Showing error 1793

User: Jiri Slaby
Error type: Invalid Pointer Dereference
Error type description: A pointer which is invalid is being dereferenced
File location: drivers/ide/ide-iops.c
Line in file: 791
Project: Linux Kernel
Project version: 2.6.28
Tools: Smatch (1.59)
Entered: 2013-09-11 08:47:26 UTC


Source:

   1/*
   2 *  Copyright (C) 2000-2002        Andre Hedrick <andre@linux-ide.org>
   3 *  Copyright (C) 2003                Red Hat
   4 *
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/types.h>
   9#include <linux/string.h>
  10#include <linux/kernel.h>
  11#include <linux/timer.h>
  12#include <linux/mm.h>
  13#include <linux/interrupt.h>
  14#include <linux/major.h>
  15#include <linux/errno.h>
  16#include <linux/genhd.h>
  17#include <linux/blkpg.h>
  18#include <linux/slab.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/ide.h>
  22#include <linux/bitops.h>
  23#include <linux/nmi.h>
  24
  25#include <asm/byteorder.h>
  26#include <asm/irq.h>
  27#include <asm/uaccess.h>
  28#include <asm/io.h>
  29
  30/*
  31 *        Conventional PIO operations for ATA devices
  32 */
  33
  34static u8 ide_inb (unsigned long port)
  35{
  36        return (u8) inb(port);
  37}
  38
  39static void ide_outb (u8 val, unsigned long port)
  40{
  41        outb(val, port);
  42}
  43
  44/*
  45 *        MMIO operations, typically used for SATA controllers
  46 */
  47
  48static u8 ide_mm_inb (unsigned long port)
  49{
  50        return (u8) readb((void __iomem *) port);
  51}
  52
  53static void ide_mm_outb (u8 value, unsigned long port)
  54{
  55        writeb(value, (void __iomem *) port);
  56}
  57
  58void SELECT_DRIVE (ide_drive_t *drive)
  59{
  60        ide_hwif_t *hwif = drive->hwif;
  61        const struct ide_port_ops *port_ops = hwif->port_ops;
  62        ide_task_t task;
  63
  64        if (port_ops && port_ops->selectproc)
  65                port_ops->selectproc(drive);
  66
  67        memset(&task, 0, sizeof(task));
  68        task.tf_flags = IDE_TFLAG_OUT_DEVICE;
  69
  70        drive->hwif->tp_ops->tf_load(drive, &task);
  71}
  72
  73void SELECT_MASK(ide_drive_t *drive, int mask)
  74{
  75        const struct ide_port_ops *port_ops = drive->hwif->port_ops;
  76
  77        if (port_ops && port_ops->maskproc)
  78                port_ops->maskproc(drive, mask);
  79}
  80
  81void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
  82{
  83        if (hwif->host_flags & IDE_HFLAG_MMIO)
  84                writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
  85        else
  86                outb(cmd, hwif->io_ports.command_addr);
  87}
  88EXPORT_SYMBOL_GPL(ide_exec_command);
  89
  90u8 ide_read_status(ide_hwif_t *hwif)
  91{
  92        if (hwif->host_flags & IDE_HFLAG_MMIO)
  93                return readb((void __iomem *)hwif->io_ports.status_addr);
  94        else
  95                return inb(hwif->io_ports.status_addr);
  96}
  97EXPORT_SYMBOL_GPL(ide_read_status);
  98
  99u8 ide_read_altstatus(ide_hwif_t *hwif)
 100{
 101        if (hwif->host_flags & IDE_HFLAG_MMIO)
 102                return readb((void __iomem *)hwif->io_ports.ctl_addr);
 103        else
 104                return inb(hwif->io_ports.ctl_addr);
 105}
 106EXPORT_SYMBOL_GPL(ide_read_altstatus);
 107
 108u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
 109{
 110        if (hwif->host_flags & IDE_HFLAG_MMIO)
 111                return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
 112        else
 113                return inb(hwif->dma_base + ATA_DMA_STATUS);
 114}
 115EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
 116
 117void ide_set_irq(ide_hwif_t *hwif, int on)
 118{
 119        u8 ctl = ATA_DEVCTL_OBS;
 120
 121        if (on == 4) { /* hack for SRST */
 122                ctl |= 4;
 123                on &= ~4;
 124        }
 125
 126        ctl |= on ? 0 : 2;
 127
 128        if (hwif->host_flags & IDE_HFLAG_MMIO)
 129                writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
 130        else
 131                outb(ctl, hwif->io_ports.ctl_addr);
 132}
 133EXPORT_SYMBOL_GPL(ide_set_irq);
 134
 135void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
 136{
 137        ide_hwif_t *hwif = drive->hwif;
 138        struct ide_io_ports *io_ports = &hwif->io_ports;
 139        struct ide_taskfile *tf = &task->tf;
 140        void (*tf_outb)(u8 addr, unsigned long port);
 141        u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
 142        u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
 143
 144        if (mmio)
 145                tf_outb = ide_mm_outb;
 146        else
 147                tf_outb = ide_outb;
 148
 149        if (task->tf_flags & IDE_TFLAG_FLAGGED)
 150                HIHI = 0xFF;
 151
 152        if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
 153                u16 data = (tf->hob_data << 8) | tf->data;
 154
 155                if (mmio)
 156                        writew(data, (void __iomem *)io_ports->data_addr);
 157                else
 158                        outw(data, io_ports->data_addr);
 159        }
 160
 161        if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
