Showing error 1822

User: Jiri Slaby
Error type: Invalid Pointer Dereference
Error type description: A pointer which is invalid is being dereferenced
File location: drivers/mtd/devices/m25p80.c
Line in file: 418
Project: Linux Kernel
Project version: 2.6.28
Tools: Smatch (1.59)
Entered: 2013-09-11 08:47:26 UTC


Source:

  1/*
  2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
  3 *
  4 * Author: Mike Lavender, mike@steroidmicros.com
  5 *
  6 * Copyright (c) 2005, Intec Automation Inc.
  7 *
  8 * Some parts are based on lart.c by Abraham Van Der Merwe
  9 *
 10 * Cleaned up and generalized based on mtd_dataflash.c
 11 *
 12 * This code is free software; you can redistribute it and/or modify
 13 * it under the terms of the GNU General Public License version 2 as
 14 * published by the Free Software Foundation.
 15 *
 16 */
 17
 18#include <linux/init.h>
 19#include <linux/module.h>
 20#include <linux/device.h>
 21#include <linux/interrupt.h>
 22#include <linux/mutex.h>
 23
 24#include <linux/mtd/mtd.h>
 25#include <linux/mtd/partitions.h>
 26
 27#include <linux/spi/spi.h>
 28#include <linux/spi/flash.h>
 29
 30
 31#define FLASH_PAGESIZE                256
 32
 33/* Flash opcodes. */
 34#define        OPCODE_WREN                0x06        /* Write enable */
 35#define        OPCODE_RDSR                0x05        /* Read status register */
 36#define        OPCODE_WRSR                0x01        /* Write status register 1 byte */
 37#define        OPCODE_NORM_READ        0x03        /* Read data bytes (low frequency) */
 38#define        OPCODE_FAST_READ        0x0b        /* Read data bytes (high frequency) */
 39#define        OPCODE_PP                0x02        /* Page program (up to 256 bytes) */
 40#define        OPCODE_BE_4K                0x20        /* Erase 4KiB block */
 41#define        OPCODE_BE_32K                0x52        /* Erase 32KiB block */
 42#define        OPCODE_CHIP_ERASE        0xc7        /* Erase whole flash chip */
 43#define        OPCODE_SE                0xd8        /* Sector erase (usually 64KiB) */
 44#define        OPCODE_RDID                0x9f        /* Read JEDEC ID */
 45
 46/* Status Register bits. */
 47#define        SR_WIP                        1        /* Write in progress */
 48#define        SR_WEL                        2        /* Write enable latch */
 49/* meaning of other SR_* bits may differ between vendors */
 50#define        SR_BP0                        4        /* Block protect 0 */
 51#define        SR_BP1                        8        /* Block protect 1 */
 52#define        SR_BP2                        0x10        /* Block protect 2 */
 53#define        SR_SRWD                        0x80        /* SR write protect */
 54
 55/* Define max times to check status register before we give up. */
 56#define        MAX_READY_WAIT_COUNT        100000
 57#define        CMD_SIZE                4
 58
 59#ifdef CONFIG_M25PXX_USE_FAST_READ
 60#define OPCODE_READ         OPCODE_FAST_READ
 61#define FAST_READ_DUMMY_BYTE 1
 62#else
 63#define OPCODE_READ         OPCODE_NORM_READ
 64#define FAST_READ_DUMMY_BYTE 0
 65#endif
 66
 67#ifdef CONFIG_MTD_PARTITIONS
 68#define        mtd_has_partitions()        (1)
 69#else
 70#define        mtd_has_partitions()        (0)
 71#endif
 72
 73/****************************************************************************/
 74
 75struct m25p {
 76        struct spi_device        *spi;
 77        struct mutex                lock;
 78        struct mtd_info                mtd;
 79        unsigned                partitioned:1;
 80        u8                        erase_opcode;
 81        u8                        command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
 82};
 83
 84static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
 85{
 86        return container_of(mtd, struct m25p, mtd);
 87}
 88
 89/****************************************************************************/
 90
 91/*
 92 * Internal helper functions
 93 */
 94
 95/*
 96 * Read the status register, returning its value in the location
 97 * Return the status register value.
 98 * Returns negative if error occurred.
