Showing error 1786

User: Jiri Slaby
Error type: Invalid Pointer Dereference
Error type description: A pointer which is invalid is being dereferenced
File location: drivers/ata/sata_mv.c
Line in file: 2059
Project: Linux Kernel
Project version: 2.6.28
Tools: Smatch (1.59)
Entered: 2013-09-11 08:47:26 UTC


Source:

   1/*
   2 * sata_mv.c - Marvell SATA support
   3 *
   4 * Copyright 2008: Marvell Corporation, all rights reserved.
   5 * Copyright 2005: EMC Corporation, all rights reserved.
   6 * Copyright 2005 Red Hat, Inc.  All rights reserved.
   7 *
   8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; version 2 of the License.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 */
  24
  25/*
  26 * sata_mv TODO list:
  27 *
  28 * --> Errata workaround for NCQ device errors.
  29 *
  30 * --> More errata workarounds for PCI-X.
  31 *
  32 * --> Complete a full errata audit for all chipsets to identify others.
  33 *
  34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
  35 *
  36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
  37 *
  38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
  39 *
  40 * --> Develop a low-power-consumption strategy, and implement it.
  41 *
  42 * --> [Experiment, low priority] Investigate interrupt coalescing.
  43 *       Quite often, especially with PCI Message Signalled Interrupts (MSI),
  44 *       the overhead reduced by interrupt mitigation is quite often not
  45 *       worth the latency cost.
  46 *
  47 * --> [Experiment, Marvell value added] Is it possible to use target
  48 *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
  49 *       creating LibATA target mode support would be very interesting.
  50 *
  51 *       Target mode, for those without docs, is the ability to directly
  52 *       connect two SATA ports.
  53 */
  54
  55#include <linux/kernel.h>
  56#include <linux/module.h>
  57#include <linux/pci.h>
  58#include <linux/init.h>
  59#include <linux/blkdev.h>
  60#include <linux/delay.h>
  61#include <linux/interrupt.h>
  62#include <linux/dmapool.h>
  63#include <linux/dma-mapping.h>
  64#include <linux/device.h>
  65#include <linux/platform_device.h>
  66#include <linux/ata_platform.h>
  67#include <linux/mbus.h>
  68#include <linux/bitops.h>
  69#include <scsi/scsi_host.h>
  70#include <scsi/scsi_cmnd.h>
  71#include <scsi/scsi_device.h>
  72#include <linux/libata.h>
  73
  74#define DRV_NAME        "sata_mv"
  75#define DRV_VERSION        "1.24"
  76
  77enum {
  78        /* BAR's are enumerated in terms of pci_resource_start() terms */
  79        MV_PRIMARY_BAR                = 0,        /* offset 0x10: memory space */
  80        MV_IO_BAR                = 2,        /* offset 0x18: IO space */
  81        MV_MISC_BAR                = 3,        /* offset 0x1c: FLASH, NVRAM, SRAM */
  82
  83        MV_MAJOR_REG_AREA_SZ        = 0x10000,        /* 64KB */
  84        MV_MINOR_REG_AREA_SZ        = 0x2000,        /* 8KB */
  85
  86        MV_PCI_REG_BASE                = 0,
  87        MV_IRQ_COAL_REG_BASE        = 0x18000,        /* 6xxx part only */
  88        MV_IRQ_COAL_CAUSE                = (MV_IRQ_COAL_REG_BASE + 0x08),
  89        MV_IRQ_COAL_CAUSE_LO                = (MV_IRQ_COAL_REG_BASE + 0x88),
  90        MV_IRQ_COAL_CAUSE_HI                = (MV_IRQ_COAL_REG_BASE + 0x8c),
  91        MV_IRQ_COAL_THRESHOLD                = (MV_IRQ_COAL_REG_BASE + 0xcc),
  92        MV_IRQ_COAL_TIME_THRESHOLD        = (MV_IRQ_COAL_REG_BASE + 0xd0),
  93
  94        MV_SATAHC0_REG_BASE        = 0x20000,
  95        MV_FLASH_CTL_OFS        = 0x1046c,
  96        MV_GPIO_PORT_CTL_OFS        = 0x104f0,
  97        MV_RESET_CFG_OFS        = 0x180d8,
  98
  99        MV_PCI_REG_SZ                = MV_MAJOR_REG_AREA_SZ,
 100        MV_SATAHC_REG_SZ        = MV_MAJOR_REG_AREA_SZ,
 101        MV_SATAHC_ARBTR_REG_SZ        = MV_MINOR_REG_AREA_SZ,                /* arbiter */
 102        MV_PORT_REG_SZ                = MV_MINOR_REG_AREA_SZ,
 103
 104        MV_MAX_Q_DEPTH                = 32,
 105        MV_MAX_Q_DEPTH_MASK        = MV_MAX_Q_DEPTH - 1,
 106
 107        /* CRQB needs alignment on a 1KB boundary. Size == 1KB
 108         * CRPB needs alignment on a 256B boundary. Size == 256B
 109         * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
 110         */
 111        MV_CRQB_Q_SZ                = (32 * MV_MAX_Q_DEPTH),
 112        MV_CRPB_Q_SZ                = (8 * MV_MAX_Q_DEPTH),
 113        MV_MAX_SG_CT                = 256,
 114        MV_SG_TBL_SZ                = (16 * MV_MAX_SG_CT),
 115
 116        /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
 117        MV_PORT_HC_SHIFT        = 2,
 118        MV_PORTS_PER_HC                = (1 << MV_PORT_HC_SHIFT), /* 4 */
 119        /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
 120        MV_PORT_MASK                = (MV_PORTS_PER_HC - 1),   /* 3 */
 121
 122        /* Host Flags */
 123        MV_FLAG_DUAL_HC                = (1 << 30),  /* two SATA Host Controllers */
 124        MV_FLAG_IRQ_COALESCE        = (1 << 29),  /* IRQ coalescing capability */
 125
 126        MV_COMMON_FLAGS                = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
 127                                  ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
 128                                  ATA_FLAG_PIO_POLLING,
 129
 130        MV_6XXX_FLAGS                = MV_FLAG_IRQ_COALESCE,
 131
 132        MV_GENIIE_FLAGS                = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
 133                                  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
 134                                  ATA_FLAG_NCQ | ATA_FLAG_AN,
 135
 136        CRQB_FLAG_READ                = (1 << 0),
 137        CRQB_TAG_SHIFT                = 1,
 138        CRQB_IOID_SHIFT                = 6,        /* CRQB Gen-II/IIE IO Id shift */
 139        CRQB_PMP_SHIFT                = 12,        /* CRQB Gen-II/IIE PMP shift */
 140        CRQB_HOSTQ_SHIFT        = 17,        /* CRQB Gen-II/IIE HostQueTag shift */
 141        CRQB_CMD_ADDR_SHIFT        = 8,
 142        CRQB_CMD_CS                = (0x2 << 11),
 143        CRQB_CMD_LAST                = (1 << 15),
 144
 145        CRPB_FLAG_STATUS_SHIFT        = 8,
 146        CRPB_IOID_SHIFT_6        = 5,        /* CRPB Gen-II IO Id shift */
 147        CRPB_IOID_SHIFT_7        = 7,        /* CRPB Gen-IIE IO Id shift */
 148
 149        EPRD_FLAG_END_OF_TBL        = (1 << 31),
 150
 151        /* PCI interface registers */
 152
 153        PCI_COMMAND_OFS                = 0xc00,
 154        PCI_COMMAND_MRDTRIG        = (1 << 7),        /* PCI Master Read Trigger */
 155
 156        PCI_MAIN_CMD_STS_OFS        = 0xd30,
 157        STOP_PCI_MASTER                = (1 << 2),
 158        PCI_MASTER_EMPTY        = (1 << 3),
 159        GLOB_SFT_RST                = (1 << 4),
 160
 161        MV_PCI_MODE_OFS                = 0xd00,
 162        MV_PCI_MODE_MASK        = 0x30,
 163
 164        MV_PCI_EXP_ROM_BAR_CTL        = 0xd2c,
 165        MV_PCI_DISC_TIMER        = 0xd04,
 166        MV_PCI_MSI_TRIGGER        = 0xc38,
 167        MV_PCI_SERR_MASK        = 0xc28,
 168        MV_PCI_XBAR_TMOUT_OFS        = 0x1d04,
 169        MV_PCI_ERR_LOW_ADDRESS        = 0x1d40,
 170        MV_PCI_ERR_HIGH_ADDRESS        = 0x1d44,
 171        MV_PCI_ERR_ATTRIBUTE        = 0x1d48,
 172        MV_PCI_ERR_COMMAND        = 0x1d50,
 173
 174        PCI_IRQ_CAUSE_OFS        = 0x1d58,
 175        PCI_IRQ_MASK_OFS        = 0x1d5c,
 176        PCI_UNMASK_ALL_IRQS        = 0x7fffff,        /* bits 22-0 */
 177
 178        PCIE_IRQ_CAUSE_OFS        = 0x1900,
 179        PCIE_IRQ_MASK_OFS        = 0x1910,
 180        PCIE_UNMASK_ALL_IRQS        = 0x40a,        /* assorted bits */
 181
 182        /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
 183        PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
 184        PCI_HC_MAIN_IRQ_MASK_OFS  = 0x1d64,
 185        SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
 186        SOC_HC_MAIN_IRQ_MASK_OFS  = 0x20024,
 187        ERR_IRQ                        = (1 << 0),        /* shift by port # */
 188        DONE_IRQ                = (1 << 1),        /* shift by port # */
 189        HC0_IRQ_PEND                = 0x1ff,        /* bits 0-8 = HC0's ports */
 190        HC_SHIFT                = 9,                /* bits 9-17 = HC1's ports */
 191        PCI_ERR                        = (1 << 18),
 192        TRAN_LO_DONE                = (1 << 19),        /* 6xxx: IRQ coalescing */
 193        TRAN_HI_DONE                = (1 << 20),        /* 6xxx: IRQ coalescing */
 194        PORTS_0_3_COAL_DONE        = (1 << 8),
 195        PORTS_4_7_COAL_DONE        = (1 << 17),
 196        PORTS_0_7_COAL_DONE        = (1 << 21),        /* 6xxx: IRQ coalescing */
 197        GPIO_INT                = (1 << 22),
 198        SELF_INT                = (1 << 23),
 199        TWSI_INT                = (1 << 24),
 200        HC_MAIN_RSVD                = (0x7f << 25),        /* bits 31-25 */
 201        HC_MAIN_RSVD_5                = (0x1fff << 19), /* bits 31-19 */
 202        HC_MAIN_RSVD_SOC        = (0x3fffffb << 6),     /* bits 31-9, 7-6 */
 203
 204        /* SATAHC registers */
 205        HC_CFG_OFS                = 0,
 206
 207        HC_IRQ_CAUSE_OFS        = 0x14,
 208        DMA_IRQ                        = (1 << 0),        /* shift by port # */
 209        HC_COAL_IRQ                = (1 << 4),        /* IRQ coalescing */
 210        DEV_IRQ                        = (1 << 8),        /* shift by port # */
 211
 212        /* Shadow block registers */
 213        SHD_BLK_OFS                = 0x100,
 214        SHD_CTL_AST_OFS                = 0x20,                /* ofs from SHD_BLK_OFS */
 215
 216        /* SATA registers */
 217        SATA_STATUS_OFS                = 0x300,  /* ctrl, err regs follow status */
 218        SATA_ACTIVE_OFS                = 0x350,
 219        SATA_FIS_IRQ_CAUSE_OFS        = 0x364,
 220        SATA_FIS_IRQ_AN                = (1 << 9),        /* async notification */
 221
 222        LTMODE_OFS                = 0x30c,
 223        LTMODE_BIT8                = (1 << 8),        /* unknown, but necessary */
 224
 225        PHY_MODE3                = 0x310,
 226        PHY_MODE4                = 0x314,
 227        PHY_MODE4_CFG_MASK        = 0x00000003,        /* phy internal config field */
 228        PHY_MODE4_CFG_VALUE        = 0x00000001,        /* phy internal config field */
 229        PHY_MODE4_RSVD_ZEROS        = 0x5de3fffa,        /* Gen2e always write zeros */
 230        PHY_MODE4_RSVD_ONES        = 0x00000005,        /* Gen2e always write ones */
 231
 232        PHY_MODE2                = 0x330,
 233        SATA_IFCTL_OFS                = 0x344,
 234        SATA_TESTCTL_OFS        = 0x348,
 235        SATA_IFSTAT_OFS                = 0x34c,
 236        VENDOR_UNIQUE_FIS_OFS        = 0x35c,
 237
 238        FISCFG_OFS                = 0x360,
 239        FISCFG_WAIT_DEV_ERR        = (1 << 8),        /* wait for host on DevErr */
 240        FISCFG_SINGLE_SYNC        = (1 << 16),        /* SYNC on DMA activation */
 241
 242        MV5_PHY_MODE                = 0x74,
 243        MV5_LTMODE_OFS                = 0x30,
 244        MV5_PHY_CTL_OFS                = 0x0C,
 245        SATA_INTERFACE_CFG_OFS        = 0x050,
 246
 247        MV_M2_PREAMP_MASK        = 0x7e0,
 248
 249        /* Port registers */
 250        EDMA_CFG_OFS                = 0,
 251        EDMA_CFG_Q_DEPTH        = 0x1f,                /* max device queue depth */
 252        EDMA_CFG_NCQ                = (1 << 5),        /* for R/W FPDMA queued */
 253        EDMA_CFG_NCQ_GO_ON_ERR        = (1 << 14),        /* continue on error */
 254        EDMA_CFG_RD_BRST_EXT        = (1 << 11),        /* read burst 512B */
 255        EDMA_CFG_WR_BUFF_LEN        = (1 << 13),        /* write buffer 512B */
 256        EDMA_CFG_EDMA_FBS        = (1 << 16),        /* EDMA FIS-Based Switching */
 257        EDMA_CFG_FBS                = (1 << 26),        /* FIS-Based Switching */
 258
 259        EDMA_ERR_IRQ_CAUSE_OFS        = 0x8,
 260        EDMA_ERR_IRQ_MASK_OFS        = 0xc,
 261        EDMA_ERR_D_PAR                = (1 << 0),        /* UDMA data parity err */
 262        EDMA_ERR_PRD_PAR        = (1 << 1),        /* UDMA PRD parity err */
 263        EDMA_ERR_DEV                = (1 << 2),        /* device error */
 264        EDMA_ERR_DEV_DCON        = (1 << 3),        /* device disconnect */
 265        EDMA_ERR_DEV_CON        = (1 << 4),        /* device connected */
 266        EDMA_ERR_SERR                = (1 << 5),        /* SError bits [WBDST] raised */
 267        EDMA_ERR_SELF_DIS        = (1 << 7),        /* Gen II/IIE self-disable */
 268        EDMA_ERR_SELF_DIS_5        = (1 << 8),        /* Gen I self-disable */
 269        EDMA_ERR_BIST_ASYNC        = (1 << 8),        /* BIST FIS or Async Notify */
 270        EDMA_ERR_TRANS_IRQ_7        = (1 << 8),        /* Gen IIE transprt layer irq */
 271        EDMA_ERR_CRQB_PAR        = (1 << 9),        /* CRQB parity error */
 272        EDMA_ERR_CRPB_PAR        = (1 << 10),        /* CRPB parity error */
 273        EDMA_ERR_INTRL_PAR        = (1 << 11),        /* internal parity error */
 274        EDMA_ERR_IORDY                = (1 << 12),        /* IORdy timeout */
 275
 276        EDMA_ERR_LNK_CTRL_RX        = (0xf << 13),        /* link ctrl rx error */
 277        EDMA_ERR_LNK_CTRL_RX_0        = (1 << 13),        /* transient: CRC err */
 278        EDMA_ERR_LNK_CTRL_RX_1        = (1 << 14),        /* transient: FIFO err */
