Showing error 1772

User: Jiri Slaby
Error type: Invalid Pointer Dereference
Error type description: A pointer which is invalid is being dereferenced
File location: net/ipv6/ip6_fib.c
Line in file: 701
Project: Linux Kernel
Project version: 2.6.28
Tools: Smatch (1.59)
Entered: 2013-09-10 20:24:52 UTC


Source:

   1/*
   2 *        Linux INET6 implementation
   3 *        Forwarding Information Database
   4 *
   5 *        Authors:
   6 *        Pedro Roque                <roque@di.fc.ul.pt>
   7 *
   8 *        This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14/*
  15 *         Changes:
  16 *         Yuji SEKIYA @USAGI:        Support default route on router node;
  17 *                                 remove ip6_null_entry from the top of
  18 *                                 routing table.
  19 *         Ville Nuorvala:                Fixed routing subtrees.
  20 */
  21#include <linux/errno.h>
  22#include <linux/types.h>
  23#include <linux/net.h>
  24#include <linux/route.h>
  25#include <linux/netdevice.h>
  26#include <linux/in6.h>
  27#include <linux/init.h>
  28#include <linux/list.h>
  29
  30#ifdef         CONFIG_PROC_FS
  31#include <linux/proc_fs.h>
  32#endif
  33
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/addrconf.h>
  37
  38#include <net/ip6_fib.h>
  39#include <net/ip6_route.h>
  40
  41#define RT6_DEBUG 2
  42
  43#if RT6_DEBUG >= 3
  44#define RT6_TRACE(x...) printk(KERN_DEBUG x)
  45#else
  46#define RT6_TRACE(x...) do { ; } while (0)
  47#endif
  48
  49static struct kmem_cache * fib6_node_kmem __read_mostly;
  50
  51enum fib_walk_state_t
  52{
  53#ifdef CONFIG_IPV6_SUBTREES
  54        FWS_S,
  55#endif
  56        FWS_L,
  57        FWS_R,
  58        FWS_C,
  59        FWS_U
  60};
  61
  62struct fib6_cleaner_t
  63{
  64        struct fib6_walker_t w;
  65        struct net *net;
  66        int (*func)(struct rt6_info *, void *arg);
  67        void *arg;
  68};
  69
  70static DEFINE_RWLOCK(fib6_walker_lock);
  71
  72#ifdef CONFIG_IPV6_SUBTREES
  73#define FWS_INIT FWS_S
  74#else
  75#define FWS_INIT FWS_L
  76#endif
  77
  78static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
  79                              struct rt6_info *rt);
  80static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  81static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  82static int fib6_walk(struct fib6_walker_t *w);
  83static int fib6_walk_continue(struct fib6_walker_t *w);
  84
  85/*
  86 *        A routing update causes an increase of the serial number on the
  87 *        affected subtree. This allows for cached routes to be asynchronously
  88 *        tested when modifications are made to the destination cache as a
  89 *        result of redirects, path MTU changes, etc.
  90 */
  91
  92static __u32 rt_sernum;
  93
  94static void fib6_gc_timer_cb(unsigned long arg);
  95
  96static struct fib6_walker_t fib6_walker_list = {
  97        .prev        = &fib6_walker_list,
  98        .next        = &fib6_walker_list,
  99};
 100
 101#define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
 102
 103static inline void fib6_walker_link(struct fib6_walker_t *w)
 104{
 105        write_lock_bh(&fib6_walker_lock);
 106        w->next = fib6_walker_list.next;
 107        w->prev = &fib6_walker_list;
 108        w->next->prev = w;
 109        w->prev->next = w;
 110        write_unlock_bh(&fib6_walker_lock);
 111}
 112
 113static inline void fib6_walker_unlink(struct fib6_walker_t *w)
 114{
 115        write_lock_bh(&fib6_walker_lock);
 116        w->next->prev = w->prev;
 117        w->prev->next = w->next;
 118        w->prev = w->next = w;
 119        write_unlock_bh(&fib6_walker_lock);
 120}
 121static __inline__ u32 fib6_new_sernum(void)
 122{
 123        u32 n = ++rt_sernum;
 124        if ((__s32)n <= 0)
 125                rt_sernum = n = 1;
 126        return n;
 127}
 128
 129/*
 130 *        Auxiliary address test functions for the radix tree.