 99 */
100static int read_sr(struct m25p *flash)
101{
102        ssize_t retval;
103        u8 code = OPCODE_RDSR;
104        u8 val;
105
106        retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
107
108        if (retval < 0) {
109                dev_err(&flash->spi->dev, "error %d reading SR\n",
110                                (int) retval);
111                return retval;
112        }
113
114        return val;
115}
116
117/*
118 * Write status register 1 byte
119 * Returns negative if error occurred.
120 */
121static int write_sr(struct m25p *flash, u8 val)
122{
123        flash->command[0] = OPCODE_WRSR;
124        flash->command[1] = val;
125
126        return spi_write(flash->spi, flash->command, 2);
127}
128
129/*
130 * Set write enable latch with Write Enable command.
131 * Returns negative if error occurred.
132 */
133static inline int write_enable(struct m25p *flash)
134{
135        u8        code = OPCODE_WREN;
136
137        return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
138}
139
140
141/*
142 * Service routine to read status register until ready, or timeout occurs.
143 * Returns non-zero if error.
144 */
145static int wait_till_ready(struct m25p *flash)
146{
147        int count;
148        int sr;
149
150        /* one chip guarantees max 5 msec wait here after page writes,
151         * but potentially three seconds (!) after page erase.
152         */
153        for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
154                if ((sr = read_sr(flash)) < 0)
155                        break;
156                else if (!(sr & SR_WIP))
157                        return 0;
158
159                /* REVISIT sometimes sleeping would be best */
160        }
161
162        return 1;
163}
164
165/*
166 * Erase the whole flash memory
167 *
168 * Returns 0 if successful, non-zero otherwise.
169 */
170static int erase_chip(struct m25p *flash)
171{
172        DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB\n",
173                        flash->spi->dev.bus_id, __func__,
174                        flash->mtd.size / 1024);
175
176        /* Wait until finished previous write command. */
177        if (wait_till_ready(flash))
178                return 1;
179
180        /* Send write enable, then erase commands. */
181        write_enable(flash);
182
183        /* Set up command buffer. */
184        flash->command[0] = OPCODE_CHIP_ERASE;
185
186        spi_write(flash->spi, flash->command, 1);
187
188        return 0;
189}
190
191/*
192 * Erase one sector of flash memory at offset ``offset'' which is any
193 * address within the sector which should be erased.
194 *
195 * Returns 0 if successful, non-zero otherwise.
196 */
197static int erase_sector(struct m25p *flash, u32 offset)
198{
199        DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
200                        flash->spi->dev.bus_id, __func__,
201                        flash->mtd.erasesize / 1024, offset);
202
203        /* Wait until finished previous write command. */
204        if (wait_till_ready(flash))
205                return 1;
206
207        /* Send write enable, then erase commands. */
208        write_enable(flash);
209
210        /* Set up command buffer. */
211        flash->command[0] = flash->erase_opcode;
212        flash->command[1] = offset >> 16;
213        flash->command[2] = offset >> 8;
214        flash->command[3] = offset;
215
216        spi_write(flash->spi, flash->command, CMD_SIZE);
217
218        return 0;
219}
220
221/****************************************************************************/
222
223/*
224 * MTD implementation
225 */
226
227/*
228 * Erase an address range on the flash chip.  The address range may extend
229 * one or more erase sectors.  Return an error is there is a problem erasing.
230 */
231static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
232{
233        struct m25p *flash = mtd_to_m25p(mtd);
234        u32 addr,len;
235
236        DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
237                        flash->spi->dev.bus_id, __func__, "at",
238                        (u32)instr->addr, instr->len);
239
240        /* sanity checks */
241        if (instr->addr + instr->len > flash->mtd.size)
242                return -EINVAL;
243        if ((instr->addr % mtd->erasesize) != 0
244                        || (instr->len % mtd->erasesize) != 0) {
245                return -EINVAL;
246        }
247
248        addr = instr->addr;
249        len = instr->len;
250
251        mutex_lock(&flash->lock);
252
253        /* whole-chip erase? */
254        if (len == flash->mtd.size && erase_chip(flash)) {
255                instr->state = MTD_ERASE_FAILED;
256                mutex_unlock(&flash->lock);
257                return -EIO;
258
259        /* REVISIT in some cases we could speed up erasing large regions
260         * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
261         * to use "small sector erase", but that's not always optimal.