 162                tf_outb(tf->hob_feature, io_ports->feature_addr);
 163        if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
 164                tf_outb(tf->hob_nsect, io_ports->nsect_addr);
 165        if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
 166                tf_outb(tf->hob_lbal, io_ports->lbal_addr);
 167        if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
 168                tf_outb(tf->hob_lbam, io_ports->lbam_addr);
 169        if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
 170                tf_outb(tf->hob_lbah, io_ports->lbah_addr);
 171
 172        if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
 173                tf_outb(tf->feature, io_ports->feature_addr);
 174        if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
 175                tf_outb(tf->nsect, io_ports->nsect_addr);
 176        if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
 177                tf_outb(tf->lbal, io_ports->lbal_addr);
 178        if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
 179                tf_outb(tf->lbam, io_ports->lbam_addr);
 180        if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
 181                tf_outb(tf->lbah, io_ports->lbah_addr);
 182
 183        if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
 184                tf_outb((tf->device & HIHI) | drive->select,
 185                         io_ports->device_addr);
 186}
 187EXPORT_SYMBOL_GPL(ide_tf_load);
 188
 189void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
 190{
 191        ide_hwif_t *hwif = drive->hwif;
 192        struct ide_io_ports *io_ports = &hwif->io_ports;
 193        struct ide_taskfile *tf = &task->tf;
 194        void (*tf_outb)(u8 addr, unsigned long port);
 195        u8 (*tf_inb)(unsigned long port);
 196        u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
 197
 198        if (mmio) {
 199                tf_outb = ide_mm_outb;
 200                tf_inb  = ide_mm_inb;
 201        } else {
 202                tf_outb = ide_outb;
 203                tf_inb  = ide_inb;
 204        }
 205
 206        if (task->tf_flags & IDE_TFLAG_IN_DATA) {
 207                u16 data;
 208
 209                if (mmio)
 210                        data = readw((void __iomem *)io_ports->data_addr);
 211                else
 212                        data = inw(io_ports->data_addr);
 213
 214                tf->data = data & 0xff;
 215                tf->hob_data = (data >> 8) & 0xff;
 216        }
 217
 218        /* be sure we're looking at the low order bits */
 219        tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
 220
 221        if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
 222                tf->feature = tf_inb(io_ports->feature_addr);
 223        if (task->tf_flags & IDE_TFLAG_IN_NSECT)
 224                tf->nsect  = tf_inb(io_ports->nsect_addr);
 225        if (task->tf_flags & IDE_TFLAG_IN_LBAL)
 226                tf->lbal   = tf_inb(io_ports->lbal_addr);
 227        if (task->tf_flags & IDE_TFLAG_IN_LBAM)
 228                tf->lbam   = tf_inb(io_ports->lbam_addr);
 229        if (task->tf_flags & IDE_TFLAG_IN_LBAH)
 230                tf->lbah   = tf_inb(io_ports->lbah_addr);
 231        if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
 232                tf->device = tf_inb(io_ports->device_addr);
 233
 234        if (task->tf_flags & IDE_TFLAG_LBA48) {
 235                tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
 236
 237                if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
 238                        tf->hob_feature = tf_inb(io_ports->feature_addr);
 239                if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
 240                        tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
 241                if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
 242                        tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
 243                if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
 244                        tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
 245                if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
 246                        tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
 247        }
 248}
 249EXPORT_SYMBOL_GPL(ide_tf_read);
 250
 251/*
 252 * Some localbus EIDE interfaces require a special access sequence
 253 * when using 32-bit I/O instructions to transfer data.  We call this
 254 * the "vlb_sync" sequence, which consists of three successive reads
 255 * of the sector count register location, with interrupts disabled
 256 * to ensure that the reads all happen together.
 257 */
 258static void ata_vlb_sync(unsigned long port)
 259{
 260        (void)inb(port);
 261        (void)inb(port);
 262        (void)inb(port);
 263}
 264
 265/*
 266 * This is used for most PIO data transfers *from* the IDE interface
 267 *
 268 * These routines will round up any request for an odd number of bytes,
 269 * so if an odd len is specified, be sure that there's at least one
 270 * extra byte allocated for the buffer.