 131 *
 132 *        These assume a 32bit processor (although it will work on
 133 *        64bit processors)
 134 */
 135
 136/*
 137 *        test bit
 138 */
 139
 140static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
 141{
 142        __be32 *addr = token;
 143
 144        return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
 145}
 146
 147static __inline__ struct fib6_node * node_alloc(void)
 148{
 149        struct fib6_node *fn;
 150
 151        fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 152
 153        return fn;
 154}
 155
 156static __inline__ void node_free(struct fib6_node * fn)
 157{
 158        kmem_cache_free(fib6_node_kmem, fn);
 159}
 160
 161static __inline__ void rt6_release(struct rt6_info *rt)
 162{
 163        if (atomic_dec_and_test(&rt->rt6i_ref))
 164                dst_free(&rt->u.dst);
 165}
 166
 167#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 168#define FIB_TABLE_HASHSZ 256
 169#else
 170#define FIB_TABLE_HASHSZ 1
 171#endif
 172
 173static void fib6_link_table(struct net *net, struct fib6_table *tb)
 174{
 175        unsigned int h;
 176
 177        /*
 178         * Initialize table lock at a single place to give lockdep a key,
 179         * tables aren't visible prior to being linked to the list.
 180         */
 181        rwlock_init(&tb->tb6_lock);
 182
 183        h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
 184
 185        /*
 186         * No protection necessary, this is the only list mutatation
 187         * operation, tables never disappear once they exist.
 188         */
 189        hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 190}
 191
 192#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 193
 194static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 195{
 196        struct fib6_table *table;
 197
 198        table = kzalloc(sizeof(*table), GFP_ATOMIC);
 199        if (table != NULL) {
 200                table->tb6_id = id;
 201                table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 202                table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 203        }
 204
 205        return table;
 206}
 207
 208struct fib6_table *fib6_new_table(struct net *net, u32 id)
 209{
 210        struct fib6_table *tb;
 211
 212        if (id == 0)
 213                id = RT6_TABLE_MAIN;
 214        tb = fib6_get_table(net, id);
 215        if (tb)
 216                return tb;
 217
 218        tb = fib6_alloc_table(net, id);
 219        if (tb != NULL)
 220                fib6_link_table(net, tb);
 221
 222        return tb;
 223}
 224
 225struct fib6_table *fib6_get_table(struct net *net, u32 id)
 226{
 227        struct fib6_table *tb;
 228        struct hlist_head *head;
 229        struct hlist_node *node;
 230        unsigned int h;
 231
 232        if (id == 0)
 233                id = RT6_TABLE_MAIN;
 234        h = id & (FIB_TABLE_HASHSZ - 1);
 235        rcu_read_lock();
 236        head = &net->ipv6.fib_table_hash[h];
 237        hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 238                if (tb->tb6_id == id) {
 239                        rcu_read_unlock();
 240                        return tb;
 241                }
 242        }
 243        rcu_read_unlock();
 244
 245        return NULL;
 246}
 247
 248static void fib6_tables_init(struct net *net)
 249{
 250        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 251        fib6_link_table(net, net->ipv6.fib6_local_tbl);
 252}
 253#else
 254
 255struct fib6_table *fib6_new_table(struct net *net, u32 id)
 256{
 257        return fib6_get_table(net, id);
 258}
 259
 260struct fib6_table *fib6_get_table(struct net *net, u32 id)
 261{
 262          return net->ipv6.fib6_main_tbl;
 263}
 264
 265struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
 266                                   int flags, pol_lookup_t lookup)
 267{
 268        return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
 269}
 270
 271static void fib6_tables_init(struct net *net)
 272{
 273        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 274}
 275
 276#endif
 277
 278static int fib6_dump_node(struct fib6_walker_t *w)
 279{