262         */
263
264        /* "sector"-at-a-time erase */
265        } else {
266                while (len) {
267                        if (erase_sector(flash, addr)) {
268                                instr->state = MTD_ERASE_FAILED;
269                                mutex_unlock(&flash->lock);
270                                return -EIO;
271                        }
272
273                        addr += mtd->erasesize;
274                        len -= mtd->erasesize;
275                }
276        }
277
278        mutex_unlock(&flash->lock);
279
280        instr->state = MTD_ERASE_DONE;
281        mtd_erase_callback(instr);
282
283        return 0;
284}
285
286/*
287 * Read an address range from the flash chip.  The address range
288 * may be any size provided it is within the physical boundaries.
289 */
290static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
291        size_t *retlen, u_char *buf)
292{
293        struct m25p *flash = mtd_to_m25p(mtd);
294        struct spi_transfer t[2];
295        struct spi_message m;
296
297        DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
298                        flash->spi->dev.bus_id, __func__, "from",
299                        (u32)from, len);
300
301        /* sanity checks */
302        if (!len)
303                return 0;
304
305        if (from + len > flash->mtd.size)
306                return -EINVAL;
307
308        spi_message_init(&m);
309        memset(t, 0, (sizeof t));
310
311        /* NOTE:
312         * OPCODE_FAST_READ (if available) is faster.
313         * Should add 1 byte DUMMY_BYTE.
314         */
315        t[0].tx_buf = flash->command;
316        t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
317        spi_message_add_tail(&t[0], &m);
318
319        t[1].rx_buf = buf;
320        t[1].len = len;
321        spi_message_add_tail(&t[1], &m);
322
323        /* Byte count starts at zero. */
324        if (retlen)
325                *retlen = 0;
326
327        mutex_lock(&flash->lock);
328
329        /* Wait till previous write/erase is done. */
330        if (wait_till_ready(flash)) {
331                /* REVISIT status return?? */
332                mutex_unlock(&flash->lock);
333                return 1;
334        }
335
336        /* FIXME switch to OPCODE_FAST_READ.  It's required for higher
337         * clocks; and at this writing, every chip this driver handles
338         * supports that opcode.
339         */
340
341        /* Set up the write data buffer. */
342        flash->command[0] = OPCODE_READ;
343        flash->command[1] = from >> 16;
344        flash->command[2] = from >> 8;
345        flash->command[3] = from;
346
347        spi_sync(flash->spi, &m);
348
349        *retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
350
351        mutex_unlock(&flash->lock);
352
353        return 0;
354}
355
356/*
357 * Write an address range to the flash chip.  Data must be written in
358 * FLASH_PAGESIZE chunks.  The address range may be any size provided
359 * it is within the physical boundaries.
360 */
361static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
362        size_t *retlen, const u_char *buf)
363{
364        struct m25p *flash = mtd_to_m25p(mtd);
365        u32 page_offset, page_size;
366        struct spi_transfer t[2];
367        struct spi_message m;
368
369        DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
370                        flash->spi->dev.bus_id, __func__, "to",
371                        (u32)to, len);
372
373        if (retlen)
374                *retlen = 0;
375
376        /* sanity checks */
377        if (!len)
378                return(0);
379
380        if (to + len > flash->mtd.size)
381                return -EINVAL;
382
383        spi_message_init(&m);
384        memset(t, 0, (sizeof t));
385
386        t[0].tx_buf = flash->command;
387        t[0].len = CMD_SIZE;
388        spi_message_add_tail(&t[0], &m);
389
390        t[1].tx_buf = buf;
391        spi_message_add_tail(&t[1], &m);
392
393        mutex_lock(&flash->lock);
394
395        /* Wait until finished previous write command. */
396        if (wait_till_ready(flash)) {
397                mutex_unlock(&flash->lock);
398                return 1;
399        }
400
401        write_enable(flash);
402
403        /* Set up the opcode in the write buffer. */
404        flash->command[0] = OPCODE_PP;
405        flash->command[1] = to >> 16;
406        flash->command[2] = to >> 8;
407        flash->command[3] = to;
408
409        /* what page do we start with? */
410        page_offset = to % FLASH_PAGESIZE;
411
412        /* do all the bytes fit onto one page? */
413        if (page_offset + len <= FLASH_PAGESIZE) {
414                t[1].len = len;
415
416                spi_sync(flash->spi, &m);
417
418                *retlen = m.actual_length - CMD_SIZE;
419        } else {
420                u32 i;
421
422                /* the size of data remaining on the first page */
423                page_size = FLASH_PAGESIZE - page_offset;
424
425                t[1].len = page_size;
426                spi_sync(flash->spi, &m);
427
428                *retlen = m.actual_length - CMD_SIZE;
429
430                /* write everything in PAGESIZE chunks */
431                for (i = page_size; i < len; i += page_size) {
432                        page_size = len - i;
433                        if (page_size > FLASH_PAGESIZE)
434                                page_size = FLASH_PAGESIZE;