 279        EDMA_ERR_LNK_CTRL_RX_2        = (1 << 15),        /* fatal: caught SYNC */
 280        EDMA_ERR_LNK_CTRL_RX_3        = (1 << 16),        /* transient: FIS rx err */
 281
 282        EDMA_ERR_LNK_DATA_RX        = (0xf << 17),        /* link data rx error */
 283
 284        EDMA_ERR_LNK_CTRL_TX        = (0x1f << 21),        /* link ctrl tx error */
 285        EDMA_ERR_LNK_CTRL_TX_0        = (1 << 21),        /* transient: CRC err */
 286        EDMA_ERR_LNK_CTRL_TX_1        = (1 << 22),        /* transient: FIFO err */
 287        EDMA_ERR_LNK_CTRL_TX_2        = (1 << 23),        /* transient: caught SYNC */
 288        EDMA_ERR_LNK_CTRL_TX_3        = (1 << 24),        /* transient: caught DMAT */
 289        EDMA_ERR_LNK_CTRL_TX_4        = (1 << 25),        /* transient: FIS collision */
 290
 291        EDMA_ERR_LNK_DATA_TX        = (0x1f << 26),        /* link data tx error */
 292
 293        EDMA_ERR_TRANS_PROTO        = (1 << 31),        /* transport protocol error */
 294        EDMA_ERR_OVERRUN_5        = (1 << 5),
 295        EDMA_ERR_UNDERRUN_5        = (1 << 6),
 296
 297        EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
 298                                  EDMA_ERR_LNK_CTRL_RX_1 |
 299                                  EDMA_ERR_LNK_CTRL_RX_3 |
 300                                  EDMA_ERR_LNK_CTRL_TX,
 301
 302        EDMA_EH_FREEZE                = EDMA_ERR_D_PAR |
 303                                  EDMA_ERR_PRD_PAR |
 304                                  EDMA_ERR_DEV_DCON |
 305                                  EDMA_ERR_DEV_CON |
 306                                  EDMA_ERR_SERR |
 307                                  EDMA_ERR_SELF_DIS |
 308                                  EDMA_ERR_CRQB_PAR |
 309                                  EDMA_ERR_CRPB_PAR |
 310                                  EDMA_ERR_INTRL_PAR |
 311                                  EDMA_ERR_IORDY |
 312                                  EDMA_ERR_LNK_CTRL_RX_2 |
 313                                  EDMA_ERR_LNK_DATA_RX |
 314                                  EDMA_ERR_LNK_DATA_TX |
 315                                  EDMA_ERR_TRANS_PROTO,
 316
 317        EDMA_EH_FREEZE_5        = EDMA_ERR_D_PAR |
 318                                  EDMA_ERR_PRD_PAR |
 319                                  EDMA_ERR_DEV_DCON |
 320                                  EDMA_ERR_DEV_CON |
 321                                  EDMA_ERR_OVERRUN_5 |
 322                                  EDMA_ERR_UNDERRUN_5 |
 323                                  EDMA_ERR_SELF_DIS_5 |
 324                                  EDMA_ERR_CRQB_PAR |
 325                                  EDMA_ERR_CRPB_PAR |
 326                                  EDMA_ERR_INTRL_PAR |
 327                                  EDMA_ERR_IORDY,
 328
 329        EDMA_REQ_Q_BASE_HI_OFS        = 0x10,
 330        EDMA_REQ_Q_IN_PTR_OFS        = 0x14,                /* also contains BASE_LO */
 331
 332        EDMA_REQ_Q_OUT_PTR_OFS        = 0x18,
 333        EDMA_REQ_Q_PTR_SHIFT        = 5,
 334
 335        EDMA_RSP_Q_BASE_HI_OFS        = 0x1c,
 336        EDMA_RSP_Q_IN_PTR_OFS        = 0x20,
 337        EDMA_RSP_Q_OUT_PTR_OFS        = 0x24,                /* also contains BASE_LO */
 338        EDMA_RSP_Q_PTR_SHIFT        = 3,
 339
 340        EDMA_CMD_OFS                = 0x28,                /* EDMA command register */
 341        EDMA_EN                        = (1 << 0),        /* enable EDMA */
 342        EDMA_DS                        = (1 << 1),        /* disable EDMA; self-negated */
 343        EDMA_RESET                = (1 << 2),        /* reset eng/trans/link/phy */
 344
 345        EDMA_STATUS_OFS                = 0x30,                /* EDMA engine status */
 346        EDMA_STATUS_CACHE_EMPTY        = (1 << 6),        /* GenIIe command cache empty */
 347        EDMA_STATUS_IDLE        = (1 << 7),        /* GenIIe EDMA enabled/idle */
 348
 349        EDMA_IORDY_TMOUT_OFS        = 0x34,
 350        EDMA_ARB_CFG_OFS        = 0x38,
 351
 352        EDMA_HALTCOND_OFS        = 0x60,                /* GenIIe halt conditions */
 353
 354        GEN_II_NCQ_MAX_SECTORS        = 256,                /* max sects/io on Gen2 w/NCQ */
 355
 356        /* Host private flags (hp_flags) */
 357        MV_HP_FLAG_MSI                = (1 << 0),
 358        MV_HP_ERRATA_50XXB0        = (1 << 1),
 359        MV_HP_ERRATA_50XXB2        = (1 << 2),
 360        MV_HP_ERRATA_60X1B2        = (1 << 3),
 361        MV_HP_ERRATA_60X1C0        = (1 << 4),
 362        MV_HP_GEN_I                = (1 << 6),        /* Generation I: 50xx */
 363        MV_HP_GEN_II                = (1 << 7),        /* Generation II: 60xx */
 364        MV_HP_GEN_IIE                = (1 << 8),        /* Generation IIE: 6042/7042 */
 365        MV_HP_PCIE                = (1 << 9),        /* PCIe bus/regs: 7042 */
 366        MV_HP_CUT_THROUGH        = (1 << 10),        /* can use EDMA cut-through */
 367        MV_HP_FLAG_SOC                = (1 << 11),        /* SystemOnChip, no PCI */
 368
 369        /* Port private flags (pp_flags) */
 370        MV_PP_FLAG_EDMA_EN        = (1 << 0),        /* is EDMA engine enabled? */
 371        MV_PP_FLAG_NCQ_EN        = (1 << 1),        /* is EDMA set up for NCQ? */
 372        MV_PP_FLAG_FBS_EN        = (1 << 2),        /* is EDMA set up for FBS? */
 373        MV_PP_FLAG_DELAYED_EH        = (1 << 3),        /* delayed dev err handling */
 374};
 375
 376#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
 377#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
 378#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
 379#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
 380#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
 381
 382#define WINDOW_CTRL(i)                (0x20030 + ((i) << 4))
 383#define WINDOW_BASE(i)                (0x20034 + ((i) << 4))
 384
 385enum {
 386        /* DMA boundary 0xffff is required by the s/g splitting
 387         * we need on /length/ in mv_fill-sg().
 388         */
 389        MV_DMA_BOUNDARY                = 0xffffU,
 390
 391        /* mask of register bits containing lower 32 bits
 392         * of EDMA request queue DMA address
 393         */
 394        EDMA_REQ_Q_BASE_LO_MASK        = 0xfffffc00U,
 395
 396        /* ditto, for response queue */
 397        EDMA_RSP_Q_BASE_LO_MASK        = 0xffffff00U,
 398};
 399
 400enum chip_type {
 401        chip_504x,
 402        chip_508x,
 403        chip_5080,
 404        chip_604x,
 405        chip_608x,
 406        chip_6042,
 407        chip_7042,
 408        chip_soc,
 409};
 410
 411/* Command ReQuest Block: 32B */
 412struct mv_crqb {
 413        __le32                        sg_addr;
 414        __le32                        sg_addr_hi;
 415        __le16                        ctrl_flags;
 416        __le16                        ata_cmd[11];
 417};
 418
 419struct mv_crqb_iie {
 420        __le32                        addr;
 421        __le32                        addr_hi;
 422        __le32                        flags;
 423        __le32                        len;
 424        __le32                        ata_cmd[4];
 425};
 426
 427/* Command ResPonse Block: 8B */
 428struct mv_crpb {
 429        __le16                        id;
 430        __le16                        flags;
 431        __le32                        tmstmp;
 432};
 433
 434/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
 435struct mv_sg {
 436        __le32                        addr;
 437        __le32                        flags_size;
 438        __le32                        addr_hi;
 439        __le32                        reserved;
 440};
 441
 442struct mv_port_priv {
 443        struct mv_crqb                *crqb;
 444        dma_addr_t                crqb_dma;
 445        struct mv_crpb                *crpb;
 446        dma_addr_t                crpb_dma;
 447        struct mv_sg                *sg_tbl[MV_MAX_Q_DEPTH];
 448        dma_addr_t                sg_tbl_dma[MV_MAX_Q_DEPTH];
 449
 450        unsigned int                req_idx;
 451        unsigned int                resp_idx;
 452
 453        u32                        pp_flags;
 454        unsigned int                delayed_eh_pmp_map;
 455};
 456
 457struct mv_port_signal {
 458        u32                        amps;
 459        u32                        pre;
 460};
 461
 462struct mv_host_priv {
 463        u32                        hp_flags;
 464        u32                        main_irq_mask;
 465        struct mv_port_signal        signal[8];
 466        const struct mv_hw_ops        *ops;
 467        int                        n_ports;
 468        void __iomem                *base;
 469        void __iomem                *main_irq_cause_addr;
 470        void __iomem                *main_irq_mask_addr;
 471        u32                        irq_cause_ofs;
 472        u32                        irq_mask_ofs;
 473        u32                        unmask_all_irqs;
 474        /*
 475         * These consistent DMA memory pools give us guaranteed
 476         * alignment for hardware-accessed data structures,
 477         * and less memory waste in accomplishing the alignment.
 478         */
 479        struct dma_pool                *crqb_pool;
 480        struct dma_pool                *crpb_pool;
 481        struct dma_pool                *sg_tbl_pool;
 482};
 483
 484struct mv_hw_ops {
 485        void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
 486                           unsigned int port);
 487        void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
 488        void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
 489                           void __iomem *mmio);
 490        int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
 491                        unsigned int n_hc);
 492        void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
 493        void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
 494};
 495
 496static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 497static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 498static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 499static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 500static int mv_port_start(struct ata_port *ap);
 501static void mv_port_stop(struct ata_port *ap);
 502static int mv_qc_defer(struct ata_queued_cmd *qc);
 503static void mv_qc_prep(struct ata_queued_cmd *qc);
 504static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
 505static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
 506static int mv_hardreset(struct ata_link *link, unsigned int *class,
 507                        unsigned long deadline);
 508static void mv_eh_freeze(struct ata_port *ap);
 509static void mv_eh_thaw(struct ata_port *ap);
 510static void mv6_dev_config(struct ata_device *dev);
 511
 512static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 513                           unsigned int port);
 514static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 515static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
 516                           void __iomem *mmio);
 517static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 518                        unsigned int n_hc);
 519static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 520static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
 521
 522static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 523                           unsigned int port);
 524static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 525static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
 526                           void __iomem *mmio);
 527static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 528                        unsigned int n_hc);
 529static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 530static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
 531                                      void __iomem *mmio);
 532static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
 533                                      void __iomem *mmio);
 534static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
 535                                  void __iomem *mmio, unsigned int n_hc);
 536static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
 537                                      void __iomem *mmio);
 538static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
 539static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
 540static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
 541                             unsigned int port_no);
 542static int mv_stop_edma(struct ata_port *ap);
 543static int mv_stop_edma_engine(void __iomem *port_mmio);
 544static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
 545
 546static void mv_pmp_select(struct ata_port *ap, int pmp);
 547static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
 548                                unsigned long deadline);
 549static int  mv_softreset(struct ata_link *link, unsigned int *class,
 550                                unsigned long deadline);
 551static void mv_pmp_error_handler(struct ata_port *ap);
 552static void mv_process_crpb_entries(struct ata_port *ap,
 553                                        struct mv_port_priv *pp);
 554
 555/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
 556 * because we have to allow room for worst case splitting of
 557 * PRDs for 64K boundaries in mv_fill_sg().
