr;
1694        struct netdev_private *np;
1695        np = netdev_priv(dev);
1696        phy_addr = np->phy_addr;
1697
1698        /* Auto-Negotiation? */
1699        if (np->an_enable) {
1700                /* Advertise capabilities */
1701                esr = mii_read (dev, phy_addr, PCS_ESR);
1702                anar = mii_read (dev, phy_addr, MII_ANAR) &
1703                        ~PCS_ANAR_HALF_DUPLEX &
1704                        ~PCS_ANAR_FULL_DUPLEX;
1705                if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1706                        anar |= PCS_ANAR_HALF_DUPLEX;
1707                if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1708                        anar |= PCS_ANAR_FULL_DUPLEX;
1709                anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1710                mii_write (dev, phy_addr, MII_ANAR, anar);
1711
1712                /* Soft reset PHY */
1713                mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1714                bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
1715                       MII_BMCR_RESET;
1716                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1717                mdelay(1);
1718        } else {
1719                /* Force speed setting */
1720                /* PHY Reset */
1721                bmcr = MII_BMCR_RESET;
1722                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1723                mdelay(10);
1724                if (np->full_duplex) {
1725                        bmcr = MII_BMCR_DUPLEX_MODE;
1726                        printk (KERN_INFO "Manual full duplex\n");
1727                } else {
1728                        bmcr = 0;
1729                        printk (KERN_INFO "Manual half duplex\n");
1730                }
1731                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1732                mdelay(10);
1733
1734                /*  Advertise nothing */
1735                mii_write (dev, phy_addr, MII_ANAR, 0);
1736        }
1737        return 0;
1738}
1739
1740
1741static int
1742rio_close (struct net_device *dev)
1743{
1744        long ioaddr = dev->base_addr;
1745        struct netdev_private *np = netdev_priv(dev);
1746        struct sk_buff *skb;
1747        int i;
1748
1749        netif_stop_queue (dev);
1750
1751        /* Disable interrupts */
1752        writew (0, ioaddr + IntEnable);
1753
1754        /* Stop Tx and Rx logics */
1755        writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1756
1757        free_irq (dev->irq, dev);
1758        del_timer_sync (&np->timer);
1759
1760        /* Free all the skbuffs in the queue. */
1761        for (i = 0; i < RX_RING_SIZE; i++) {
1762                np->rx_ring[i].status = 0;
1763                np->rx_ring[i].fraginfo = 0;
1764                skb = np->rx_skbuff[i];
1765                if (skb) {
1766                        pci_unmap_single(np->pdev,
1767                                         desc_to_dma(&np->rx_ring[i]),
1768                                         skb->len, PCI_DMA_FROMDEVICE);
1769                        dev_kfree_skb (skb);
1770                        np->rx_skbuff[i] = NULL;
1771                }
1772        }
1773        for (i = 0; i < TX_RING_SIZE; i++) {
1774                skb = np->tx_skbuff[i];
1775                if (skb) {
1776                        pci_unmap_single(np->pdev,
1777                                         desc_to_dma(&np->tx_ring[i]),
1778                                         skb->len, PCI_DMA_TODEVICE);
1779                        dev_kfree_skb (skb);
1780                        np->tx_skbuff[i] = NULL;
1781                }
1782        }
1783
1784        return 0;
1785}
1786
1787static void __devexit
1788rio_remove1 (struct pci_dev *pdev)
1789{
1790        struct net_device *dev = pci_get_drvdata (pdev);
1791
1792        if (dev) {
1793                struct netdev_private *np = netdev_priv(dev);
1794
1795                unregister_netdev (dev);
1796                pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1797                                     np->rx_ring_dma);
1798                pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1799                                     np->tx_ring_dma);
1800#ifdef MEM_MAPPING
1801                iounmap ((char *) (dev->base_addr));
1802#endif
1803                free_netdev (dev);
1804                pci_release_regions (pdev);
1805                pci_disable_device (pdev);
1806        }
1807        pci_set_drvdata (pdev, NULL);
1808}
1809
1810static struct pci_driver rio_driver = {
1811        .name                = "dl2k",
1812        .id_table        = rio_pci_tbl,
1813        .probe                = rio_probe1,
1814        .remove                = __devexit_p(rio_remove1),
1815};
1816
1817static int __init
1818rio_init (void)
1819{
1820        return pci_register_driver(&rio_driver);
1821}
1822
1823static void __exit
1824rio_exit (void)
1825{
1826        pci_unregister_driver (&rio_driver);
1827}
1828
1829module_init (rio_init);
1830module_exit (rio_exit);
1831
1832/*
1833
1834Compile command:
1835
1836gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1837
1838Read Documentation/networking/dl2k.txt for details.
1839
1840*/
1841