435
436                        /* write the next page to flash */
437                        flash->command[1] = (to + i) >> 16;
438                        flash->command[2] = (to + i) >> 8;
439                        flash->command[3] = (to + i);
440
441                        t[1].tx_buf = buf + i;
442                        t[1].len = page_size;
443
444                        wait_till_ready(flash);
445
446                        write_enable(flash);
447
448                        spi_sync(flash->spi, &m);
449
450                        if (retlen)
451                                *retlen += m.actual_length - CMD_SIZE;
452                }
453        }
454
455        mutex_unlock(&flash->lock);
456
457        return 0;
458}
459
460
461/****************************************************************************/
462
463/*
464 * SPI device driver setup and teardown
465 */
466
467struct flash_info {
468        char                *name;
469
470        /* JEDEC id zero means "no ID" (most older chips); otherwise it has
471         * a high byte of zero plus three data bytes: the manufacturer id,
472         * then a two byte device id.
473         */
474        u32                jedec_id;
475        u16             ext_id;
476
477        /* The size listed here is what works with OPCODE_SE, which isn't
478         * necessarily called a "sector" by the vendor.
479         */
480        unsigned        sector_size;
481        u16                n_sectors;
482
483        u16                flags;
484#define        SECT_4K                0x01                /* OPCODE_BE_4K works uniformly */
485};
486
487
488/* NOTE: double check command sets and memory organization when you add
489 * more flash chips.  This current list focusses on newer chips, which
490 * have been converging on command sets which including JEDEC ID.
491 */
492static struct flash_info __devinitdata m25p_data [] = {
493
494        /* Atmel -- some are (confusingly) marketed as "DataFlash" */
495        { "at25fs010",  0x1f6601, 0, 32 * 1024, 4, SECT_4K, },
496        { "at25fs040",  0x1f6604, 0, 64 * 1024, 8, SECT_4K, },
497
498        { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, },
499        { "at25df641",  0x1f4800, 0, 64 * 1024, 128, SECT_4K, },
500
501        { "at26f004",   0x1f0400, 0, 64 * 1024, 8, SECT_4K, },
502        { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, },
503        { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, },
504        { "at26df321",  0x1f4701, 0, 64 * 1024, 64, SECT_4K, },
505
506        /* Spansion -- single (large) sector size only, at least
507         * for the chips listed here (without boot sectors).
508         */
509        { "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
510        { "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
511        { "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
512        { "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
513        { "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
514        { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
515        { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
516
517        /* SST -- large erase sizes are "overlays", "sectors" are 4K */
518        { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, },
519        { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, },
520        { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, },
521        { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, },
522
523        /* ST Microelectronics -- newer production may have feature updates */
524        { "m25p05",  0x202010,  0, 32 * 1024, 2, },
525        { "m25p10",  0x202011,  0, 32 * 1024, 4, },
526        { "m25p20",  0x202012,  0, 64 * 1024, 4, },
527        { "m25p40",  0x202013,  0, 64 * 1024, 8, },
528        { "m25p80",         0,  0, 64 * 1024, 16, },
529        { "m25p16",  0x202015,  0, 64 * 1024, 32, },
530        { "m25p32",  0x202016,  0, 64 * 1024, 64, },
531        { "m25p64",  0x202017,  0, 64 * 1024, 128, },
532        { "m25p128", 0x202018, 0, 256 * 1024, 64, },
533
534        { "m45pe80", 0x204014,  0, 64 * 1024, 16, },
535        { "m45pe16", 0x204015,  0, 64 * 1024, 32, },
536
537        { "m25pe80", 0x208014,  0, 64 * 1024, 16, },
538        { "m25pe16", 0x208015,  0, 64 * 1024, 32, SECT_4K, },
539
540        /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
541        { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
542        { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
543        { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
544        { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
545        { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
546        { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
547        { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
548};
549
550static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
551{
552        int                        tmp;
553        u8                        code = OPCODE_RDID;
554        u8                        id[5];
555        u32                        jedec;
556        u16                     ext_jedec;
557        struct flash_info        *info;
558
559        /* JEDEC also defines an optional "extended device information"
560         * string for after vendor-specific data, after the three bytes
561         * we use here.  Supporting some chips might require using it.