 271 */
 272void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
 273                    unsigned int len)
 274{
 275        ide_hwif_t *hwif = drive->hwif;
 276        struct ide_io_ports *io_ports = &hwif->io_ports;
 277        unsigned long data_addr = io_ports->data_addr;
 278        u8 io_32bit = drive->io_32bit;
 279        u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
 280
 281        len++;
 282
 283        if (io_32bit) {
 284                unsigned long uninitialized_var(flags);
 285
 286                if ((io_32bit & 2) && !mmio) {
 287                        local_irq_save(flags);
 288                        ata_vlb_sync(io_ports->nsect_addr);
 289                }
 290
 291                if (mmio)
 292                        __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
 293                else
 294                        insl(data_addr, buf, len / 4);
 295
 296                if ((io_32bit & 2) && !mmio)
 297                        local_irq_restore(flags);
 298
 299                if ((len & 3) >= 2) {
 300                        if (mmio)
 301                                __ide_mm_insw((void __iomem *)data_addr,
 302                                                (u8 *)buf + (len & ~3), 1);
 303                        else
 304                                insw(data_addr, (u8 *)buf + (len & ~3), 1);
 305                }
 306        } else {
 307                if (mmio)
 308                        __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
 309                else
 310                        insw(data_addr, buf, len / 2);
 311        }
 312}
 313EXPORT_SYMBOL_GPL(ide_input_data);
 314
 315/*
 316 * This is used for most PIO data transfers *to* the IDE interface
 317 */
 318void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
 319                     unsigned int len)
 320{
 321        ide_hwif_t *hwif = drive->hwif;
 322        struct ide_io_ports *io_ports = &hwif->io_ports;
 323        unsigned long data_addr = io_ports->data_addr;
 324        u8 io_32bit = drive->io_32bit;
 325        u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
 326
 327        if (io_32bit) {
 328                unsigned long uninitialized_var(flags);
 329
 330                if ((io_32bit & 2) && !mmio) {
 331                        local_irq_save(flags);
 332                        ata_vlb_sync(io_ports->nsect_addr);
 333                }
 334
 335                if (mmio)
 336                        __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
 337                else
 338                        outsl(data_addr, buf, len / 4);
 339
 340                if ((io_32bit & 2) && !mmio)
 341                        local_irq_restore(flags);
 342
 343                if ((len & 3) >= 2) {
 344                        if (mmio)
 345                                __ide_mm_outsw((void __iomem *)data_addr,
 346                                                 (u8 *)buf + (len & ~3), 1);
 347                        else
 348                                outsw(data_addr, (u8 *)buf + (len & ~3), 1);
 349                }
 350        } else {
 351                if (mmio)
 352                        __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
 353                else
 354                        outsw(data_addr, buf, len / 2);
 355        }
 356}
 357EXPORT_SYMBOL_GPL(ide_output_data);
 358
 359u8 ide_read_error(ide_drive_t *drive)
 360{
 361        ide_task_t task;
 362
 363        memset(&task, 0, sizeof(task));
 364        task.tf_flags = IDE_TFLAG_IN_FEATURE;
 365
 366        drive->hwif->tp_ops->tf_read(drive, &task);
 367
 368        return task.tf.error;
 369}
 370EXPORT_SYMBOL_GPL(ide_read_error);
 371
 372void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
 373{
 374        ide_task_t task;
 375
 376        memset(&task, 0, sizeof(task));
 377        task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
 378                        IDE_TFLAG_IN_NSECT;
 379
 380        drive->hwif->tp_ops->tf_read(drive, &task);
 381
 382        *bcount = (task.tf.lbah << 8) | task.tf.lbam;
 383        *ireason = task.tf.nsect & 3;
 384}
 385EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
 386
 387const struct ide_tp_ops default_tp_ops = {
 388        .exec_command                = ide_exec_command,
 389        .read_status                = ide_read_status,
 390        .read_altstatus                = ide_read_altstatus,
 391        .read_sff_dma_status        = ide_read_sff_dma_status,
 392
 393        .set_irq                = ide_set_irq,
 394
 395        .tf_load                = ide_tf_load,
 396        .tf_read                = ide_tf_read,
 397
 398        .input_data                = ide_input_data,
 399        .output_data                = ide_output_data,
 400};
 401
 402void ide_fix_driveid(u16 *id)
 403{
 404#ifndef __LITTLE_ENDIAN
 405# ifdef __BIG_ENDIAN
 406        int i;
 407
 408        for (i = 0; i < 256; i++)
 409                id[i] = __le16_to_cpu(id[i]);
 410# else
 411#  error "Please fix <asm/byteorder.h>"
 412# endif
 413#endif
 414}
 415
 416/*
 417 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
 418 * removing leading/trailing blanks and compressing internal blanks.
 419 * It is primarily used to tidy up the model name/number fields as
 420 * returned by the ATA_CMD_ID_ATA[PI] commands.
 421 */
 422
 423void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
 424{
 425        u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
 426
 427        if (byteswap) {
 428                /* convert from big-endian to host byte order */
 429                for (p = s ; p != end ; p += 2)
 430                        be16_to_cpus((u16 *) p);
 431        }
 432
 433        /* strip leading blanks */
 434        p = s;
 435        while (s != end && *s == ' ')
 436                ++s;
 437        /* compress internal blanks and strip trailing blanks */
 438        while (s != end && *s) {
 439                if (*s++ != ' ' || (s != end && *s && *s != ' '))
 440                        *p++ = *(s-1);
 441        }
 442        /* wipe out trailing garbage */
 443        while (p != end)
 444                *p++ = '\0';
 445}
 446
 447EXPORT_SYMBOL(ide_fixstring);
 448
 449/*
 450 * Needed for PCI irq sharing
 451 */
 452int drive_is_ready (ide_drive_t *drive)
 453{
 454        ide_hwif_t *hwif        = HWIF(drive);
 455        u8 stat                        = 0;
 456
 457        if (drive->waiting_for_dma)
 458                return hwif->dma_ops->dma_test_irq(drive);
 459
 460        /*
 461         * We do a passive status test under shared PCI interrupts on
 462         * cards that truly share the ATA side interrupt, but may also share
 463         * an interrupt with another pci card/device.  We make no assumptions
 464         * about possible isa-pnp and pci-pnp issues yet.