 280        int res;
 281        struct rt6_info *rt;
 282
 283        for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
 284                res = rt6_dump_route(rt, w->args);
 285                if (res < 0) {
 286                        /* Frame is full, suspend walking */
 287                        w->leaf = rt;
 288                        return 1;
 289                }
 290                WARN_ON(res == 0);
 291        }
 292        w->leaf = NULL;
 293        return 0;
 294}
 295
 296static void fib6_dump_end(struct netlink_callback *cb)
 297{
 298        struct fib6_walker_t *w = (void*)cb->args[2];
 299
 300        if (w) {
 301                cb->args[2] = 0;
 302                kfree(w);
 303        }
 304        cb->done = (void*)cb->args[3];
 305        cb->args[1] = 3;
 306}
 307
 308static int fib6_dump_done(struct netlink_callback *cb)
 309{
 310        fib6_dump_end(cb);
 311        return cb->done ? cb->done(cb) : 0;
 312}
 313
 314static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 315                           struct netlink_callback *cb)
 316{
 317        struct fib6_walker_t *w;
 318        int res;
 319
 320        w = (void *)cb->args[2];
 321        w->root = &table->tb6_root;
 322
 323        if (cb->args[4] == 0) {
 324                read_lock_bh(&table->tb6_lock);
 325                res = fib6_walk(w);
 326                read_unlock_bh(&table->tb6_lock);
 327                if (res > 0)
 328                        cb->args[4] = 1;
 329        } else {
 330                read_lock_bh(&table->tb6_lock);
 331                res = fib6_walk_continue(w);
 332                read_unlock_bh(&table->tb6_lock);
 333                if (res != 0) {
 334                        if (res < 0)
 335                                fib6_walker_unlink(w);
 336                        goto end;
 337                }
 338                fib6_walker_unlink(w);
 339                cb->args[4] = 0;
 340        }
 341end:
 342        return res;
 343}
 344
 345static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 346{
 347        struct net *net = sock_net(skb->sk);
 348        unsigned int h, s_h;
 349        unsigned int e = 0, s_e;
 350        struct rt6_rtnl_dump_arg arg;
 351        struct fib6_walker_t *w;
 352        struct fib6_table *tb;
 353        struct hlist_node *node;
 354        struct hlist_head *head;
 355        int res = 0;
 356
 357        s_h = cb->args[0];
 358        s_e = cb->args[1];
 359
 360        w = (void *)cb->args[2];
 361        if (w == NULL) {
 362                /* New dump:
 363                 *
 364                 * 1. hook callback destructor.
 365                 */
 366                cb->args[3] = (long)cb->done;
 367                cb->done = fib6_dump_done;
 368
 369                /*
 370                 * 2. allocate and initialize walker.
 371                 */
 372                w = kzalloc(sizeof(*w), GFP_ATOMIC);
 373                if (w == NULL)
 374                        return -ENOMEM;
 375                w->func = fib6_dump_node;
 376                cb->args[2] = (long)w;
 377        }
 378
 379        arg.skb = skb;
 380        arg.cb = cb;
 381        arg.net = net;
 382        w->args = &arg;
 383
 384        for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
 385                e = 0;
 386                head = &net->ipv6.fib_table_hash[h];
 387                hlist_for_each_entry(tb, node, head, tb6_hlist) {
 388                        if (e < s_e)
 389                                goto next;
 390                        res = fib6_dump_table(tb, skb, cb);
 391                        if (res != 0)
 392                                goto out;
 393next:
 394                        e++;
 395                }
 396        }
 397out:
 398        cb->args[1] = e;
 399        cb->args[0] = h;
 400
 401        res = res < 0 ? res : skb->len;
 402        if (res <= 0)
 403                fib6_dump_end(cb);
 404        return res;
 405}
 406
 407/*
 408 *        Routing Table
 409 *
 410 *        return the appropriate node for a routing tree "add" operation
 411 *        by either creating and inserting or by returning an existing
 412 *        node.