562         */
563        tmp = spi_write_then_read(spi, &code, 1, id, 5);
564        if (tmp < 0) {
565                DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
566                        spi->dev.bus_id, tmp);
567                return NULL;
568        }
569        jedec = id[0];
570        jedec = jedec << 8;
571        jedec |= id[1];
572        jedec = jedec << 8;
573        jedec |= id[2];
574
575        ext_jedec = id[3] << 8 | id[4];
576
577        for (tmp = 0, info = m25p_data;
578                        tmp < ARRAY_SIZE(m25p_data);
579                        tmp++, info++) {
580                if (info->jedec_id == jedec) {
581                        if (info->ext_id != 0 && info->ext_id != ext_jedec)
582                                continue;
583                        return info;
584                }
585        }
586        dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
587        return NULL;
588}
589
590
591/*
592 * board specific setup should have ensured the SPI clock used here
593 * matches what the READ command supports, at least until this driver
594 * understands FAST_READ (for clocks over 25 MHz).
595 */
596static int __devinit m25p_probe(struct spi_device *spi)
597{
598        struct flash_platform_data        *data;
599        struct m25p                        *flash;
600        struct flash_info                *info;
601        unsigned                        i;
602
603        /* Platform data helps sort out which chip type we have, as
604         * well as how this board partitions it.  If we don't have
605         * a chip ID, try the JEDEC id commands; they'll work for most
606         * newer chips, even if we don't recognize the particular chip.
607         */
608        data = spi->dev.platform_data;
609        if (data && data->type) {
610                for (i = 0, info = m25p_data;
611                                i < ARRAY_SIZE(m25p_data);
612                                i++, info++) {
613                        if (strcmp(data->type, info->name) == 0)
614                                break;
615                }
616
617                /* unrecognized chip? */
618                if (i == ARRAY_SIZE(m25p_data)) {
619                        DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
620                                        spi->dev.bus_id, data->type);
621                        info = NULL;
622
623                /* recognized; is that chip really what's there? */
624                } else if (info->jedec_id) {
625                        struct flash_info        *chip = jedec_probe(spi);
626
627                        if (!chip || chip != info) {
628                                dev_warn(&spi->dev, "found %s, expected %s\n",
629                                                chip ? chip->name : "UNKNOWN",
630                                                info->name);
631                                info = NULL;
632                        }
633                }
634        } else
635                info = jedec_probe(spi);
636
637        if (!info)
638                return -ENODEV;
639
640        flash = kzalloc(sizeof *flash, GFP_KERNEL);
641        if (!flash)
642                return -ENOMEM;
643
644        flash->spi = spi;
645        mutex_init(&flash->lock);
646        dev_set_drvdata(&spi->dev, flash);
647
648        /*
649         * Atmel serial flash tend to power up
650         * with the software protection bits set
651         */
652
653        if (info->jedec_id >> 16 == 0x1f) {
654                write_enable(flash);
655                write_sr(flash, 0);
656        }
657
658        if (data && data->name)
659                flash->mtd.name = data->name;
660        else
661                flash->mtd.name = spi->dev.bus_id;
662
663        flash->mtd.type = MTD_NORFLASH;
664        flash->mtd.writesize = 1;
665        flash->mtd.flags = MTD_CAP_NORFLASH;
666        flash->mtd.size = info->sector_size * info->n_sectors;
667        flash->mtd.erase = m25p80_erase;
668        flash->mtd.read = m25p80_read;
669        flash->mtd.write = m25p80_write;
670
671        /* prefer "small sector" erase if possible */
672        if (info->flags & SECT_4K) {
673                flash->erase_opcode = OPCODE_BE_4K;
674                flash->mtd.erasesize = 4096;
675        } else {
676                flash->erase_opcode = OPCODE_SE;
677                flash->mtd.erasesize = info->sector_size;
678        }