 465         */
 466        if (hwif->io_ports.ctl_addr &&
 467            (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
 468                stat = hwif->tp_ops->read_altstatus(hwif);
 469        else
 470                /* Note: this may clear a pending IRQ!! */
 471                stat = hwif->tp_ops->read_status(hwif);
 472
 473        if (stat & ATA_BUSY)
 474                /* drive busy:  definitely not interrupting */
 475                return 0;
 476
 477        /* drive ready: *might* be interrupting */
 478        return 1;
 479}
 480
 481EXPORT_SYMBOL(drive_is_ready);
 482
 483/*
 484 * This routine busy-waits for the drive status to be not "busy".
 485 * It then checks the status for all of the "good" bits and none
 486 * of the "bad" bits, and if all is okay it returns 0.  All other
 487 * cases return error -- caller may then invoke ide_error().
 488 *
 489 * This routine should get fixed to not hog the cpu during extra long waits..
 490 * That could be done by busy-waiting for the first jiffy or two, and then
 491 * setting a timer to wake up at half second intervals thereafter,
 492 * until timeout is achieved, before timing out.
 493 */
 494static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
 495{
 496        ide_hwif_t *hwif = drive->hwif;
 497        const struct ide_tp_ops *tp_ops = hwif->tp_ops;
 498        unsigned long flags;
 499        int i;
 500        u8 stat;
 501
 502        udelay(1);        /* spec allows drive 400ns to assert "BUSY" */
 503        stat = tp_ops->read_status(hwif);
 504
 505        if (stat & ATA_BUSY) {
 506                local_irq_set(flags);
 507                timeout += jiffies;
 508                while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
 509                        if (time_after(jiffies, timeout)) {
 510                                /*
 511                                 * One last read after the timeout in case
 512                                 * heavy interrupt load made us not make any
 513                                 * progress during the timeout..
 514                                 */
 515                                stat = tp_ops->read_status(hwif);
 516                                if ((stat & ATA_BUSY) == 0)
 517                                        break;
 518
 519                                local_irq_restore(flags);
 520                                *rstat = stat;
 521                                return -EBUSY;
 522                        }
 523                }
 524                local_irq_restore(flags);
 525        }
 526        /*
 527         * Allow status to settle, then read it again.
 528         * A few rare drives vastly violate the 400ns spec here,
 529         * so we'll wait up to 10usec for a "good" status
 530         * rather than expensively fail things immediately.
 531         * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
 532         */
 533        for (i = 0; i < 10; i++) {
 534                udelay(1);
 535                stat = tp_ops->read_status(hwif);
 536
 537                if (OK_STAT(stat, good, bad)) {
 538                        *rstat = stat;
 539                        return 0;
 540                }
 541        }
 542        *rstat = stat;
 543        return -EFAULT;
 544}
 545
 546/*
 547 * In case of error returns error value after doing "*startstop = ide_error()".
 548 * The caller should return the updated value of "startstop" in this case,
 549 * "startstop" is unchanged when the function returns 0.
 550 */
 551int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
 552{
 553        int err;
 554        u8 stat;
 555
 556        /* bail early if we've exceeded max_failures */
 557        if (drive->max_failures && (drive->failures > drive->max_failures)) {
 558                *startstop = ide_stopped;
 559                return 1;
 560        }
 561
 562        err = __ide_wait_stat(drive, good, bad, timeout, &stat);
 563
 564        if (err) {
 565                char *s = (err == -EBUSY) ? "status timeout" : "status error";
 566                *startstop = ide_error(drive, s, stat);
 567        }
 568
 569        return err;
 570}
 571
 572EXPORT_SYMBOL(ide_wait_stat);
 573
 574/**
 575 *        ide_in_drive_list        -        look for drive in black/white list
 576 *        @id: drive identifier
 577 *        @table: list to inspect
 578 *
 579 *        Look for a drive in the blacklist and the whitelist tables
 580 *        Returns 1 if the drive is found in the table.
 581 */
 582
 583int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
 584{
 585        for ( ; table->id_model; table++)
 586                if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
 587                    (!table->id_firmware ||
 588                     strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
 589                        return 1;
 590        return 0;
 591}
 592
 593EXPORT_SYMBOL_GPL(ide_in_drive_list);
 594
 595/*
 596 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
 597 * We list them here and depend on the device side cable detection for them.
 598 *
 599 * Some optical devices with the buggy firmwares have the same problem.
 600 */
 601static const struct drive_list_entry ivb_list[] = {
 602        { "QUANTUM FIREBALLlct10 05"        , "A03.0900"        },
 603        { "TSSTcorp CDDVDW SH-S202J"        , "SB00"        },
 604        { "TSSTcorp CDDVDW SH-S202J"        , "SB01"        },
 605        { "TSSTcorp CDDVDW SH-S202N"        , "SB00"        },
 606        { "TSSTcorp CDDVDW SH-S202N"        , "SB01"        },
 607        { "TSSTcorp CDDVDW SH-S202H"        , "SB00"        },
 608        { "TSSTcorp CDDVDW SH-S202H"        , "SB01"        },
 609        { "SAMSUNG SP0822N"                , "WA100-10"        },
 610        { NULL                                , NULL                }
 611};
 612
 613/*
 614 *  All hosts that use the 80c ribbon must use!