 558 */
 559static struct scsi_host_template mv5_sht = {
 560        ATA_BASE_SHT(DRV_NAME),
 561        .sg_tablesize                = MV_MAX_SG_CT / 2,
 562        .dma_boundary                = MV_DMA_BOUNDARY,
 563};
 564
 565static struct scsi_host_template mv6_sht = {
 566        ATA_NCQ_SHT(DRV_NAME),
 567        .can_queue                = MV_MAX_Q_DEPTH - 1,
 568        .sg_tablesize                = MV_MAX_SG_CT / 2,
 569        .dma_boundary                = MV_DMA_BOUNDARY,
 570};
 571
 572static struct ata_port_operations mv5_ops = {
 573        .inherits                = &ata_sff_port_ops,
 574
 575        .qc_defer                = mv_qc_defer,
 576        .qc_prep                = mv_qc_prep,
 577        .qc_issue                = mv_qc_issue,
 578
 579        .freeze                        = mv_eh_freeze,
 580        .thaw                        = mv_eh_thaw,
 581        .hardreset                = mv_hardreset,
 582        .error_handler                = ata_std_error_handler, /* avoid SFF EH */
 583        .post_internal_cmd        = ATA_OP_NULL,
 584
 585        .scr_read                = mv5_scr_read,
 586        .scr_write                = mv5_scr_write,
 587
 588        .port_start                = mv_port_start,
 589        .port_stop                = mv_port_stop,
 590};
 591
 592static struct ata_port_operations mv6_ops = {
 593        .inherits                = &mv5_ops,
 594        .dev_config             = mv6_dev_config,
 595        .scr_read                = mv_scr_read,
 596        .scr_write                = mv_scr_write,
 597
 598        .pmp_hardreset                = mv_pmp_hardreset,
 599        .pmp_softreset                = mv_softreset,
 600        .softreset                = mv_softreset,
 601        .error_handler                = mv_pmp_error_handler,
 602};
 603
 604static struct ata_port_operations mv_iie_ops = {
 605        .inherits                = &mv6_ops,
 606        .dev_config                = ATA_OP_NULL,
 607        .qc_prep                = mv_qc_prep_iie,
 608};
 609
 610static const struct ata_port_info mv_port_info[] = {
 611        {  /* chip_504x */
 612                .flags                = MV_COMMON_FLAGS,
 613                .pio_mask        = 0x1f,        /* pio0-4 */
 614                .udma_mask        = ATA_UDMA6,
 615                .port_ops        = &mv5_ops,
 616        },
 617        {  /* chip_508x */
 618                .flags                = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
 619                .pio_mask        = 0x1f,        /* pio0-4 */
 620                .udma_mask        = ATA_UDMA6,
 621                .port_ops        = &mv5_ops,
 622        },
 623        {  /* chip_5080 */
 624                .flags                = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
 625                .pio_mask        = 0x1f,        /* pio0-4 */
 626                .udma_mask        = ATA_UDMA6,
 627                .port_ops        = &mv5_ops,
 628        },
 629        {  /* chip_604x */
 630                .flags                = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
 631                                  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
 632                                  ATA_FLAG_NCQ,
 633                .pio_mask        = 0x1f,        /* pio0-4 */
 634                .udma_mask        = ATA_UDMA6,
 635                .port_ops        = &mv6_ops,
 636        },
 637        {  /* chip_608x */
 638                .flags                = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
 639                                  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
 640                                  ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
 641                .pio_mask        = 0x1f,        /* pio0-4 */
 642                .udma_mask        = ATA_UDMA6,
 643                .port_ops        = &mv6_ops,
 644        },
 645        {  /* chip_6042 */
 646                .flags                = MV_GENIIE_FLAGS,
 647                .pio_mask        = 0x1f,        /* pio0-4 */
 648                .udma_mask        = ATA_UDMA6,
 649                .port_ops        = &mv_iie_ops,
 650        },
 651        {  /* chip_7042 */
 652                .flags                = MV_GENIIE_FLAGS,
 653                .pio_mask        = 0x1f,        /* pio0-4 */
 654                .udma_mask        = ATA_UDMA6,
 655                .port_ops        = &mv_iie_ops,
 656        },
 657        {  /* chip_soc */
 658                .flags                = MV_GENIIE_FLAGS,
 659                .pio_mask        = 0x1f,        /* pio0-4 */
 660                .udma_mask        = ATA_UDMA6,
 661                .port_ops        = &mv_iie_ops,
 662        },
 663};
 664
 665static const struct pci_device_id mv_pci_tbl[] = {
 666        { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
 667        { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
 668        { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
 669        { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
 670        /* RocketRAID 1720/174x have different identifiers */
 671        { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
 672        { PCI_VDEVICE(TTI, 0x1740), chip_508x },
 673        { PCI_VDEVICE(TTI, 0x1742), chip_508x },
 674
 675        { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
 676        { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
 677        { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
 678        { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
 679        { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
 680
 681        { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
 682
 683        /* Adaptec 1430SA */
 684        { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
 685
 686        /* Marvell 7042 support */
 687        { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
 688
 689        /* Highpoint RocketRAID PCIe series */
 690        { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
 691        { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
 692
 693        { }                        /* terminate list */
 694};
 695
 696static const struct mv_hw_ops mv5xxx_ops = {
 697        .phy_errata                = mv5_phy_errata,
 698        .enable_leds                = mv5_enable_leds,
 699        .read_preamp                = mv5_read_preamp,
 700        .reset_hc                = mv5_reset_hc,
 701        .reset_flash                = mv5_reset_flash,
 702        .reset_bus                = mv5_reset_bus,
 703};
 704
 705static const struct mv_hw_ops mv6xxx_ops = {
 706        .phy_errata                = mv6_phy_errata,
 707        .enable_leds                = mv6_enable_leds,
 708        .read_preamp                = mv6_read_preamp,
 709        .reset_hc                = mv6_reset_hc,
 710        .reset_flash                = mv6_reset_flash,
 711        .reset_bus                = mv_reset_pci_bus,
 712};
 713
 714static const struct mv_hw_ops mv_soc_ops = {
 715        .phy_errata                = mv6_phy_errata,
 716        .enable_leds                = mv_soc_enable_leds,
 717        .read_preamp                = mv_soc_read_preamp,
 718        .reset_hc                = mv_soc_reset_hc,
 719        .reset_flash                = mv_soc_reset_flash,
 720        .reset_bus                = mv_soc_reset_bus,
 721};
 722
 723/*
 724 * Functions
 725 */
 726
 727static inline void writelfl(unsigned long data, void __iomem *addr)
 728{
 729        writel(data, addr);
 730        (void) readl(addr);        /* flush to avoid PCI posted write */
 731}
 732
 733static inline unsigned int mv_hc_from_port(unsigned int port)
 734{
 735        return port >> MV_PORT_HC_SHIFT;
 736}
 737
 738static inline unsigned int mv_hardport_from_port(unsigned int port)
 739{
 740        return port & MV_PORT_MASK;
 741}
 742
 743/*
 744 * Consolidate some rather tricky bit shift calculations.
 745 * This is hot-path stuff, so not a function.
 746 * Simple code, with two return values, so macro rather than inline.
 747 *
 748 * port is the sole input, in range 0..7.
 749 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
 750 * hardport is the other output, in range 0..3.
 751 *
 752 * Note that port and hardport may be the same variable in some cases.
 753 */
 754#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)        \
 755{                                                                \
 756        shift    = mv_hc_from_port(port) * HC_SHIFT;                \
 757        hardport = mv_hardport_from_port(port);                        \
 758        shift   += hardport * 2;                                \
 759}
 760
 761static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
 762{
 763        return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
 764}
 765
 766static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
 767                                                 unsigned int port)
 768{
 769        return mv_hc_base(base, mv_hc_from_port(port));
 770}
 771
 772static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
 773{
 774        return  mv_hc_base_from_port(base, port) +
 775                MV_SATAHC_ARBTR_REG_SZ +
 776                (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
 777}
 778
 779static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
 780{
 781        void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
 782        unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
 783
 784        return hc_mmio + ofs;
 785}
 786
 787static inline void __iomem *mv_host_base(struct ata_host *host)
 788{
 789        struct mv_host_priv *hpriv = host->private_data;
 790        return hpriv->base;
 791}
 792
 793static inline void __iomem *mv_ap_base(struct ata_port *ap)
 794{
 795        return mv_port_base(mv_host_base(ap->host), ap->port_no);
 796}
 797
 798static inline int mv_get_hc_count(unsigned long port_flags)
 799{
 800        return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
 801}
 802
 803static void mv_set_edma_ptrs(void __iomem *port_mmio,
 804                             struct mv_host_priv *hpriv,
 805                             struct mv_port_priv *pp)
 806{
 807        u32 index;
 808
 809        /*
 810         * initialize request queue
 811         */
 812        pp->req_idx &= MV_MAX_Q_DEPTH_MASK;        /* paranoia */
 813        index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
 814
 815        WARN_ON(pp->crqb_dma & 0x3ff);
 816        writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
 817        writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
 818                 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
 819        writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
 820
 821        /*
 822         * initialize response queue
 823         */
 824        pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;        /* paranoia */
 825        index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
 826
 827        WARN_ON(pp->crpb_dma & 0xff);
 828        writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
 829        writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
 830        writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
 831                 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
 832}
 833
 834static void mv_set_main_irq_mask(struct ata_host *host,
 835                                 u32 disable_bits, u32 enable_bits)
 836{
 837        struct mv_host_priv *hpriv = host->private_data;
 838        u32 old_mask, new_mask;
 839
 840        old_mask = hpriv->main_irq_mask;
 841        new_mask = (old_mask & ~disable_bits) | enable_bits;
 842        if (new_mask != old_mask) {
 843                hpriv->main_irq_mask = new_mask;
 844                writelfl(new_mask, hpriv->main_irq_mask_addr);
 845        }
 846}
 847
 848static void mv_enable_port_irqs(struct ata_port *ap,
 849                                     unsigned int port_bits)
 850{
 851        unsigned int shift, hardport, port = ap->port_no;
 852        u32 disable_bits, enable_bits;
 853
 854        MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
 855
 856        disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
 857        enable_bits  = port_bits << shift;
 858        mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
 859}
 860
 861/**
 862 *      mv_start_dma - Enable eDMA engine
 863 *      @base: port base address
 864 *      @pp: port private data
 865 *
 866 *      Verify the local cache of the eDMA state is accurate with a
 867 *      WARN_ON.
 868 *
 869 *      LOCKING:
 870 *      Inherited from caller.
 871 */
 872static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
 873                         struct mv_port_priv *pp, u8 protocol)
 874{
 875        int want_ncq = (protocol == ATA_PROT_NCQ);
 876
 877        if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
 878                int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
 879                if (want_ncq != using_ncq)
 880                        mv_stop_edma(ap);
 881        }
 882        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
 883                struct mv_host_priv *hpriv = ap->host->private_data;
 884                int hardport = mv_hardport_from_port(ap->port_no);
 885                void __iomem *hc_mmio = mv_hc_base_from_port(
 886                                        mv_host_base(ap->host), hardport);
 887                u32 hc_irq_cause, ipending;
 888
 889                /* clear EDMA event indicators, if any */
 890                writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
 891
 892                /* clear EDMA interrupt indicator, if any */
 893                hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
 894                ipending = (DEV_IRQ | DMA_IRQ) << hardport;
 895                if (hc_irq_cause & ipending) {
 896                        writelfl(hc_irq_cause & ~ipending,
 897                                 hc_mmio + HC_IRQ_CAUSE_OFS);
 898                }
 899
 900                mv_edma_cfg(ap, want_ncq);
 901
 902                /* clear FIS IRQ Cause */
 903                if (IS_GEN_IIE(hpriv))
 904                        writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
 905
 906                mv_set_edma_ptrs(port_mmio, hpriv, pp);
 907                mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
 908
 909                writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
 910                pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
 911        }
 912}
 913
 914static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
 915{
 916        void __iomem *port_mmio = mv_ap_base(ap);
 917        const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
 918        const int per_loop = 5, timeout = (15 * 1000 / per_loop);
 919        int i;
 920
 921        /*
 922         * Wait for the EDMA engine to finish transactions in progress.
 923         * No idea what a good "timeout" value might be, but measurements
 924         * indicate that it often requires hundreds of microseconds
 925         * with two drives in-use.  So we use the 15msec value above
 926         * as a rough guess at what even more drives might require.
 927         */
 928        for (i = 0; i < timeout; ++i) {
 929                u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
 930                if ((edma_stat & empty_idle) == empty_idle)
 931                        break;
 932                udelay(per_loop);
 933        }
 934        /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
 935}
 936
 937/**
 938 *      mv_stop_edma_engine - Disable eDMA engine
 939 *      @port_mmio: io base address
 940 *
 941 *      LOCKING:
 942 *      Inherited from caller.
 943 */
 944static int mv_stop_edma_engine(void __iomem *port_mmio)
 945{
 946        int i;
 947
 948        /* Disable eDMA.  The disable bit auto clears. */
 949        writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
 950
 951        /* Wait for the chip to confirm eDMA is off. */
 952        for (i = 10000; i > 0; i--) {
 953                u32 reg = readl(port_mmio + EDMA_CMD_OFS);
 954                if (!(reg & EDMA_EN))
 955                        return 0;
 956                udelay(10);
 957        }
 958        return -EIO;
 959}
 960
 961static int mv_stop_edma(struct ata_port *ap)
 962{
 963        void __iomem *port_mmio = mv_ap_base(ap);
 964        struct mv_port_priv *pp = ap->private_data;
 965
 966        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
 967                return 0;
 968        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
 969        mv_wait_for_edma_empty_idle(ap);
 970        if (mv_stop_edma_engine(port_mmio)) {
 971                ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
 972                return -EIO;
 973        }
 974        return 0;
 975}
 976
 977#ifdef ATA_DEBUG
 978static void mv_dump_mem(void __iomem *start, unsigned bytes)
 979{
 980        int b, w;
 981        for (b = 0; b < bytes; ) {
 982                DPRINTK("%p: ", start + b);
 983                for (w = 0; b < bytes && w < 4; w++) {
 984                        printk("%08x ", readl(start + b));
 985                        b += sizeof(u32);
 986                }
 987                printk("\n");
 988        }
 989}
 990#endif
 991
 992static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
 993{
 994#ifdef ATA_DEBUG
 995        int b, w;
 996        u32 dw;
 997        for (b = 0; b < bytes; ) {
 998                DPRINTK("%02x: ", b);
 999                for (w = 0; b < bytes && w < 4; w++) {
1000                        (void) pci_read_config_dword(pdev, b, &dw);
1001                        printk("%08x ", dw);
1002                        b += sizeof(u32);
1003                }
1004                printk("\n");
1005        }
1006#endif
1007}
1008static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1009                             struct pci_dev *pdev)
1010{
1011#ifdef ATA_DEBUG
1012        void __iomem *hc_base = mv_hc_base(mmio_base,
1013                                           port >> MV_PORT_HC_SHIFT);
1014        void __iomem *port_base;
1015        int start_port, num_ports, p, start_hc, num_hcs, hc;
1016
1017        if (0 > port) {
1018                start_hc = start_port = 0;
1019                num_ports = 8;                /* shld be benign for 4 port devs */
1020                num_hcs = 2;
1021        } else {
1022                start_hc = port >> MV_PORT_HC_SHIFT;
1023                start_port = port;
1024                num_ports = num_hcs = 1;
1025        }
1026        DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1027                num_ports > 1 ? num_ports - 1 : start_port);
1028
1029        if (NULL != pdev) {
1030                DPRINTK("PCI config space regs:\n");
1031                mv_dump_pci_cfg(pdev, 0x68);
1032        }
1033        DPRINTK("PCI regs:\n");
1034        mv_dump_mem(mmio_base+0xc00, 0x3c);
1035        mv_dump_mem(mmio_base+0xd00, 0x34);
1036        mv_dump_mem(mmio_base+0xf00, 0x4);
1037        mv_dump_mem(mmio_base+0x1d00, 0x6c);
1038        for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1039                hc_base = mv_hc_base(mmio_base, hc);
1040                DPRINTK("HC regs (HC %i):\n", hc);
1041                mv_dump_mem(hc_base, 0x1c);
1042        }
1043        for (p = start_port; p < start_port + num_ports; p++) {
1044                port_base = mv_port_base(mmio_base, p);
1045                DPRINTK("EDMA regs (port %i):\n", p);
1046                mv_dump_mem(port_base, 0x54);
1047                DPRINTK("SATA regs (port %i):\n", p);
1048                mv_dump_mem(port_base+0x300, 0x60);
1049        }
1050#endif
1051}
1052
1053static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1054{
1055        unsigned int ofs;
1056
1057        switch (sc_reg_in) {
1058        case SCR_STATUS:
1059        case SCR_CONTROL:
1060        case SCR_ERROR:
1061                ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1062                break;
1063        case SCR_ACTIVE:
1064                ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
1065                break;
1066        default:
1067                ofs = 0xffffffffU;
1068                break;
1069        }
1070        return ofs;
1071}
1072
1073static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1074{
1075        unsigned int ofs = mv_scr_offset(sc_reg_in);
1076
1077        if (ofs != 0xffffffffU) {
1078                *val = readl(mv_ap_base(link->ap) + ofs);
1079                return 0;
1080        } else
1081                return -EINVAL;
1082}
1083
1084static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1085{
1086        unsigned int ofs = mv_scr_offset(sc_reg_in);
1087
1088        if (ofs != 0xffffffffU) {
1089                writelfl(val, mv_ap_base(link->ap) + ofs);
1090                return 0;
1091        } else
1092                return -EINVAL;
1093}
1094
1095static void mv6_dev_config(struct ata_device *adev)
1096{
1097        /*
1098         * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1099         *
1100         * Gen-II does not support NCQ over a port multiplier
1101         *  (no FIS-based switching).