679
680        dev_info(&spi->dev, "%s (%d Kbytes)\n", info->name,
681                        flash->mtd.size / 1024);
682
683        DEBUG(MTD_DEBUG_LEVEL2,
684                "mtd .name = %s, .size = 0x%.8x (%uMiB) "
685                        ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
686                flash->mtd.name,
687                flash->mtd.size, flash->mtd.size / (1024*1024),
688                flash->mtd.erasesize, flash->mtd.erasesize / 1024,
689                flash->mtd.numeraseregions);
690
691        if (flash->mtd.numeraseregions)
692                for (i = 0; i < flash->mtd.numeraseregions; i++)
693                        DEBUG(MTD_DEBUG_LEVEL2,
694                                "mtd.eraseregions[%d] = { .offset = 0x%.8x, "
695                                ".erasesize = 0x%.8x (%uKiB), "
696                                ".numblocks = %d }\n",
697                                i, flash->mtd.eraseregions[i].offset,
698                                flash->mtd.eraseregions[i].erasesize,
699                                flash->mtd.eraseregions[i].erasesize / 1024,
700                                flash->mtd.eraseregions[i].numblocks);
701
702
703        /* partitions should match sector boundaries; and it may be good to
704         * use readonly partitions for writeprotected sectors (BP2..BP0).
705         */
706        if (mtd_has_partitions()) {
707                struct mtd_partition        *parts = NULL;
708                int                        nr_parts = 0;
709
710#ifdef CONFIG_MTD_CMDLINE_PARTS
711                static const char *part_probes[] = { "cmdlinepart", NULL, };
712
713                nr_parts = parse_mtd_partitions(&flash->mtd,
714                                part_probes, &parts, 0);
715#endif
716
717                if (nr_parts <= 0 && data && data->parts) {
718                        parts = data->parts;
719                        nr_parts = data->nr_parts;
720                }
721
722                if (nr_parts > 0) {
723                        for (i = 0; i < nr_parts; i++) {
724                                DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
725                                        "{.name = %s, .offset = 0x%.8x, "
726                                                ".size = 0x%.8x (%uKiB) }\n",
727                                        i, parts[i].name,
728                                        parts[i].offset,
729                                        parts[i].size,
730                                        parts[i].size / 1024);
731                        }
732                        flash->partitioned = 1;
733                        return add_mtd_partitions(&flash->mtd, parts, nr_parts);
734                }
735        } else if (data->nr_parts)
736                dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
737                                data->nr_parts, data->name);
738
739        return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
740}
741
742
743static int __devexit m25p_remove(struct spi_device *spi)
744{
745        struct m25p        *flash = dev_get_drvdata(&spi->dev);
746        int                status;
747
748        /* Clean up MTD stuff. */
749        if (mtd_has_partitions() && flash->partitioned)
750                status = del_mtd_partitions(&flash->mtd);
751        else
752                status = del_mtd_device(&flash->mtd);
753        if (status == 0)
754                kfree(flash);
755        return 0;
756}
757
758
759static struct spi_driver m25p80_driver = {
760        .driver = {
761                .name        = "m25p80",
762                .bus        = &spi_bus_type,
763                .owner        = THIS_MODULE,
764        },
765        .probe        = m25p_probe,
766        .remove        = __devexit_p(m25p_remove),
767
768        /* REVISIT: many of these chips have deep power-down modes, which
769         * should clearly be entered on suspend() to minimize power use.
770         * And also when they're otherwise idle...
771         */
772};
773
774
775static int m25p80_init(void)
776{
777        return spi_register_driver(&m25p80_driver);
778}
779
780
781static void m25p80_exit(void)
782{
783        spi_unregister_driver(&m25p80_driver);
784}
785
786
787module_init(m25p80_init);
788module_exit(m25p80_exit);
789
790MODULE_LICENSE("GPL");
791MODULE_AUTHOR("Mike Lavender");
792MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");