 615 *  The name is derived from upper byte of word 93 and the 80c ribbon.
 616 */
 617u8 eighty_ninty_three (ide_drive_t *drive)
 618{
 619        ide_hwif_t *hwif = drive->hwif;
 620        u16 *id = drive->id;
 621        int ivb = ide_in_drive_list(id, ivb_list);
 622
 623        if (hwif->cbl == ATA_CBL_PATA40_SHORT)
 624                return 1;
 625
 626        if (ivb)
 627                printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
 628                                  drive->name);
 629
 630        if (ata_id_is_sata(id) && !ivb)
 631                return 1;
 632
 633        if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
 634                goto no_80w;
 635
 636        /*
 637         * FIXME:
 638         * - change master/slave IDENTIFY order
 639         * - force bit13 (80c cable present) check also for !ivb devices
 640         *   (unless the slave device is pre-ATA3)
 641         */
 642        if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
 643            (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
 644                return 1;
 645
 646no_80w:
 647        if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
 648                return 0;
 649
 650        printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
 651                            "limiting max speed to UDMA33\n",
 652                            drive->name,
 653                            hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
 654
 655        drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
 656
 657        return 0;
 658}
 659
 660int ide_driveid_update(ide_drive_t *drive)
 661{
 662        ide_hwif_t *hwif = drive->hwif;
 663        const struct ide_tp_ops *tp_ops = hwif->tp_ops;
 664        u16 *id;
 665        unsigned long flags;
 666        u8 stat;
 667
 668        /*
 669         * Re-read drive->id for possible DMA mode
 670         * change (copied from ide-probe.c)
 671         */
 672
 673        SELECT_MASK(drive, 1);
 674        tp_ops->set_irq(hwif, 0);
 675        msleep(50);
 676        tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
 677
 678        if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
 679                SELECT_MASK(drive, 0);
 680                return 0;
 681        }
 682
 683        msleep(50);        /* wait for IRQ and ATA_DRQ */
 684        stat = tp_ops->read_status(hwif);
 685
 686        if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
 687                SELECT_MASK(drive, 0);
 688                printk("%s: CHECK for good STATUS\n", drive->name);
 689                return 0;
 690        }
 691        local_irq_save(flags);
 692        SELECT_MASK(drive, 0);
 693        id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
 694        if (!id) {
 695                local_irq_restore(flags);
 696                return 0;
 697        }
 698        tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
 699        (void)tp_ops->read_status(hwif);        /* clear drive IRQ */
 700        local_irq_enable();
 701        local_irq_restore(flags);
 702        ide_fix_driveid(id);
 703
 704        drive->id[ATA_ID_UDMA_MODES]  = id[ATA_ID_UDMA_MODES];
 705        drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
 706        drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
 707        /* anything more ? */
 708
 709        kfree(id);
 710
 711        if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
 712                ide_dma_off(drive);
 713
 714        return 1;
 715}
 716
 717int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
 718{
 719        ide_hwif_t *hwif = drive->hwif;
 720        const struct ide_tp_ops *tp_ops = hwif->tp_ops;
 721        u16 *id = drive->id, i;
 722        int error = 0;
 723        u8 stat;
 724        ide_task_t task;
 725
 726#ifdef CONFIG_BLK_DEV_IDEDMA
 727        if (hwif->dma_ops)        /* check if host supports DMA */
 728                hwif->dma_ops->dma_host_set(drive, 0);
 729#endif
 730
 731        /* Skip setting PIO flow-control modes on pre-EIDE drives */
 732        if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
 733                goto skip;
 734
 735        /*
 736         * Don't use ide_wait_cmd here - it will
 737         * attempt to set_geometry and recalibrate,
 738         * but for some reason these don't work at
 739         * this point (lost interrupt).
 740         */
 741        /*
 742         * Select the drive, and issue the SETFEATURES command
 743         */
 744        disable_irq_nosync(hwif->irq);
 745        
 746        /*
 747         *        FIXME: we race against the running IRQ here if
 748         *        this is called from non IRQ context. If we use
 749         *        disable_irq() we hang on the error path. Work
 750         *        is needed.