1102         *
1103         * We don't have hob_nsect when doing NCQ commands on Gen-II.
1104         * See mv_qc_prep() for more info.
1105         */
1106        if (adev->flags & ATA_DFLAG_NCQ) {
1107                if (sata_pmp_attached(adev->link->ap)) {
1108                        adev->flags &= ~ATA_DFLAG_NCQ;
1109                        ata_dev_printk(adev, KERN_INFO,
1110                                "NCQ disabled for command-based switching\n");
1111                } else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1112                        adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1113                        ata_dev_printk(adev, KERN_INFO,
1114                                "max_sectors limited to %u for NCQ\n",
1115                                adev->max_sectors);
1116                }
1117        }
1118}
1119
1120static int mv_qc_defer(struct ata_queued_cmd *qc)
1121{
1122        struct ata_link *link = qc->dev->link;
1123        struct ata_port *ap = link->ap;
1124        struct mv_port_priv *pp = ap->private_data;
1125
1126        /*
1127         * Don't allow new commands if we're in a delayed EH state
1128         * for NCQ and/or FIS-based switching.
1129         */
1130        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1131                return ATA_DEFER_PORT;
1132        /*
1133         * If the port is completely idle, then allow the new qc.
1134         */
1135        if (ap->nr_active_links == 0)
1136                return 0;
1137
1138        /*
1139         * The port is operating in host queuing mode (EDMA) with NCQ
1140         * enabled, allow multiple NCQ commands.  EDMA also allows
1141         * queueing multiple DMA commands but libata core currently
1142         * doesn't allow it.
1143         */
1144        if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1145            (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
1146                return 0;
1147
1148        return ATA_DEFER_PORT;
1149}
1150
1151static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1152{
1153        u32 new_fiscfg, old_fiscfg;
1154        u32 new_ltmode, old_ltmode;
1155        u32 new_haltcond, old_haltcond;
1156
1157        old_fiscfg   = readl(port_mmio + FISCFG_OFS);
1158        old_ltmode   = readl(port_mmio + LTMODE_OFS);
1159        old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1160
1161        new_fiscfg   = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1162        new_ltmode   = old_ltmode & ~LTMODE_BIT8;
1163        new_haltcond = old_haltcond | EDMA_ERR_DEV;
1164
1165        if (want_fbs) {
1166                new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1167                new_ltmode = old_ltmode | LTMODE_BIT8;
1168                if (want_ncq)
1169                        new_haltcond &= ~EDMA_ERR_DEV;
1170                else
1171                        new_fiscfg |=  FISCFG_WAIT_DEV_ERR;
1172        }
1173
1174        if (new_fiscfg != old_fiscfg)
1175                writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1176        if (new_ltmode != old_ltmode)
1177                writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1178        if (new_haltcond != old_haltcond)
1179                writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1180}
1181
1182static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1183{
1184        struct mv_host_priv *hpriv = ap->host->private_data;
1185        u32 old, new;
1186
1187        /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1188        old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1189        if (want_ncq)
1190                new = old | (1 << 22);
1191        else
1192                new = old & ~(1 << 22);
1193        if (new != old)
1194                writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1195}
1196
1197static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1198{
1199        u32 cfg;
1200        struct mv_port_priv *pp    = ap->private_data;
1201        struct mv_host_priv *hpriv = ap->host->private_data;
1202        void __iomem *port_mmio    = mv_ap_base(ap);
1203
1204        /* set up non-NCQ EDMA configuration */
1205        cfg = EDMA_CFG_Q_DEPTH;                /* always 0x1f for *all* chips */
1206        pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1207
1208        if (IS_GEN_I(hpriv))
1209                cfg |= (1 << 8);        /* enab config burst size mask */
1210
1211        else if (IS_GEN_II(hpriv)) {
1212                cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1213                mv_60x1_errata_sata25(ap, want_ncq);
1214
1215        } else if (IS_GEN_IIE(hpriv)) {
1216                int want_fbs = sata_pmp_attached(ap);
1217                /*
1218                 * Possible future enhancement:
1219                 *
1220                 * The chip can use FBS with non-NCQ, if we allow it,
1221                 * But first we need to have the error handling in place
1222                 * for this mode (datasheet section 7.3.15.4.2.3).
1223                 * So disallow non-NCQ FBS for now.
1224                 */
1225                want_fbs &= want_ncq;
1226
1227                mv_config_fbs(port_mmio, want_ncq, want_fbs);
1228
1229                if (want_fbs) {
1230                        pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1231                        cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1232                }
1233
1234                cfg |= (1 << 23);        /* do not mask PM field in rx'd FIS */
1235                cfg |= (1 << 22);        /* enab 4-entry host queue cache */
1236                if (!IS_SOC(hpriv))
1237                        cfg |= (1 << 18);        /* enab early completion */
1238                if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1239                        cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1240        }
1241
1242        if (want_ncq) {
1243                cfg |= EDMA_CFG_NCQ;
1244                pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1245        } else
1246                pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1247
1248        writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1249}
1250
1251static void mv_port_free_dma_mem(struct ata_port *ap)
1252{
1253        struct mv_host_priv *hpriv = ap->host->private_data;
1254        struct mv_port_priv *pp = ap->private_data;
1255        int tag;
1256
1257        if (pp->crqb) {
1258                dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1259                pp->crqb = NULL;
1260        }
1261        if (pp->crpb) {
1262                dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1263                pp->crpb = NULL;
1264        }
1265        /*
1266         * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1267         * For later hardware, we have one unique sg_tbl per NCQ tag.
1268         */
1269        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1270                if (pp->sg_tbl[tag]) {
1271                        if (tag == 0 || !IS_GEN_I(hpriv))
1272                                dma_pool_free(hpriv->sg_tbl_pool,
1273                                              pp->sg_tbl[tag],
1274                                              pp->sg_tbl_dma[tag]);
1275                        pp->sg_tbl[tag] = NULL;
1276                }
1277        }
1278}
1279
1280/**
1281 *      mv_port_start - Port specific init/start routine.
1282 *      @ap: ATA channel to manipulate
1283 *
1284 *      Allocate and point to DMA memory, init port private memory,
1285 *      zero indices.
1286 *
1287 *      LOCKING:
1288 *      Inherited from caller.
1289 */
1290static int mv_port_start(struct ata_port *ap)
1291{
1292        struct device *dev = ap->host->dev;
1293        struct mv_host_priv *hpriv = ap->host->private_data;
1294        struct mv_port_priv *pp;
1295        int tag;
1296
1297        pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1298        if (!pp)
1299                return -ENOMEM;
1300        ap->private_data = pp;
1301
1302        pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1303        if (!pp->crqb)
1304                return -ENOMEM;
1305        memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1306
1307        pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1308        if (!pp->crpb)
1309                goto out_port_free_dma_mem;
1310        memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1311
1312        /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1313        if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1314                ap->flags |= ATA_FLAG_AN;
1315        /*
1316         * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1317         * For later hardware, we need one unique sg_tbl per NCQ tag.
1318         */
1319        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1320                if (tag == 0 || !IS_GEN_I(hpriv)) {
1321                        pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1322                                              GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1323                        if (!pp->sg_tbl[tag])
1324                                goto out_port_free_dma_mem;
1325                } else {
1326                        pp->sg_tbl[tag]     = pp->sg_tbl[0];
1327                        pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1328                }
1329        }
1330        return 0;
1331
1332out_port_free_dma_mem:
1333        mv_port_free_dma_mem(ap);
1334        return -ENOMEM;
1335}
1336
1337/**
1338 *      mv_port_stop - Port specific cleanup/stop routine.
1339 *      @ap: ATA channel to manipulate
1340 *
1341 *      Stop DMA, cleanup port memory.
1342 *
1343 *      LOCKING:
1344 *      This routine uses the host lock to protect the DMA stop.
1345 */
1346static void mv_port_stop(struct ata_port *ap)
1347{
1348        mv_stop_edma(ap);
1349        mv_enable_port_irqs(ap, 0);
1350        mv_port_free_dma_mem(ap);
1351}
1352
1353/**
1354 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1355 *      @qc: queued command whose SG list to source from
1356 *
1357 *      Populate the SG list and mark the last entry.
1358 *
1359 *      LOCKING:
1360 *      Inherited from caller.
1361 */
1362static void mv_fill_sg(struct ata_queued_cmd *qc)
1363{
1364        struct mv_port_priv *pp = qc->ap->private_data;
1365        struct scatterlist *sg;
1366        struct mv_sg *mv_sg, *last_sg = NULL;
1367        unsigned int si;
1368
1369        mv_sg = pp->sg_tbl[qc->tag];
1370        for_each_sg(qc->sg, sg, qc->n_elem, si) {
1371                dma_addr_t addr = sg_dma_address(sg);
1372                u32 sg_len = sg_dma_len(sg);
1373
1374                while (sg_len) {
1375                        u32 offset = addr & 0xffff;
1376                        u32 len = sg_len;
1377
1378                        if ((offset + sg_len > 0x10000))
1379                                len = 0x10000 - offset;
1380
1381                        mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1382                        mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1383                        mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1384
1385                        sg_len -= len;
1386                        addr += len;
1387
1388                        last_sg = mv_sg;
1389                        mv_sg++;
1390                }
1391        }
1392
1393        if (likely(last_sg))
1394                last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1395}
1396
1397static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1398{
1399        u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1400                (last ? CRQB_CMD_LAST : 0);
1401        *cmdw = cpu_to_le16(tmp);
1402}
1403
1404/**
1405 *      mv_qc_prep - Host specific command preparation.
1406 *      @qc: queued command to prepare
1407 *
1408 *      This routine simply redirects to the general purpose routine
1409 *      if command is not DMA.  Else, it handles prep of the CRQB
1410 *      (command request block), does some sanity checking, and calls
1411 *      the SG load routine.
1412 *
1413 *      LOCKING:
1414 *      Inherited from caller.
1415 */
1416static void mv_qc_prep(struct ata_queued_cmd *qc)
1417{
1418        struct ata_port *ap = qc->ap;
1419        struct mv_port_priv *pp = ap->private_data;
1420        __le16 *cw;
1421        struct ata_taskfile *tf;
1422        u16 flags = 0;
1423        unsigned in_index;
1424
1425        if ((qc->tf.protocol != ATA_PROT_DMA) &&
1426            (qc->tf.protocol != ATA_PROT_NCQ))
1427                return;
1428
1429        /* Fill in command request block
1430         */
1431        if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1432                flags |= CRQB_FLAG_READ;
1433        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1434        flags |= qc->tag << CRQB_TAG_SHIFT;
1435        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1436
1437        /* get current queue index from software */
1438        in_index = pp->req_idx;
1439
1440        pp->crqb[in_index].sg_addr =
1441                cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1442        pp->crqb[in_index].sg_addr_hi =
1443                cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1444        pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1445
1446        cw = &pp->crqb[in_index].ata_cmd[0];
1447        tf = &qc->tf;
1448
1449        /* Sadly, the CRQB cannot accomodate all registers--there are
1450         * only 11 bytes...so we must pick and choose required
1451         * registers based on the command.  So, we drop feature and
1452         * hob_feature for [RW] DMA commands, but they are needed for
1453         * NCQ.  NCQ will drop hob_nsect.
1454         */
1455        switch (tf->command) {
1456        case ATA_CMD_READ:
1457        case ATA_CMD_READ_EXT:
1458        case ATA_CMD_WRITE:
1459        case ATA_CMD_WRITE_EXT:
1460        case ATA_CMD_WRITE_FUA_EXT:
1461                mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1462                break;
1463        case ATA_CMD_FPDMA_READ:
1464        case ATA_CMD_FPDMA_WRITE:
1465                mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1466                mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1467                break;
1468        default:
1469                /* The only other commands EDMA supports in non-queued and
1470                 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1471                 * of which are defined/used by Linux.  If we get here, this
1472                 * driver needs work.
1473                 *
1474                 * FIXME: modify libata to give qc_prep a return value and
1475                 * return error here.
1476                 */
1477                BUG_ON(tf->command);
1478                break;
1479        }
1480        mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1481        mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1482        mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1483        mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1484        mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1485        mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1486        mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1487        mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1488        mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);        /* last */
1489
1490        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1491                return;
1492        mv_fill_sg(qc);
1493}
1494
1495/**
1496 *      mv_qc_prep_iie - Host specific command preparation.
1497 *      @qc: queued command to prepare
1498 *
1499 *      This routine simply redirects to the general purpose routine
1500 *      if command is not DMA.  Else, it handles prep of the CRQB
1501 *      (command request block), does some sanity checking, and calls
1502 *      the SG load routine.
1503 *
1504 *      LOCKING:
1505 *      Inherited from caller.
1506 */
1507static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1508{
1509        struct ata_port *ap = qc->ap;
1510        struct mv_port_priv *pp = ap->private_data;
1511        struct mv_crqb_iie *crqb;
1512        struct ata_taskfile *tf;
1513        unsigned in_index;
1514        u32 flags = 0;
1515
1516        if ((qc->tf.protocol != ATA_PROT_DMA) &&
1517            (qc->tf.protocol != ATA_PROT_NCQ))
1518                return;
1519
1520        /* Fill in Gen IIE command request block */
1521        if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1522                flags |= CRQB_FLAG_READ;
1523
1524        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1525        flags |= qc->tag << CRQB_TAG_SHIFT;
1526        flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1527        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1528
1529        /* get current queue index from software */
1530        in_index = pp->req_idx;
1531
1532        crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1533        crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1534        crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1535        crqb->flags = cpu_to_le32(flags);
1536
1537        tf = &qc->tf;
1538        crqb->ata_cmd[0] = cpu_to_le32(
1539                        (tf->command << 16) |
1540                        (tf->feature << 24)
1541                );
1542        crqb->ata_cmd[1] = cpu_to_le32(
1543                        (tf->lbal << 0) |
1544                        (tf->lbam << 8) |
1545                        (tf->lbah << 16) |
1546                        (tf->device << 24)
1547                );
1548        crqb->ata_cmd[2] = cpu_to_le32(
1549                        (tf->hob_lbal << 0) |
1550                        (tf->hob_lbam << 8) |
1551                        (tf->hob_lbah << 16) |
1552                        (tf->hob_feature << 24)
1553                );
1554        crqb->ata_cmd[3] = cpu_to_le32(
1555                        (tf->nsect << 0) |
1556                        (tf->hob_nsect << 8)
1557                );
1558
1559        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1560                return;
1561        mv_fill_sg(qc);
1562}
1563
1564/**
1565 *      mv_qc_issue - Initiate a command to the host
1566 *      @qc: queued command to start
1567 *
1568 *      This routine simply redirects to the general purpose routine
1569 *      if command is not DMA.  Else, it sanity checks our local
1570 *      caches of the request producer/consumer indices then enables
1571 *      DMA and bumps the request producer index.