 751         */
 752         
 753        udelay(1);
 754        SELECT_DRIVE(drive);
 755        SELECT_MASK(drive, 1);
 756        udelay(1);
 757        tp_ops->set_irq(hwif, 0);
 758
 759        memset(&task, 0, sizeof(task));
 760        task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
 761        task.tf.feature = SETFEATURES_XFER;
 762        task.tf.nsect   = speed;
 763
 764        tp_ops->tf_load(drive, &task);
 765
 766        tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
 767
 768        if (drive->quirk_list == 2)
 769                tp_ops->set_irq(hwif, 1);
 770
 771        error = __ide_wait_stat(drive, drive->ready_stat,
 772                                ATA_BUSY | ATA_DRQ | ATA_ERR,
 773                                WAIT_CMD, &stat);
 774
 775        SELECT_MASK(drive, 0);
 776
 777        enable_irq(hwif->irq);
 778
 779        if (error) {
 780                (void) ide_dump_status(drive, "set_drive_speed_status", stat);
 781                return error;
 782        }
 783
 784        id[ATA_ID_UDMA_MODES]  &= ~0xFF00;
 785        id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
 786        id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
 787
 788 skip:
 789#ifdef CONFIG_BLK_DEV_IDEDMA
 790        if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
 791                hwif->dma_ops->dma_host_set(drive, 1);
 792        else if (hwif->dma_ops)        /* check if host supports DMA */
 793                ide_dma_off_quietly(drive);
 794#endif
 795
 796        if (speed >= XFER_UDMA_0) {
 797                i = 1 << (speed - XFER_UDMA_0);
 798                id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
 799        } else if (speed >= XFER_MW_DMA_0) {
 800                i = 1 << (speed - XFER_MW_DMA_0);
 801                id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
 802        } else if (speed >= XFER_SW_DMA_0) {
 803                i = 1 << (speed - XFER_SW_DMA_0);
 804                id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
 805        }
 806
 807        if (!drive->init_speed)
 808                drive->init_speed = speed;
 809        drive->current_speed = speed;
 810        return error;
 811}
 812
 813/*
 814 * This should get invoked any time we exit the driver to
 815 * wait for an interrupt response from a drive.  handler() points
 816 * at the appropriate code to handle the next interrupt, and a
 817 * timer is started to prevent us from waiting forever in case
 818 * something goes wrong (see the ide_timer_expiry() handler later on).
 819 *
 820 * See also ide_execute_command
 821 */
 822static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
 823                      unsigned int timeout, ide_expiry_t *expiry)
 824{
 825        ide_hwgroup_t *hwgroup = HWGROUP(drive);
 826
 827        BUG_ON(hwgroup->handler);
 828        hwgroup->handler        = handler;
 829        hwgroup->expiry                = expiry;
 830        hwgroup->timer.expires        = jiffies + timeout;
 831        hwgroup->req_gen_timer        = hwgroup->req_gen;
 832        add_timer(&hwgroup->timer);
 833}
 834
 835void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
 836                      unsigned int timeout, ide_expiry_t *expiry)
 837{
 838        unsigned long flags;
 839        spin_lock_irqsave(&ide_lock, flags);
 840        __ide_set_handler(drive, handler, timeout, expiry);
 841        spin_unlock_irqrestore(&ide_lock, flags);
 842}
 843
 844EXPORT_SYMBOL(ide_set_handler);
 845 
 846/**
 847 *        ide_execute_command        -        execute an IDE command
 848 *        @drive: IDE drive to issue the command against
 849 *        @command: command byte to write
 850 *        @handler: handler for next phase
 851 *        @timeout: timeout for command
 852 *        @expiry:  handler to run on timeout
 853 *
 854 *        Helper function to issue an IDE command. This handles the
 855 *        atomicity requirements, command timing and ensures that the 
 856 *        handler and IRQ setup do not race. All IDE command kick off
 857 *        should go via this function or do equivalent locking.
 858 */
 859
 860void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
 861                         unsigned timeout, ide_expiry_t *expiry)
 862{
 863        unsigned long flags;
 864        ide_hwif_t *hwif = HWIF(drive);
 865
 866        spin_lock_irqsave(&ide_lock, flags);
 867        __ide_set_handler(drive, handler, timeout, expiry);
 868        hwif->tp_ops->exec_command(hwif, cmd);
 869        /*
 870         * Drive takes 400nS to respond, we must avoid the IRQ being
 871         * serviced before that.
 872         *
 873         * FIXME: we could skip this delay with care on non shared devices
 874         */
 875        ndelay(400);
 876        spin_unlock_irqrestore(&ide_lock, flags);
 877}
 878EXPORT_SYMBOL(ide_execute_command);
 879
 880void ide_execute_pkt_cmd(ide_drive_t *drive)
 881{
 882        ide_hwif_t *hwif = drive->hwif;
 883        unsigned long flags;
 884
 885        spin_lock_irqsave(&ide_lock, flags);
 886        hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
 887        ndelay(400);
 888        spin_unlock_irqrestore(&ide_lock, flags);
 889}
 890EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
 891
 892static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
 893{
 894        struct request *rq = drive->hwif->hwgroup->rq;
 895
 896        if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
 897                ide_end_request(drive, err ? err : 1, 0);
 898}
 899
 900/* needed below */
 901static ide_startstop_t do_reset1 (ide_drive_t *, int);
 902
 903/*
 904 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
 905 * during an atapi drive reset operation. If the drive has not yet responded,
 906 * and we have not yet hit our maximum waiting time, then the timer is restarted
 907 * for another 50ms.