1572 *
1573 *      LOCKING:
1574 *      Inherited from caller.
1575 */
1576static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1577{
1578        struct ata_port *ap = qc->ap;
1579        void __iomem *port_mmio = mv_ap_base(ap);
1580        struct mv_port_priv *pp = ap->private_data;
1581        u32 in_index;
1582
1583        if ((qc->tf.protocol != ATA_PROT_DMA) &&
1584            (qc->tf.protocol != ATA_PROT_NCQ)) {
1585                static int limit_warnings = 10;
1586                /*
1587                 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1588                 *
1589                 * Someday, we might implement special polling workarounds
1590                 * for these, but it all seems rather unnecessary since we
1591                 * normally use only DMA for commands which transfer more
1592                 * than a single block of data.
1593                 *
1594                 * Much of the time, this could just work regardless.
1595                 * So for now, just log the incident, and allow the attempt.
1596                 */
1597                if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
1598                        --limit_warnings;
1599                        ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
1600                                        ": attempting PIO w/multiple DRQ: "
1601                                        "this may fail due to h/w errata\n");
1602                }
1603                /*
1604                 * We're about to send a non-EDMA capable command to the
1605                 * port.  Turn off EDMA so there won't be problems accessing
1606                 * shadow block, etc registers.
1607                 */
1608                mv_stop_edma(ap);
1609                mv_enable_port_irqs(ap, ERR_IRQ);
1610                mv_pmp_select(ap, qc->dev->link->pmp);
1611                return ata_sff_qc_issue(qc);
1612        }
1613
1614        mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1615
1616        pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1617        in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1618
1619        /* and write the request in pointer to kick the EDMA to life */
1620        writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1621                 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1622
1623        return 0;
1624}
1625
1626static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1627{
1628        struct mv_port_priv *pp = ap->private_data;
1629        struct ata_queued_cmd *qc;
1630
1631        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1632                return NULL;
1633        qc = ata_qc_from_tag(ap, ap->link.active_tag);
1634        if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1635                qc = NULL;
1636        return qc;
1637}
1638
1639static void mv_pmp_error_handler(struct ata_port *ap)
1640{
1641        unsigned int pmp, pmp_map;
1642        struct mv_port_priv *pp = ap->private_data;
1643
1644        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1645                /*
1646                 * Perform NCQ error analysis on failed PMPs
1647                 * before we freeze the port entirely.
1648                 *
1649                 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1650                 */
1651                pmp_map = pp->delayed_eh_pmp_map;
1652                pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1653                for (pmp = 0; pmp_map != 0; pmp++) {
1654                        unsigned int this_pmp = (1 << pmp);
1655                        if (pmp_map & this_pmp) {
1656                                struct ata_link *link = &ap->pmp_link[pmp];
1657                                pmp_map &= ~this_pmp;
1658                                ata_eh_analyze_ncq_error(link);
1659                        }
1660                }
1661                ata_port_freeze(ap);
1662        }
1663        sata_pmp_error_handler(ap);
1664}
1665
1666static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1667{
1668        void __iomem *port_mmio = mv_ap_base(ap);
1669
1670        return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1671}
1672
1673static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1674{
1675        struct ata_eh_info *ehi;
1676        unsigned int pmp;
1677
1678        /*
1679         * Initialize EH info for PMPs which saw device errors
1680         */
1681        ehi = &ap->link.eh_info;
1682        for (pmp = 0; pmp_map != 0; pmp++) {
1683                unsigned int this_pmp = (1 << pmp);
1684                if (pmp_map & this_pmp) {
1685                        struct ata_link *link = &ap->pmp_link[pmp];
1686
1687                        pmp_map &= ~this_pmp;
1688                        ehi = &link->eh_info;
1689                        ata_ehi_clear_desc(ehi);
1690                        ata_ehi_push_desc(ehi, "dev err");
1691                        ehi->err_mask |= AC_ERR_DEV;
1692                        ehi->action |= ATA_EH_RESET;
1693                        ata_link_abort(link);
1694                }
1695        }
1696}
1697
1698static int mv_req_q_empty(struct ata_port *ap)
1699{
1700        void __iomem *port_mmio = mv_ap_base(ap);
1701        u32 in_ptr, out_ptr;
1702
1703        in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1704                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1705        out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1706                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1707        return (in_ptr == out_ptr);        /* 1 == queue_is_empty */
1708}
1709
1710static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1711{
1712        struct mv_port_priv *pp = ap->private_data;
1713        int failed_links;
1714        unsigned int old_map, new_map;
1715
1716        /*
1717         * Device error during FBS+NCQ operation:
1718         *
1719         * Set a port flag to prevent further I/O being enqueued.
1720         * Leave the EDMA running to drain outstanding commands from this port.
1721         * Perform the post-mortem/EH only when all responses are complete.
1722         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1723         */
1724        if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1725                pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1726                pp->delayed_eh_pmp_map = 0;
1727        }
1728        old_map = pp->delayed_eh_pmp_map;
1729        new_map = old_map | mv_get_err_pmp_map(ap);
1730
1731        if (old_map != new_map) {
1732                pp->delayed_eh_pmp_map = new_map;
1733                mv_pmp_eh_prep(ap, new_map & ~old_map);
1734        }
1735        failed_links = hweight16(new_map);
1736
1737        ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1738                        "failed_links=%d nr_active_links=%d\n",
1739                        __func__, pp->delayed_eh_pmp_map,
1740                        ap->qc_active, failed_links,
1741                        ap->nr_active_links);
1742
1743        if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1744                mv_process_crpb_entries(ap, pp);
1745                mv_stop_edma(ap);
1746                mv_eh_freeze(ap);
1747                ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1748                return 1;        /* handled */
1749        }
1750        ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1751        return 1;        /* handled */
1752}
1753
1754static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1755{
1756        /*
1757         * Possible future enhancement:
1758         *
1759         * FBS+non-NCQ operation is not yet implemented.
1760         * See related notes in mv_edma_cfg().
1761         *
1762         * Device error during FBS+non-NCQ operation:
1763         *
1764         * We need to snapshot the shadow registers for each failed command.
1765         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1766         */
1767        return 0;        /* not handled */
1768}
1769
1770static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1771{
1772        struct mv_port_priv *pp = ap->private_data;
1773
1774        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1775                return 0;        /* EDMA was not active: not handled */
1776        if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1777                return 0;        /* FBS was not active: not handled */
1778
1779        if (!(edma_err_cause & EDMA_ERR_DEV))
1780                return 0;        /* non DEV error: not handled */
1781        edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1782        if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1783                return 0;        /* other problems: not handled */
1784
1785        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1786                /*
1787                 * EDMA should NOT have self-disabled for this case.
1788                 * If it did, then something is wrong elsewhere,
1789                 * and we cannot handle it here.
1790                 */
1791                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1792                        ata_port_printk(ap, KERN_WARNING,
1793                                "%s: err_cause=0x%x pp_flags=0x%x\n",
1794                                __func__, edma_err_cause, pp->pp_flags);
1795                        return 0; /* not handled */
1796                }
1797                return mv_handle_fbs_ncq_dev_err(ap);
1798        } else {
1799                /*
1800                 * EDMA should have self-disabled for this case.
1801                 * If it did not, then something is wrong elsewhere,
1802                 * and we cannot handle it here.
1803                 */
1804                if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1805                        ata_port_printk(ap, KERN_WARNING,
1806                                "%s: err_cause=0x%x pp_flags=0x%x\n",
1807                                __func__, edma_err_cause, pp->pp_flags);
1808                        return 0; /* not handled */
1809                }
1810                return mv_handle_fbs_non_ncq_dev_err(ap);
1811        }
1812        return 0;        /* not handled */
1813}
1814
1815static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1816{
1817        struct ata_eh_info *ehi = &ap->link.eh_info;
1818        char *when = "idle";
1819
1820        ata_ehi_clear_desc(ehi);
1821        if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1822                when = "disabled";
1823        } else if (edma_was_enabled) {
1824                when = "EDMA enabled";
1825        } else {
1826                struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1827                if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1828                        when = "polling";
1829        }
1830        ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1831        ehi->err_mask |= AC_ERR_OTHER;
1832        ehi->action   |= ATA_EH_RESET;
1833        ata_port_freeze(ap);
1834}
1835
1836/**
1837 *      mv_err_intr - Handle error interrupts on the port
1838 *      @ap: ATA channel to manipulate
1839 *      @qc: affected command (non-NCQ), or NULL
1840 *
1841 *      Most cases require a full reset of the chip's state machine,
1842 *      which also performs a COMRESET.
1843 *      Also, if the port disabled DMA, update our cached copy to match.
1844 *
1845 *      LOCKING:
1846 *      Inherited from caller.
1847 */
1848static void mv_err_intr(struct ata_port *ap)
1849{
1850        void __iomem *port_mmio = mv_ap_base(ap);
1851        u32 edma_err_cause, eh_freeze_mask, serr = 0;
1852        u32 fis_cause = 0;
1853        struct mv_port_priv *pp = ap->private_data;
1854        struct mv_host_priv *hpriv = ap->host->private_data;
1855        unsigned int action = 0, err_mask = 0;
1856        struct ata_eh_info *ehi = &ap->link.eh_info;
1857        struct ata_queued_cmd *qc;
1858        int abort = 0;
1859
1860        /*
1861         * Read and clear the SError and err_cause bits.
1862         * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1863         * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1864         */
1865        sata_scr_read(&ap->link, SCR_ERROR, &serr);
1866        sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1867
1868        edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1869        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1870                fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1871                writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1872        }
1873        writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1874
1875        if (edma_err_cause & EDMA_ERR_DEV) {
1876                /*
1877                 * Device errors during FIS-based switching operation
1878                 * require special handling.
1879                 */
1880                if (mv_handle_dev_err(ap, edma_err_cause))
1881                        return;
1882        }
1883
1884        qc = mv_get_active_qc(ap);
1885        ata_ehi_clear_desc(ehi);
1886        ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1887                          edma_err_cause, pp->pp_flags);
1888
1889        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1890                ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1891                if (fis_cause & SATA_FIS_IRQ_AN) {
1892                        u32 ec = edma_err_cause &
1893                               ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1894                        sata_async_notification(ap);
1895                        if (!ec)
1896                                return; /* Just an AN; no need for the nukes */
1897                        ata_ehi_push_desc(ehi, "SDB notify");
1898                }
1899        }
1900        /*
1901         * All generations share these EDMA error cause bits:
1902         */
1903        if (edma_err_cause & EDMA_ERR_DEV) {
1904                err_mask |= AC_ERR_DEV;
1905                action |= ATA_EH_RESET;
1906                ata_ehi_push_desc(ehi, "dev error");
1907        }
1908        if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1909                        EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1910                        EDMA_ERR_INTRL_PAR)) {
1911                err_mask |= AC_ERR_ATA_BUS;
1912                action |= ATA_EH_RESET;
1913                ata_ehi_push_desc(ehi, "parity error");
1914        }
1915        if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1916                ata_ehi_hotplugged(ehi);
1917                ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1918                        "dev disconnect" : "dev connect");
1919                action |= ATA_EH_RESET;
1920        }
1921
1922        /*
1923         * Gen-I has a different SELF_DIS bit,
1924         * different FREEZE bits, and no SERR bit:
1925         */
1926        if (IS_GEN_I(hpriv)) {
1927                eh_freeze_mask = EDMA_EH_FREEZE_5;
1928                if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1929                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1930                        ata_ehi_push_desc(ehi, "EDMA self-disable");
1931                }
1932        } else {
1933                eh_freeze_mask = EDMA_EH_FREEZE;
1934                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1935                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1936                        ata_ehi_push_desc(ehi, "EDMA self-disable");
1937                }
1938                if (edma_err_cause & EDMA_ERR_SERR) {
1939                        ata_ehi_push_desc(ehi, "SError=%08x", serr);
1940                        err_mask |= AC_ERR_ATA_BUS;
1941                        action |= ATA_EH_RESET;
1942                }
1943        }
1944
1945        if (!err_mask) {
1946                err_mask = AC_ERR_OTHER;
1947                action |= ATA_EH_RESET;
1948        }
1949
1950        ehi->serror |= serr;
1951        ehi->action |= action;
1952
1953        if (qc)
1954                qc->err_mask |= err_mask;
1955        else
1956                ehi->err_mask |= err_mask;
1957
1958        if (err_mask == AC_ERR_DEV) {
1959                /*
1960                 * Cannot do ata_port_freeze() here,
1961                 * because it would kill PIO access,
1962                 * which is needed for further diagnosis.
1963                 */
1964                mv_eh_freeze(ap);
1965                abort = 1;
1966        } else if (edma_err_cause & eh_freeze_mask) {
1967                /*
1968                 * Note to self: ata_port_freeze() calls ata_port_abort()
1969                 */
1970                ata_port_freeze(ap);
1971        } else {
1972                abort = 1;
1973        }
1974
1975        if (abort) {
1976                if (qc)
1977                        ata_link_abort(qc->dev->link);
1978                else
1979                        ata_port_abort(ap);
1980        }
1981}
1982
1983static void mv_process_crpb_response(struct ata_port *ap,
1984                struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1985{
1986        struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1987
1988        if (qc) {
1989                u8 ata_status;
1990                u16 edma_status = le16_to_cpu(response->flags);
1991                /*
1992                 * edma_status from a response queue entry:
1993                 *   LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1994                 *   MSB is saved ATA status from command completion.
1995                 */
1996                if (!ncq_enabled) {
1997                        u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1998                        if (err_cause) {
1999                                /*
2000                                 * Error will be seen/handled by mv_err_intr().
2001                                 * So do nothing at all here.
2002                                 */
2003                                return;
2004                        }
2005                }
2006                ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2007                if (!ac_err_mask(ata_status))
2008                        ata_qc_complete(qc);
2009                /* else: leave it for mv_err_intr() */
2010        } else {
2011                ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2012                                __func__, tag);
2013        }
2014}
2015
2016static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2017{
2018        void __iomem *port_mmio = mv_ap_base(ap);
2019        struct mv_host_priv *hpriv = ap->host->private_data;
2020        u32 in_index;
2021        bool work_done = false;
2022        int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2023
2024        /* Get the hardware queue position index */
2025        in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2026                        >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2027
2028        /* Process new responses from since the last time we looked */
2029        while (in_index != pp->resp_idx) {
2030                unsigned int tag;
2031                struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2032
2033                pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2034
2035                if (IS_GEN_I(hpriv)) {
2036                        /* 50xx: no NCQ, only one command active at a time */
2037                        tag = ap->link.active_tag;
2038                } else {
2039                        /* Gen II/IIE: get command tag from CRPB entry */
2040                        tag = le16_to_cpu(response->id) & 0x1f;
2041                }
2042                mv_process_crpb_response(ap, response, tag, ncq_enabled);
2043                work_done = true;
2044        }
2045
2046        /* Update the software queue position index in hardware */
2047        if (work_done)
2048                writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2049                         (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2050                         port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2051}
2052
2053static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2054{
2055        struct mv_port_priv *pp;
2056        int edma_was_enabled;
2057
2058        if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2059                mv_unexpected_intr(ap, 0);
2060                return;
2061        }
2062        /*
2063         * Grab a snapshot of the EDMA_EN flag setting,
2064         * so that we have a consistent view for this port,
2065         * even if something we call of our routines changes it.