 908 */
 909static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
 910{
 911        ide_hwif_t *hwif = drive->hwif;
 912        ide_hwgroup_t *hwgroup = hwif->hwgroup;
 913        u8 stat;
 914
 915        SELECT_DRIVE(drive);
 916        udelay (10);
 917        stat = hwif->tp_ops->read_status(hwif);
 918
 919        if (OK_STAT(stat, 0, ATA_BUSY))
 920                printk("%s: ATAPI reset complete\n", drive->name);
 921        else {
 922                if (time_before(jiffies, hwgroup->poll_timeout)) {
 923                        ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
 924                        /* continue polling */
 925                        return ide_started;
 926                }
 927                /* end of polling */
 928                hwgroup->polling = 0;
 929                printk("%s: ATAPI reset timed-out, status=0x%02x\n",
 930                                drive->name, stat);
 931                /* do it the old fashioned way */
 932                return do_reset1(drive, 1);
 933        }
 934        /* done polling */
 935        hwgroup->polling = 0;
 936        ide_complete_drive_reset(drive, 0);
 937        return ide_stopped;
 938}
 939
 940static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
 941{
 942        static const char *err_master_vals[] =
 943                { NULL, "passed", "formatter device error",
 944                  "sector buffer error", "ECC circuitry error",
 945                  "controlling MPU error" };
 946
 947        u8 err_master = err & 0x7f;
 948
 949        printk(KERN_ERR "%s: reset: master: ", hwif->name);
 950        if (err_master && err_master < 6)
 951                printk(KERN_CONT "%s", err_master_vals[err_master]);
 952        else
 953                printk(KERN_CONT "error (0x%02x?)", err);
 954        if (err & 0x80)
 955                printk(KERN_CONT "; slave: failed");
 956        printk(KERN_CONT "\n");
 957}
 958
 959/*
 960 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
 961 * during an ide reset operation. If the drives have not yet responded,
 962 * and we have not yet hit our maximum waiting time, then the timer is restarted
 963 * for another 50ms.
 964 */
 965static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
 966{
 967        ide_hwgroup_t *hwgroup        = HWGROUP(drive);
 968        ide_hwif_t *hwif        = HWIF(drive);
 969        const struct ide_port_ops *port_ops = hwif->port_ops;
 970        u8 tmp;
 971        int err = 0;
 972
 973        if (port_ops && port_ops->reset_poll) {
 974                err = port_ops->reset_poll(drive);
 975                if (err) {
 976                        printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
 977                                hwif->name, drive->name);
 978                        goto out;
 979                }
 980        }
 981
 982        tmp = hwif->tp_ops->read_status(hwif);
 983
 984        if (!OK_STAT(tmp, 0, ATA_BUSY)) {
 985                if (time_before(jiffies, hwgroup->poll_timeout)) {
 986                        ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
 987                        /* continue polling */
 988                        return ide_started;
 989                }
 990                printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
 991                drive->failures++;
 992                err = -EIO;
 993        } else  {
 994                tmp = ide_read_error(drive);
 995
 996                if (tmp == 1) {
 997                        printk(KERN_INFO "%s: reset: success\n", hwif->name);
 998                        drive->failures = 0;
 999                } else {
1000                        ide_reset_report_error(hwif, tmp);
1001                        drive->failures++;
1002                        err = -EIO;
1003                }
1004        }
1005out:
1006        hwgroup->polling = 0;        /* done polling */
1007        ide_complete_drive_reset(drive, err);
1008        return ide_stopped;
1009}
1010
1011static void ide_disk_pre_reset(ide_drive_t *drive)
1012{
1013        int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1014
1015        drive->special.all = 0;
1016        drive->special.b.set_geometry = legacy;
1017        drive->special.b.recalibrate  = legacy;
1018
1019        drive->mult_count = 0;
1020        drive->dev_flags &= ~IDE_DFLAG_PARKED;
1021
1022        if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1023            (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1024                drive->mult_req = 0;
1025
1026        if (drive->mult_req != drive->mult_count)
1027                drive->special.b.set_multmode = 1;
1028}
1029
1030static void pre_reset(ide_drive_t *drive)
1031{
1032        const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1033
1034        if (drive->media == ide_disk)
1035                ide_disk_pre_reset(drive);
1036        else
1037                drive->dev_flags |= IDE_DFLAG_POST_RESET;
1038
1039        if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1040                if (drive->crc_count)
1041                        ide_check_dma_crc(drive);
1042                else
1043                        ide_dma_off(drive);
1044        }
1045
1046        if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1047                if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1048                        drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1049                        drive->io_32bit = 0;
1050                }
1051                return;
1052        }
1053
1054        if (port_ops && port_ops->pre_reset)
1055                port_ops->pre_reset(drive);
1056
1057        if (drive->current_speed != 0xff)
1058                drive->desired_speed = drive->current_speed;
1059        drive->current_speed = 0xff;
1060}
1061
1062/*
1063 * do_reset1() attempts to recover a confused drive by resetting it.
1064 * Unfortunately, resetting a disk drive actually resets all devices on
1065 * the same interface, so it can really be thought of as resetting the
1066 * interface rather than resetting the drive.
1067 *
1068 * ATAPI devices have their own reset mechanism which allows them to be
1069 * individually reset without clobbering other devices on the same interface.
1070 *
1071 * Unfortunately, the IDE interface does not generate an interrupt to let
1072 * us know when the reset operation has finished, so we must poll for this.
1073 * Equally poor, though, is the fact that this may a very long time to complete,
1074 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1075 * we set a timer to poll at 50ms intervals.