2066         */
2067        pp = ap->private_data;
2068        edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2069        /*
2070         * Process completed CRPB response(s) before other events.
2071         */
2072        if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2073                mv_process_crpb_entries(ap, pp);
2074                if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2075                        mv_handle_fbs_ncq_dev_err(ap);
2076        }
2077        /*
2078         * Handle chip-reported errors, or continue on to handle PIO.
2079         */
2080        if (unlikely(port_cause & ERR_IRQ)) {
2081                mv_err_intr(ap);
2082        } else if (!edma_was_enabled) {
2083                struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2084                if (qc)
2085                        ata_sff_host_intr(ap, qc);
2086                else
2087                        mv_unexpected_intr(ap, edma_was_enabled);
2088        }
2089}
2090
2091/**
2092 *      mv_host_intr - Handle all interrupts on the given host controller
2093 *      @host: host specific structure
2094 *      @main_irq_cause: Main interrupt cause register for the chip.
2095 *
2096 *      LOCKING:
2097 *      Inherited from caller.
2098 */
2099static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2100{
2101        struct mv_host_priv *hpriv = host->private_data;
2102        void __iomem *mmio = hpriv->base, *hc_mmio;
2103        unsigned int handled = 0, port;
2104
2105        for (port = 0; port < hpriv->n_ports; port++) {
2106                struct ata_port *ap = host->ports[port];
2107                unsigned int p, shift, hardport, port_cause;
2108
2109                MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2110                /*
2111                 * Each hc within the host has its own hc_irq_cause register,
2112                 * where the interrupting ports bits get ack'd.
2113                 */
2114                if (hardport == 0) {        /* first port on this hc ? */
2115                        u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2116                        u32 port_mask, ack_irqs;
2117                        /*
2118                         * Skip this entire hc if nothing pending for any ports
2119                         */
2120                        if (!hc_cause) {
2121                                port += MV_PORTS_PER_HC - 1;
2122                                continue;
2123                        }
2124                        /*
2125                         * We don't need/want to read the hc_irq_cause register,
2126                         * because doing so hurts performance, and
2127                         * main_irq_cause already gives us everything we need.
2128                         *
2129                         * But we do have to *write* to the hc_irq_cause to ack
2130                         * the ports that we are handling this time through.
2131                         *
2132                         * This requires that we create a bitmap for those
2133                         * ports which interrupted us, and use that bitmap
2134                         * to ack (only) those ports via hc_irq_cause.
2135                         */
2136                        ack_irqs = 0;
2137                        for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2138                                if ((port + p) >= hpriv->n_ports)
2139                                        break;
2140                                port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2141                                if (hc_cause & port_mask)
2142                                        ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2143                        }
2144                        hc_mmio = mv_hc_base_from_port(mmio, port);
2145                        writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2146                        handled = 1;
2147                }
2148                /*
2149                 * Handle interrupts signalled for this port:
2150                 */
2151                port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2152                if (port_cause)
2153                        mv_port_intr(ap, port_cause);
2154        }
2155        return handled;
2156}
2157
2158static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2159{
2160        struct mv_host_priv *hpriv = host->private_data;
2161        struct ata_port *ap;
2162        struct ata_queued_cmd *qc;
2163        struct ata_eh_info *ehi;
2164        unsigned int i, err_mask, printed = 0;
2165        u32 err_cause;
2166
2167        err_cause = readl(mmio + hpriv->irq_cause_ofs);
2168
2169        dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2170                   err_cause);
2171
2172        DPRINTK("All regs @ PCI error\n");
2173        mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2174
2175        writelfl(0, mmio + hpriv->irq_cause_ofs);
2176
2177        for (i = 0; i < host->n_ports; i++) {
2178                ap = host->ports[i];
2179                if (!ata_link_offline(&ap->link)) {
2180                        ehi = &ap->link.eh_info;
2181                        ata_ehi_clear_desc(ehi);
2182                        if (!printed++)
2183                                ata_ehi_push_desc(ehi,
2184                                        "PCI err cause 0x%08x", err_cause);
2185                        err_mask = AC_ERR_HOST_BUS;
2186                        ehi->action = ATA_EH_RESET;
2187                        qc = ata_qc_from_tag(ap, ap->link.active_tag);
2188                        if (qc)
2189                                qc->err_mask |= err_mask;
2190                        else
2191                                ehi->err_mask |= err_mask;
2192
2193                        ata_port_freeze(ap);
2194                }
2195        }
2196        return 1;        /* handled */
2197}
2198
2199/**
2200 *      mv_interrupt - Main interrupt event handler
2201 *      @irq: unused
2202 *      @dev_instance: private data; in this case the host structure
2203 *
2204 *      Read the read only register to determine if any host
2205 *      controllers have pending interrupts.  If so, call lower level
2206 *      routine to handle.  Also check for PCI errors which are only
2207 *      reported here.
2208 *
2209 *      LOCKING:
2210 *      This routine holds the host lock while processing pending
2211 *      interrupts.
2212 */
2213static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2214{
2215        struct ata_host *host = dev_instance;
2216        struct mv_host_priv *hpriv = host->private_data;
2217        unsigned int handled = 0;
2218        u32 main_irq_cause, pending_irqs;
2219
2220        spin_lock(&host->lock);
2221        main_irq_cause = readl(hpriv->main_irq_cause_addr);
2222        pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2223        /*
2224         * Deal with cases where we either have nothing pending, or have read
2225         * a bogus register value which can indicate HW removal or PCI fault.
2226         */
2227        if (pending_irqs && main_irq_cause != 0xffffffffU) {
2228                if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2229                        handled = mv_pci_error(host, hpriv->base);
2230                else
2231                        handled = mv_host_intr(host, pending_irqs);
2232        }
2233        spin_unlock(&host->lock);
2234        return IRQ_RETVAL(handled);
2235}
2236
2237static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2238{
2239        unsigned int ofs;
2240
2241        switch (sc_reg_in) {
2242        case SCR_STATUS:
2243        case SCR_ERROR:
2244        case SCR_CONTROL:
2245                ofs = sc_reg_in * sizeof(u32);
2246                break;
2247        default:
2248                ofs = 0xffffffffU;
2249                break;
2250        }
2251        return ofs;
2252}
2253
2254static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2255{
2256        struct mv_host_priv *hpriv = link->ap->host->private_data;
2257        void __iomem *mmio = hpriv->base;
2258        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2259        unsigned int ofs = mv5_scr_offset(sc_reg_in);
2260
2261        if (ofs != 0xffffffffU) {
2262                *val = readl(addr + ofs);
2263                return 0;
2264        } else
2265                return -EINVAL;
2266}
2267
2268static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
2269{
2270        struct mv_host_priv *hpriv = link->ap->host->private_data;
2271        void __iomem *mmio = hpriv->base;
2272        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2273        unsigned int ofs = mv5_scr_offset(sc_reg_in);
2274
2275        if (ofs != 0xffffffffU) {
2276                writelfl(val, addr + ofs);
2277                return 0;
2278        } else
2279                return -EINVAL;
2280}
2281
2282static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2283{
2284        struct pci_dev *pdev = to_pci_dev(host->dev);
2285        int early_5080;
2286
2287        early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2288
2289        if (!early_5080) {
2290                u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2291                tmp |= (1 << 0);
2292                writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2293        }
2294
2295        mv_reset_pci_bus(host, mmio);
2296}
2297
2298static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2299{
2300        writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2301}
2302
2303static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2304                           void __iomem *mmio)
2305{
2306        void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2307        u32 tmp;
2308
2309        tmp = readl(phy_mmio + MV5_PHY_MODE);
2310
2311        hpriv->signal[idx].pre = tmp & 0x1800;        /* bits 12:11 */
2312        hpriv->signal[idx].amps = tmp & 0xe0;        /* bits 7:5 */
2313}
2314
2315static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2316{
2317        u32 tmp;
2318
2319        writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2320
2321        /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2322
2323        tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2324        tmp |= ~(1 << 0);
2325        writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2326}
2327
2328static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2329                           unsigned int port)
2330{
2331        void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2332        const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2333        u32 tmp;
2334        int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2335
2336        if (fix_apm_sq) {
2337                tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2338                tmp |= (1 << 19);
2339                writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2340
2341                tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2342                tmp &= ~0x3;
2343                tmp |= 0x1;
2344                writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2345        }
2346
2347        tmp = readl(phy_mmio + MV5_PHY_MODE);
2348        tmp &= ~mask;
2349        tmp |= hpriv->signal[port].pre;
2350        tmp |= hpriv->signal[port].amps;
2351        writel(tmp, phy_mmio + MV5_PHY_MODE);
2352}
2353
2354
2355#undef ZERO
2356#define ZERO(reg) writel(0, port_mmio + (reg))
2357static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2358                             unsigned int port)
2359{
2360        void __iomem *port_mmio = mv_port_base(mmio, port);
2361
2362        mv_reset_channel(hpriv, mmio, port);
2363
2364        ZERO(0x028);        /* command */
2365        writel(0x11f, port_mmio + EDMA_CFG_OFS);
2366        ZERO(0x004);        /* timer */
2367        ZERO(0x008);        /* irq err cause */
2368        ZERO(0x00c);        /* irq err mask */
2369        ZERO(0x010);        /* rq bah */
2370        ZERO(0x014);        /* rq inp */
2371        ZERO(0x018);        /* rq outp */
2372        ZERO(0x01c);        /* respq bah */
2373        ZERO(0x024);        /* respq outp */
2374        ZERO(0x020);        /* respq inp */
2375        ZERO(0x02c);        /* test control */
2376        writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2377}
2378#undef ZERO
2379
2380#define ZERO(reg) writel(0, hc_mmio + (reg))
2381static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2382                        unsigned int hc)
2383{
2384        void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2385        u32 tmp;
2386
2387        ZERO(0x00c);
2388        ZERO(0x010);
2389        ZERO(0x014);
2390        ZERO(0x018);
2391
2392        tmp = readl(hc_mmio + 0x20);
2393        tmp &= 0x1c1c1c1c;
2394        tmp |= 0x03030303;
2395        writel(tmp, hc_mmio + 0x20);
2396}
2397#undef ZERO
2398
2399static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2400                        unsigned int n_hc)
2401{
2402        unsigned int hc, port;
2403
2404        for (hc = 0; hc < n_hc; hc++) {
2405                for (port = 0; port < MV_PORTS_PER_HC; port++)
2406                        mv5_reset_hc_port(hpriv, mmio,
2407                                          (hc * MV_PORTS_PER_HC) + port);
2408
2409                mv5_reset_one_hc(hpriv, mmio, hc);
2410        }
2411
2412        return 0;
2413}
2414
2415#undef ZERO
2416#define ZERO(reg) writel(0, mmio + (reg))
2417static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2418{
2419        struct mv_host_priv *hpriv = host->private_data;
2420        u32 tmp;
2421
2422        tmp = readl(mmio + MV_PCI_MODE_OFS);
2423        tmp &= 0xff00ffff;
2424        writel(tmp, mmio + MV_PCI_MODE_OFS);
2425
2426        ZERO(MV_PCI_DISC_TIMER);
2427        ZERO(MV_PCI_MSI_TRIGGER);
2428        writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2429        ZERO(MV_PCI_SERR_MASK);
2430        ZERO(hpriv->irq_cause_ofs);
2431        ZERO(hpriv->irq_mask_ofs);
2432        ZERO(MV_PCI_ERR_LOW_ADDRESS);
2433        ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2434        ZERO(MV_PCI_ERR_ATTRIBUTE);
2435        ZERO(MV_PCI_ERR_COMMAND);
2436}
2437#undef ZERO
2438
2439static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2440{
2441        u32 tmp;
2442
2443        mv5_reset_flash(hpriv, mmio);
2444
2445        tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2446        tmp &= 0x3;
2447        tmp |= (1 << 5) | (1 << 6);
2448        writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2449}
2450
2451/**
2452 *      mv6_reset_hc - Perform the 6xxx global soft reset
2453 *      @mmio: base address of the HBA
2454 *
2455 *      This routine only applies to 6xxx parts.
2456 *
2457 *      LOCKING:
2458 *      Inherited from caller.
2459 */
2460static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2461                        unsigned int n_hc)
2462{
2463        void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2464        int i, rc = 0;
2465        u32 t;
2466
2467        /* Following procedure defined in PCI "main command and status
2468         * register" table.
2469         */
2470        t = readl(reg);
2471        writel(t | STOP_PCI_MASTER, reg);
2472
2473        for (i = 0; i < 1000; i++) {
2474                udelay(1);
2475                t = readl(reg);
2476                if (PCI_MASTER_EMPTY & t)
2477                        break;
2478        }
2479        if (!(PCI_MASTER_EMPTY & t)) {
2480                printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2481                rc = 1;
2482                goto done;
2483        }
2484
2485        /* set reset */
2486        i = 5;
2487        do {
2488                writel(t | GLOB_SFT_RST, reg);
2489                t = readl(reg);
2490                udelay(1);
2491        } while (!(GLOB_SFT_RST & t) && (i-- > 0));
2492
2493        if (!(GLOB_SFT_RST & t)) {
2494                printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2495                rc = 1;
2496                goto done;
2497        }
2498
2499        /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2500        i = 5;
2501        do {
2502                writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2503                t = readl(reg);
2504                udelay(1);
2505        } while ((GLOB_SFT_RST & t) && (i-- > 0));
2506
2507        if (GLOB_SFT_RST & t) {
2508                printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2509                rc = 1;
2510        }
2511done:
2512        return rc;
2513}
2514
2515static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2516                           void __iomem *mmio)
2517{
2518        void __iomem *port_mmio;
2519        u32 tmp;
2520
2521        tmp = readl(mmio + MV_RESET_CFG_OFS);
2522        if ((tmp & (1 << 0)) == 0) {
2523                hpriv->signal[idx].amps = 0x7 << 8;
2524                hpriv->signal[idx].pre = 0x1 << 5;
2525                return;
2526        }
2527
2528        port_mmio = mv_port_base(mmio, idx);
2529        tmp = readl(port_mmio + PHY_MODE2);
2530
2531        hpriv->signal[idx].amps = tmp & 0x700;        /* bits 10:8 */
2532        hpriv->signal[idx].pre = tmp & 0xe0;        /* bits 7:5 */
2533}
2534
2535static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2536{
2537        writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2538}
2539
2540static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2541                           unsigned int port)
2542{
2543        void __iomem *port_mmio = mv_port_base(mmio, port);
2544
2545        u32 hp_flags = hpriv->hp_flags;
2546        int fix_phy_mode2 =
2547                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2548        int fix_phy_mode4 =
2549                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2550        u32 m2, m3;
2551
2552        if (fix_phy_mode2) {
2553                m2 = readl(port_mmio + PHY_MODE2);
2554                m2 &= ~(1 << 16);
2555                m2 |= (1 << 31);
2556                writel(m2, port_mmio + PHY_MODE2);
2557
2558                udelay(200);
2559
2560                m2 = readl(port_mmio + PHY_MODE2);
2561                m2 &= ~((1 << 16) | (1 << 31));
2562                writel(m2, port_mmio + PHY_MODE2);
2563
2564                udelay(200);
2565        }
2566
2567        /*
2568         * Gen-II/IIe PHY_MODE3 errata RM#2:
2569         * Achieves better receiver noise performance than the h/w default:
2570         */
2571        m3 = readl(port_mmio + PHY_MODE3);
2572        m3 = (m3 & 0x1f) | (0x5555601 << 5);
2573
2574        /* Guideline 88F5182 (GL# SATA-S11) */
2575        if (IS_SOC(hpriv))
2576                m3 &= ~0x1c;
2577
2578        if (fix_phy_mode4) {
2579                u32 m4 = readl(port_mmio + PHY_MODE4);
2580                /*
2581                 * Enforce reserved-bit restrictions on GenIIe devices only.