1076 */
1077static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1078{
1079        unsigned int unit;
1080        unsigned long flags, timeout;
1081        ide_hwif_t *hwif;
1082        ide_hwgroup_t *hwgroup;
1083        struct ide_io_ports *io_ports;
1084        const struct ide_tp_ops *tp_ops;
1085        const struct ide_port_ops *port_ops;
1086        DEFINE_WAIT(wait);
1087
1088        spin_lock_irqsave(&ide_lock, flags);
1089        hwif = HWIF(drive);
1090        hwgroup = HWGROUP(drive);
1091
1092        io_ports = &hwif->io_ports;
1093
1094        tp_ops = hwif->tp_ops;
1095
1096        /* We must not reset with running handlers */
1097        BUG_ON(hwgroup->handler != NULL);
1098
1099        /* For an ATAPI device, first try an ATAPI SRST. */
1100        if (drive->media != ide_disk && !do_not_try_atapi) {
1101                pre_reset(drive);
1102                SELECT_DRIVE(drive);
1103                udelay (20);
1104                tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1105                ndelay(400);
1106                hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1107                hwgroup->polling = 1;
1108                __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1109                spin_unlock_irqrestore(&ide_lock, flags);
1110                return ide_started;
1111        }
1112
1113        /* We must not disturb devices in the IDE_DFLAG_PARKED state. */
1114        do {
1115                unsigned long now;
1116
1117                prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
1118                timeout = jiffies;
1119                for (unit = 0; unit < MAX_DRIVES; unit++) {
1120                        ide_drive_t *tdrive = &hwif->drives[unit];
1121
1122                        if (tdrive->dev_flags & IDE_DFLAG_PRESENT &&
1123                            tdrive->dev_flags & IDE_DFLAG_PARKED &&
1124                            time_after(tdrive->sleep, timeout))
1125                                timeout = tdrive->sleep;
1126                }
1127
1128                now = jiffies;
1129                if (time_before_eq(timeout, now))
1130                        break;
1131
1132                spin_unlock_irqrestore(&ide_lock, flags);
1133                timeout = schedule_timeout_uninterruptible(timeout - now);
1134                spin_lock_irqsave(&ide_lock, flags);
1135        } while (timeout);
1136        finish_wait(&ide_park_wq, &wait);
1137
1138        /*
1139         * First, reset any device state data we were maintaining
1140         * for any of the drives on this interface.
1141         */
1142        for (unit = 0; unit < MAX_DRIVES; ++unit)
1143                pre_reset(&hwif->drives[unit]);
1144
1145        if (io_ports->ctl_addr == 0) {
1146                spin_unlock_irqrestore(&ide_lock, flags);
1147                ide_complete_drive_reset(drive, -ENXIO);
1148                return ide_stopped;
1149        }
1150
1151        /*
1152         * Note that we also set nIEN while resetting the device,
1153         * to mask unwanted interrupts from the interface during the reset.
1154         * However, due to the design of PC hardware, this will cause an
1155         * immediate interrupt due to the edge transition it produces.
1156         * This single interrupt gives us a "fast poll" for drives that
1157         * recover from reset very quickly, saving us the first 50ms wait time.
1158         *
1159         * TODO: add ->softreset method and stop abusing ->set_irq
1160         */
1161        /* set SRST and nIEN */
1162        tp_ops->set_irq(hwif, 4);
1163        /* more than enough time */
1164        udelay(10);
1165        /* clear SRST, leave nIEN (unless device is on the quirk list) */
1166        tp_ops->set_irq(hwif, drive->quirk_list == 2);
1167        /* more than enough time */
1168        udelay(10);
1169        hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1170        hwgroup->polling = 1;
1171        __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1172
1173        /*
1174         * Some weird controller like resetting themselves to a strange
1175         * state when the disks are reset this way. At least, the Winbond
1176         * 553 documentation says that
1177         */
1178        port_ops = hwif->port_ops;
1179        if (port_ops && port_ops->resetproc)
1180                port_ops->resetproc(drive);
1181
1182        spin_unlock_irqrestore(&ide_lock, flags);
1183        return ide_started;
1184}
1185
1186/*
1187 * ide_do_reset() is the entry point to the drive/interface reset code.
1188 */
1189
1190ide_startstop_t ide_do_reset (ide_drive_t *drive)
1191{
1192        return do_reset1(drive, 0);
1193}
1194
1195EXPORT_SYMBOL(ide_do_reset);
1196
1197/*
1198 * ide_wait_not_busy() waits for the currently selected device on the hwif
1199 * to report a non-busy status, see comments in ide_probe_port().
1200 */
1201int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1202{
1203        u8 stat = 0;
1204
1205        while(timeout--) {
1206                /*
1207                 * Turn this into a schedule() sleep once I'm sure
1208                 * about locking issues (2.5 work ?).
1209                 */
1210                mdelay(1);
1211                stat = hwif->tp_ops->read_status(hwif);
1212                if ((stat & ATA_BUSY) == 0)
1213                        return 0;
1214                /*
1215                 * Assume a value of 0xff means nothing is connected to
1216                 * the interface and it doesn't implement the pull-down
1217                 * resistor on D7.
1218                 */
1219                if (stat == 0xff)
1220                        return -ENODEV;
1221                touch_softlockup_watchdog();
1222                touch_nmi_watchdog();
1223        }
1224        return -EBUSY;
1225}
1226
1227EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1228