2582                 * For earlier chipsets, force only the internal config field
2583                 *  (workaround for errata FEr SATA#10 part 1).
2584                 */
2585                if (IS_GEN_IIE(hpriv))
2586                        m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
2587                else
2588                        m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
2589                writel(m4, port_mmio + PHY_MODE4);
2590        }
2591        /*
2592         * Workaround for 60x1-B2 errata SATA#13:
2593         * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2594         * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2595         */
2596        writel(m3, port_mmio + PHY_MODE3);
2597
2598        /* Revert values of pre-emphasis and signal amps to the saved ones */
2599        m2 = readl(port_mmio + PHY_MODE2);
2600
2601        m2 &= ~MV_M2_PREAMP_MASK;
2602        m2 |= hpriv->signal[port].amps;
2603        m2 |= hpriv->signal[port].pre;
2604        m2 &= ~(1 << 16);
2605
2606        /* according to mvSata 3.6.1, some IIE values are fixed */
2607        if (IS_GEN_IIE(hpriv)) {
2608                m2 &= ~0xC30FF01F;
2609                m2 |= 0x0000900F;
2610        }
2611
2612        writel(m2, port_mmio + PHY_MODE2);
2613}
2614
2615/* TODO: use the generic LED interface to configure the SATA Presence */
2616/* & Acitivy LEDs on the board */
2617static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2618                                      void __iomem *mmio)
2619{
2620        return;
2621}
2622
2623static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2624                           void __iomem *mmio)
2625{
2626        void __iomem *port_mmio;
2627        u32 tmp;
2628
2629        port_mmio = mv_port_base(mmio, idx);
2630        tmp = readl(port_mmio + PHY_MODE2);
2631
2632        hpriv->signal[idx].amps = tmp & 0x700;        /* bits 10:8 */
2633        hpriv->signal[idx].pre = tmp & 0xe0;        /* bits 7:5 */
2634}
2635
2636#undef ZERO
2637#define ZERO(reg) writel(0, port_mmio + (reg))
2638static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2639                                        void __iomem *mmio, unsigned int port)
2640{
2641        void __iomem *port_mmio = mv_port_base(mmio, port);
2642
2643        mv_reset_channel(hpriv, mmio, port);
2644
2645        ZERO(0x028);                /* command */
2646        writel(0x101f, port_mmio + EDMA_CFG_OFS);
2647        ZERO(0x004);                /* timer */
2648        ZERO(0x008);                /* irq err cause */
2649        ZERO(0x00c);                /* irq err mask */
2650        ZERO(0x010);                /* rq bah */
2651        ZERO(0x014);                /* rq inp */
2652        ZERO(0x018);                /* rq outp */
2653        ZERO(0x01c);                /* respq bah */
2654        ZERO(0x024);                /* respq outp */
2655        ZERO(0x020);                /* respq inp */
2656        ZERO(0x02c);                /* test control */
2657        writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2658}
2659
2660#undef ZERO
2661
2662#define ZERO(reg) writel(0, hc_mmio + (reg))
2663static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2664                                       void __iomem *mmio)
2665{
2666        void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2667
2668        ZERO(0x00c);
2669        ZERO(0x010);
2670        ZERO(0x014);
2671
2672}
2673
2674#undef ZERO
2675
2676static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2677                                  void __iomem *mmio, unsigned int n_hc)
2678{
2679        unsigned int port;
2680
2681        for (port = 0; port < hpriv->n_ports; port++)
2682                mv_soc_reset_hc_port(hpriv, mmio, port);
2683
2684        mv_soc_reset_one_hc(hpriv, mmio);
2685
2686        return 0;
2687}
2688
2689static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2690                                      void __iomem *mmio)
2691{
2692        return;
2693}
2694
2695static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2696{
2697        return;
2698}
2699
2700static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2701{
2702        u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2703
2704        ifcfg = (ifcfg & 0xf7f) | 0x9b1000;        /* from chip spec */
2705        if (want_gen2i)
2706                ifcfg |= (1 << 7);                /* enable gen2i speed */
2707        writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2708}
2709
2710static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2711                             unsigned int port_no)
2712{
2713        void __iomem *port_mmio = mv_port_base(mmio, port_no);
2714
2715        /*
2716         * The datasheet warns against setting EDMA_RESET when EDMA is active
2717         * (but doesn't say what the problem might be).  So we first try
2718         * to disable the EDMA engine before doing the EDMA_RESET operation.
2719         */
2720        mv_stop_edma_engine(port_mmio);
2721        writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2722
2723        if (!IS_GEN_I(hpriv)) {
2724                /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2725                mv_setup_ifcfg(port_mmio, 1);
2726        }
2727        /*
2728         * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2729         * link, and physical layers.  It resets all SATA interface registers
2730         * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2731         */
2732        writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2733        udelay(25);        /* allow reset propagation */
2734        writelfl(0, port_mmio + EDMA_CMD_OFS);
2735
2736        hpriv->ops->phy_errata(hpriv, mmio, port_no);
2737
2738        if (IS_GEN_I(hpriv))
2739                mdelay(1);
2740}
2741
2742static void mv_pmp_select(struct ata_port *ap, int pmp)
2743{
2744        if (sata_pmp_supported(ap)) {
2745                void __iomem *port_mmio = mv_ap_base(ap);
2746                u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2747                int old = reg & 0xf;
2748
2749                if (old != pmp) {
2750                        reg = (reg & ~0xf) | pmp;
2751                        writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2752                }
2753        }
2754}
2755
2756static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2757                                unsigned long deadline)
2758{
2759        mv_pmp_select(link->ap, sata_srst_pmp(link));
2760        return sata_std_hardreset(link, class, deadline);
2761}
2762
2763static int mv_softreset(struct ata_link *link, unsigned int *class,
2764                                unsigned long deadline)
2765{
2766        mv_pmp_select(link->ap, sata_srst_pmp(link));
2767        return ata_sff_softreset(link, class, deadline);
2768}
2769
2770static int mv_hardreset(struct ata_link *link, unsigned int *class,
2771                        unsigned long deadline)
2772{
2773        struct ata_port *ap = link->ap;
2774        struct mv_host_priv *hpriv = ap->host->private_data;
2775        struct mv_port_priv *pp = ap->private_data;
2776        void __iomem *mmio = hpriv->base;
2777        int rc, attempts = 0, extra = 0;
2778        u32 sstatus;
2779        bool online;
2780
2781        mv_reset_channel(hpriv, mmio, ap->port_no);
2782        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2783
2784        /* Workaround for errata FEr SATA#10 (part 2) */
2785        do {
2786                const unsigned long *timing =
2787                                sata_ehc_deb_timing(&link->eh_context);
2788
2789                rc = sata_link_hardreset(link, timing, deadline + extra,
2790                                         &online, NULL);
2791                rc = online ? -EAGAIN : rc;
2792                if (rc)
2793                        return rc;
2794                sata_scr_read(link, SCR_STATUS, &sstatus);
2795                if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2796                        /* Force 1.5gb/s link speed and try again */
2797                        mv_setup_ifcfg(mv_ap_base(ap), 0);
2798                        if (time_after(jiffies + HZ, deadline))
2799                                extra = HZ; /* only extend it once, max */
2800                }
2801        } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2802
2803        return rc;
2804}
2805
2806static void mv_eh_freeze(struct ata_port *ap)
2807{
2808        mv_stop_edma(ap);
2809        mv_enable_port_irqs(ap, 0);
2810}
2811
2812static void mv_eh_thaw(struct ata_port *ap)
2813{
2814        struct mv_host_priv *hpriv = ap->host->private_data;
2815        unsigned int port = ap->port_no;
2816        unsigned int hardport = mv_hardport_from_port(port);
2817        void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2818        void __iomem *port_mmio = mv_ap_base(ap);
2819        u32 hc_irq_cause;
2820
2821        /* clear EDMA errors on this port */
2822        writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2823
2824        /* clear pending irq events */
2825        hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2826        hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2827        writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2828
2829        mv_enable_port_irqs(ap, ERR_IRQ);
2830}
2831
2832/**
2833 *      mv_port_init - Perform some early initialization on a single port.
2834 *      @port: libata data structure storing shadow register addresses
2835 *      @port_mmio: base address of the port
2836 *
2837 *      Initialize shadow register mmio addresses, clear outstanding
2838 *      interrupts on the port, and unmask interrupts for the future
2839 *      start of the port.
2840 *
2841 *      LOCKING:
2842 *      Inherited from caller.
2843 */
2844static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
2845{
2846        void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2847        unsigned serr_ofs;
2848
2849        /* PIO related setup
2850         */
2851        port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2852        port->error_addr =
2853                port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2854        port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2855        port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2856        port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2857        port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2858        port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2859        port->status_addr =
2860                port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2861        /* special case: control/altstatus doesn't have ATA_REG_ address */
2862        port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2863
2864        /* unused: */
2865        port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2866
2867        /* Clear any currently outstanding port interrupt conditions */
2868        serr_ofs = mv_scr_offset(SCR_ERROR);
2869        writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2870        writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2871
2872        /* unmask all non-transient EDMA error interrupts */
2873        writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2874
2875        VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2876                readl(port_mmio + EDMA_CFG_OFS),
2877                readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2878                readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2879}
2880
2881static unsigned int mv_in_pcix_mode(struct ata_host *host)
2882{
2883        struct mv_host_priv *hpriv = host->private_data;
2884        void __iomem *mmio = hpriv->base;
2885        u32 reg;
2886
2887        if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
2888                return 0;        /* not PCI-X capable */
2889        reg = readl(mmio + MV_PCI_MODE_OFS);
2890        if ((reg & MV_PCI_MODE_MASK) == 0)
2891                return 0;        /* conventional PCI mode */
2892        return 1;        /* chip is in PCI-X mode */
2893}
2894
2895static int mv_pci_cut_through_okay(struct ata_host *host)
2896{
2897        struct mv_host_priv *hpriv = host->private_data;
2898        void __iomem *mmio = hpriv->base;
2899        u32 reg;
2900
2901        if (!mv_in_pcix_mode(host)) {
2902                reg = readl(mmio + PCI_COMMAND_OFS);
2903                if (reg & PCI_COMMAND_MRDTRIG)
2904                        return 0; /* not okay */
2905        }
2906        return 1; /* okay */
2907}
2908
2909static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2910{
2911        struct pci_dev *pdev = to_pci_dev(host->dev);
2912        struct mv_host_priv *hpriv = host->private_data;
2913        u32 hp_flags = hpriv->hp_flags;
2914
2915        switch (board_idx) {
2916        case chip_5080:
2917                hpriv->ops = &mv5xxx_ops;
2918                hp_flags |= MV_HP_GEN_I;
2919
2920                switch (pdev->revision) {
2921                case 0x1:
2922                        hp_flags |= MV_HP_ERRATA_50XXB0;
2923                        break;
2924                case 0x3:
2925                        hp_flags |= MV_HP_ERRATA_50XXB2;
2926                        break;
2927                default:
2928                        dev_printk(KERN_WARNING, &pdev->dev,
2929                           "Applying 50XXB2 workarounds to unknown rev\n");
2930                        hp_flags |= MV_HP_ERRATA_50XXB2;
2931                        break;
2932                }
2933                break;
2934
2935        case chip_504x:
2936        case chip_508x:
2937                hpriv->ops = &mv5xxx_ops;
2938                hp_flags |= MV_HP_GEN_I;
2939
2940                switch (pdev->revision) {
2941                case 0x0:
2942                        hp_flags |= MV_HP_ERRATA_50XXB0;
2943                        break;
2944                case 0x3:
2945                        hp_flags |= MV_HP_ERRATA_50XXB2;
2946                        break;
2947                default:
2948                        dev_printk(KERN_WARNING, &pdev->dev,
2949                           "Applying B2 workarounds to unknown rev\n");
2950                        hp_flags |= MV_HP_ERRATA_50XXB2;
2951                        break;
2952                }
2953                break;
2954
2955        case chip_604x:
2956        case chip_608x:
2957                hpriv->ops = &mv6xxx_ops;
2958                hp_flags |= MV_HP_GEN_II;
2959
2960                switch (pdev->revision) {
2961                case 0x7:
2962                        hp_flags |= MV_HP_ERRATA_60X1B2;
2963                        break;
2964                case 0x9:
2965                        hp_flags |= MV_HP_ERRATA_60X1C0;
2966                        break;
2967                default:
2968                        dev_printk(KERN_WARNING, &pdev->dev,
2969                                   "Applying B2 workarounds to unknown rev\n");
2970                        hp_flags |= MV_HP_ERRATA_60X1B2;
2971                        break;
2972                }
2973                break;
2974
2975        case chip_7042:
2976                hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2977                if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2978                    (pdev->device == 0x2300 || pdev->device == 0x2310))
2979                {
2980                        /*
2981                         * Highpoint RocketRAID PCIe 23xx series cards:
2982                         *
2983                         * Unconfigured drives are treated as "Legacy"
2984                         * by the BIOS, and it overwrites sector 8 with
2985                         * a "Lgcy" metadata block prior to Linux boot.
2986                         *
2987                         * Configured drives (RAID or JBOD) leave sector 8
2988                         * alone, but instead overwrite a high numbered
2989                         * sector for the RAID metadata.  This sector can
2990                         * be determined exactly, by truncating the physical
2991                         * drive capacity to a nice even GB value.
2992                         *
2993                         * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2994                         *
2995                         * Warn the user, lest they think we're just buggy.
2996                         */
2997                        printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2998                                " BIOS CORRUPTS DATA on all attached drives,"
2999                                " regardless of if/how they are configured."
3000                                " BEWARE!\n");
3001                        printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3002                                " use sectors 8-9 on \"Legacy\" drives,"
3003                                " and avoid the final two gigabytes on"
3004                                " all RocketRAID BIOS initialized drives.\n");
3005                }
3006                /* drop through */
3007        case chip_6042:
3008                hpriv->ops = &mv6xxx_ops;
3009                hp_flags |= MV_HP_GEN_IIE;
3010                if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3011                        hp_flags |= MV_HP_CUT_THROUGH;
3012
3013                switch (pdev->revision) {
3014                case 0x2: /* Rev.B0: the first/only public release */
3015                        hp_flags |= MV_HP_ERRATA_60X1C0;
3016                        break;
3017                default:
3018                        dev_printk(KERN_WARNING, &pdev->dev,
3019                           "Applying 60X1C0 workarounds to unknown rev\n");
3020                        hp_flags |= MV_HP_ERRATA_60X1C0;
3021                        break;
3022                }
3023                break;
3024        case chip_soc:
3025                hpriv->ops = &mv_soc_ops;
3026                hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3027                        MV_HP_ERRATA_60X1C0;
3028                break;
3029
3030        default:
3031                dev_printk(KERN_ERR, host->dev,
3032                           "BUG: invalid board index %u\n", board_idx);
3033                return 1;
3034        }
3035
3036        hpriv->hp_flags = hp_flags;
3037        if (hp_flags & MV_HP_PCIE) {
3038                hpriv->irq_cause_ofs        = PCIE_IRQ_CAUSE_OFS;
3039                hpriv->irq_mask_ofs        = PCIE_IRQ_MASK_OFS;
3040                hpriv->unmask_all_irqs        = PCIE_UNMASK_ALL_IRQS;
3041        } else {
3042                hpriv->irq_cause_ofs        = PCI_IRQ_CAUSE_OFS;
3043                hpriv->irq_mask_ofs        = PCI_IRQ_MASK_OFS;
3044                hpriv->unmask_all_irqs        = PCI_UNMASK_ALL_IRQS;
3045        }
3046
3047        return 0;
3048}
3049
3050/**
3051 *      mv_init_host - Perform some early initialization of the host.
3052 *        @host: ATA host to initialize
3053 *      @board_idx: controller index
3054 *
3055 *      If possible, do an early global reset of the host.  Then do
3056 *      our port init and clear/unmask all/relevant host interrupts.
3057 *
3058 *      LOCKING:
3059 *      Inherited from caller.
3060 */
3061static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3062{
3063        int rc = 0, n_hc, port, hc;
3064        struct mv_host_priv *hpriv = host->private_data;
3065        void __iomem *mmio = hpriv->base;
3066
3067        rc = mv_chip_id(host, board_idx);
3068        if (rc)
3069                goto done;
3070
3071        if (IS_SOC(hpriv)) {
3072                hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3073                hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3074        } else {
3075                hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3076                hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3077        }
3078
3079        /* global interrupt mask: 0 == mask everything */
3080        mv_set_main_irq_mask(host, ~0, 0);
3081
3082        n_hc = mv_get_hc_count(host->ports[0]->flags);
3083
3084        for (port = 0; port < host->n_ports; port++)
3085                hpriv->ops->read_preamp(hpriv, port, mmio);
3086
3087        rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3088        if (rc)
3089                goto done;
3090
3091        hpriv->ops->reset_flash(hpriv, mmio);
3092        hpriv->ops->reset_bus(host, mmio);
3093        hpriv->ops->enable_leds(hpriv, mmio);
3094
3095        for (port = 0; port < host->n_ports; port++) {
3096                struct ata_port *ap = host->ports[port];
3097                void __iomem *port_mmio = mv_port_base(mmio, port);
3098
3099                mv_port_init(&ap->ioaddr, port_mmio);
3100
3101#ifdef CONFIG_PCI
3102                if (!IS_SOC(hpriv)) {
3103                        unsigned int offset = port_mmio - mmio;
3104                        ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3105                        ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3106                }
3107#endif
3108        }
3109
3110        for (hc = 0; hc < n_hc; hc++) {
3111                void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3112
3113                VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3114                        "(before clear)=0x%08x\n", hc,
3115                        readl(hc_mmio + HC_CFG_OFS),
3116                        readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3117
3118                /* Clear any currently outstanding hc interrupt conditions */
3119                writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3120        }
3121
3122        if (!IS_SOC(hpriv)) {
3123                /* Clear any currently outstanding host interrupt conditions */
3124                writelfl(0, mmio + hpriv->irq_cause_ofs);
3125
3126                /* and unmask interrupt generation for host regs */
3127                writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3128
3129                /*
3130                 * enable only global host interrupts for now.
3131                 * The per-port interrupts get done later as ports are set up.
3132                 */
3133                mv_set_main_irq_mask(host, 0, PCI_ERR);
3134        }
3135done:
3136        return rc;
3137}
3138
3139static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3140{
3141        hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3142                                                             MV_CRQB_Q_SZ, 0);
3143        if (!hpriv->crqb_pool)
3144                return -ENOMEM;
3145
3146        hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3147                                                             MV_CRPB_Q_SZ, 0);
3148        if (!hpriv->crpb_pool)
3149                return -ENOMEM;
3150
3151        hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3152                                                             MV_SG_TBL_SZ, 0);
3153        if (!hpriv->sg_tbl_pool)
3154                return -ENOMEM;
3155
3156        return 0;
3157}
3158
3159static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3160                                 struct mbus_dram_target_info *dram)
3161{
3162        int i;
3163
3164        for (i = 0; i < 4; i++) {
3165                writel(0, hpriv->base + WINDOW_CTRL(i));
3166                writel(0, hpriv->base + WINDOW_BASE(i));
3167        }
3168
3169        for (i = 0; i < dram->num_cs; i++) {
3170                struct mbus_dram_window *cs = dram->cs + i;
3171
3172                writel(((cs->size - 1) & 0xffff0000) |
3173                        (cs->mbus_attr << 8) |
3174                        (dram->mbus_dram_target_id << 4) | 1,
3175                        hpriv->base + WINDOW_CTRL(i));
3176                writel(cs->base, hpriv->base + WINDOW_BASE(i));
3177        }
3178}
3179
3180/**
3181 *      mv_platform_probe - handle a positive probe of an soc Marvell
3182 *      host
3183 *      @pdev: platform device found
3184 *
3185 *      LOCKING:
3186 *      Inherited from caller.
3187 */
3188static int mv_platform_probe(struct platform_device *pdev)
3189{
3190        static int printed_version;
3191        const struct mv_sata_platform_data *mv_platform_data;
3192        const struct ata_port_info *ppi[] =
3193            { &mv_port_info[chip_soc], NULL };
3194        struct ata_host *host;
3195        struct mv_host_priv *hpriv;
3196        struct resource *res;
3197        int n_ports, rc;
3198
3199        if (!printed_version++)
3200                dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3201
3202        /*
3203         * Simple resource validation ..
3204         */
3205        if (unlikely(pdev->num_resources != 2)) {
3206                dev_err(&pdev->dev, "invalid number of resources\n");
3207                return -EINVAL;
3208        }
3209
3210        /*
3211         * Get the register base first
3212         */
3213        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3214        if (res == NULL)
3215                return -EINVAL;
3216
3217        /* allocate host */
3218        mv_platform_data = pdev->dev.platform_data;
3219        n_ports = mv_platform_data->n_ports;
3220
3221        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3222        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3223
3224        if (!host || !hpriv)
3225                return -ENOMEM;
3226        host->private_data = hpriv;
3227        hpriv->n_ports = n_ports;
3228
3229        host->iomap = NULL;
3230        hpriv->base = devm_ioremap(&pdev->dev, res->start,
3231                                   res->end - res->start + 1);
3232        hpriv->base -= MV_SATAHC0_REG_BASE;
3233
3234        /*
3235         * (Re-)program MBUS remapping windows if we are asked to.
3236         */
3237        if (mv_platform_data->dram != NULL)
3238                mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3239
3240        rc = mv_create_dma_pools(hpriv, &pdev->dev);
3241        if (rc)
3242                return rc;
3243
3244        /* initialize adapter */
3245        rc = mv_init_host(host, chip_soc);
3246        if (rc)
3247                return rc;
3248
3249        dev_printk(KERN_INFO, &pdev->dev,
3250                   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3251                   host->n_ports);
3252
3253        return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3254                                 IRQF_SHARED, &mv6_sht);
3255}
3256
3257/*
3258 *
3259 *      mv_platform_remove    -       unplug a platform interface
3260 *      @pdev: platform device
3261 *
3262 *      A platform bus SATA device has been unplugged. Perform the needed
3263 *      cleanup. Also called on module unload for any active devices.
3264 */
3265static int __devexit mv_platform_remove(struct platform_device *pdev)
3266{
3267        struct device *dev = &pdev->dev;
3268        struct ata_host *host = dev_get_drvdata(dev);
3269
3270        ata_host_detach(host);
3271        return 0;
3272}
3273
3274static struct platform_driver mv_platform_driver = {
3275        .probe                        = mv_platform_probe,
3276        .remove                        = __devexit_p(mv_platform_remove),
3277        .driver                        = {
3278                                   .name = DRV_NAME,
3279                                   .owner = THIS_MODULE,
3280                                  },
3281};
3282
3283
3284#ifdef CONFIG_PCI
3285static int mv_pci_init_one(struct pci_dev *pdev,
3286                           const struct pci_device_id *ent);
3287
3288
3289static struct pci_driver mv_pci_driver = {
3290        .name                        = DRV_NAME,
3291        .id_table                = mv_pci_tbl,
3292        .probe                        = mv_pci_init_one,
3293        .remove                        = ata_pci_remove_one,
3294};
3295
3296/*
3297 * module options
3298 */
3299static int msi;              /* Use PCI msi; either zero (off, default) or non-zero */
3300
3301
3302/* move to PCI layer or libata core? */
3303static int pci_go_64(struct pci_dev *pdev)
3304{
3305        int rc;
3306
3307        if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3308                rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3309                if (rc) {
3310                        rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3311                        if (rc) {
3312                                dev_printk(KERN_ERR, &pdev->dev,
3313                                           "64-bit DMA enable failed\n");
3314                                return rc;
3315                        }
3316                }
3317        } else {
3318                rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3319                if (rc) {
3320                        dev_printk(KERN_ERR, &pdev->dev,
3321                                   "32-bit DMA enable failed\n");
3322                        return rc;
3323                }
3324                rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3325                if (rc) {
3326                        dev_printk(KERN_ERR, &pdev->dev,
3327                                   "32-bit consistent DMA enable failed\n");
3328                        return rc;
3329                }
3330        }
3331
3332        return rc;
3333}
3334
3335/**
3336 *      mv_print_info - Dump key info to kernel log for perusal.
3337 *      @host: ATA host to print info about
3338 *
3339 *      FIXME: complete this.
3340 *
3341 *      LOCKING:
3342 *      Inherited from caller.
3343 */
3344static void mv_print_info(struct ata_host *host)
3345{
3346        struct pci_dev *pdev = to_pci_dev(host->dev);
3347        struct mv_host_priv *hpriv = host->private_data;
3348        u8 scc;
3349        const char *scc_s, *gen;
3350
3351        /* Use this to determine the HW stepping of the chip so we know
3352         * what errata to workaround
3353         */
3354        pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3355        if (scc == 0)
3356                scc_s = "SCSI";
3357        else if (scc == 0x01)
3358                scc_s = "RAID";
3359        else
3360                scc_s = "?";
3361
3362        if (IS_GEN_I(hpriv))
3363                gen = "I";
3364        else if (IS_GEN_II(hpriv))
3365                gen = "II";
3366        else if (IS_GEN_IIE(hpriv))
3367                gen = "IIE";
3368        else
3369                gen = "?";
3370
3371        dev_printk(KERN_INFO, &pdev->dev,
3372               "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3373               gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3374               scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3375}
3376
3377/**
3378 *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
3379 *      @pdev: PCI device found
3380 *      @ent: PCI device ID entry for the matched host
3381 *
3382 *      LOCKING:
3383 *      Inherited from caller.
3384 */
3385static int mv_pci_init_one(struct pci_dev *pdev,
3386                           const struct pci_device_id *ent)
3387{
3388        static int printed_version;
3389        unsigned int board_idx = (unsigned int)ent->driver_data;
3390        const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3391        struct ata_host *host;
3392        struct mv_host_priv *hpriv;
3393        int n_ports, rc;
3394
3395        if (!printed_version++)
3396                dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3397
3398        /* allocate host */
3399        n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3400
3401        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3402        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3403        if (!host || !hpriv)
3404                return -ENOMEM;
3405        host->private_data = hpriv;
3406        hpriv->n_ports = n_ports;
3407
3408        /* acquire resources */
3409        rc = pcim_enable_device(pdev);
3410        if (rc)
3411                return rc;
3412
3413        rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3414        if (rc == -EBUSY)
3415                pcim_pin_device(pdev);
3416        if (rc)
3417                return rc;
3418        host->iomap = pcim_iomap_table(pdev);
3419        hpriv->base = host->iomap[MV_PRIMARY_BAR];
3420
3421        rc = pci_go_64(pdev);
3422        if (rc)
3423                return rc;
3424
3425        rc = mv_create_dma_pools(hpriv, &pdev->dev);
3426        if (rc)
3427                return rc;
3428
3429        /* initialize adapter */
3430        rc = mv_init_host(host, board_idx);
3431        if (rc)
3432                return rc;
3433
3434        /* Enable interrupts */
3435        if (msi && pci_enable_msi(pdev))
3436                pci_intx(pdev, 1);
3437
3438        mv_dump_pci_cfg(pdev, 0x68);
3439        mv_print_info(host);
3440
3441        pci_set_master(pdev);
3442        pci_try_set_mwi(pdev);
3443        return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3444                                 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3445}
3446#endif
3447
3448static int mv_platform_probe(struct platform_device *pdev);
3449static int __devexit mv_platform_remove(struct platform_device *pdev);
3450
3451static int __init mv_init(void)
3452{
3453        int rc = -ENODEV;
3454#ifdef CONFIG_PCI
3455        rc = pci_register_driver(&mv_pci_driver);
3456        if (rc < 0)
3457                return rc;
3458#endif
3459        rc = platform_driver_register(&mv_platform_driver);
3460
3461#ifdef CONFIG_PCI
3462        if (rc < 0)
3463                pci_unregister_driver(&mv_pci_driver);
3464#endif
3465        return rc;
3466}
3467
3468static void __exit mv_exit(void)
3469{
3470#ifdef CONFIG_PCI
3471        pci_unregister_driver(&mv_pci_driver);
3472#endif
3473        platform_driver_unregister(&mv_platform_driver);
3474}
3475
3476MODULE_AUTHOR("Brett Russ");
3477MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3478MODULE_LICENSE("GPL");
3479MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3480MODULE_VERSION(DRV_VERSION);
3481MODULE_ALIAS("platform:" DRV_NAME);
3482
3483#ifdef CONFIG_PCI
3484module_param(msi, int, 0444);
3485MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3486#endif
3487
3488module_init(mv_init);
3489module_exit(mv_exit);