 413 */
 414
 415static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
 416                                     int addrlen, int plen,
 417                                     int offset)
 418{
 419        struct fib6_node *fn, *in, *ln;
 420        struct fib6_node *pn = NULL;
 421        struct rt6key *key;
 422        int        bit;
 423        __be32        dir = 0;
 424        __u32        sernum = fib6_new_sernum();
 425
 426        RT6_TRACE("fib6_add_1\n");
 427
 428        /* insert node in tree */
 429
 430        fn = root;
 431
 432        do {
 433                key = (struct rt6key *)((u8 *)fn->leaf + offset);
 434
 435                /*
 436                 *        Prefix match
 437                 */
 438                if (plen < fn->fn_bit ||
 439                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 440                        goto insert_above;
 441
 442                /*
 443                 *        Exact match ?
 444                 */
 445
 446                if (plen == fn->fn_bit) {
 447                        /* clean up an intermediate node */
 448                        if ((fn->fn_flags & RTN_RTINFO) == 0) {
 449                                rt6_release(fn->leaf);
 450                                fn->leaf = NULL;
 451                        }
 452
 453                        fn->fn_sernum = sernum;
 454
 455                        return fn;
 456                }
 457
 458                /*
 459                 *        We have more bits to go
 460                 */
 461
 462                /* Try to walk down on tree. */
 463                fn->fn_sernum = sernum;
 464                dir = addr_bit_set(addr, fn->fn_bit);
 465                pn = fn;
 466                fn = dir ? fn->right: fn->left;
 467        } while (fn);
 468
 469        /*
 470         *        We walked to the bottom of tree.
 471         *        Create new leaf node without children.
 472         */
 473
 474        ln = node_alloc();
 475
 476        if (ln == NULL)
 477                return NULL;
 478        ln->fn_bit = plen;
 479
 480        ln->parent = pn;
 481        ln->fn_sernum = sernum;
 482
 483        if (dir)
 484                pn->right = ln;
 485        else
 486                pn->left  = ln;
 487
 488        return ln;
 489
 490
 491insert_above:
 492        /*
 493         * split since we don't have a common prefix anymore or
 494         * we have a less significant route.
 495         * we've to insert an intermediate node on the list
 496         * this new node will point to the one we need to create
 497         * and the current
 498         */
 499
 500        pn = fn->parent;
 501
 502        /* find 1st bit in difference between the 2 addrs.
 503
 504           See comment in __ipv6_addr_diff: bit may be an invalid value,
 505           but if it is >= plen, the value is ignored in any case.
 506         */
 507
 508        bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
 509
 510        /*
 511         *                (intermediate)[in]
 512         *                  /           \
 513         *        (new leaf node)[ln] (old node)[fn]
 514         */
 515        if (plen > bit) {
 516                in = node_alloc();
 517                ln = node_alloc();
 518
 519                if (in == NULL || ln == NULL) {
 520                        if (in)
 521                                node_free(in);
 522                        if (ln)
 523                                node_free(ln);
 524                        return NULL;
 525                }
 526
 527                /*
 528                 * new intermediate node.
 529                 * RTN_RTINFO will
 530                 * be off since that an address that chooses one of
 531                 * the branches would not match less specific routes
 532                 * in the other branch
 533                 */
 534
 535                in->fn_bit = bit;
 536
 537                in->parent = pn;
 538                in->leaf = fn->leaf;
 539                atomic_inc(&in->leaf->rt6i_ref);
 540
 541                in->fn_sernum = sernum;
 542
 543                /* update parent pointer */
 544                if (dir)
 545                        pn->right = in;
 546                else
 547                        pn->left  = in;
 548
 549                ln->fn_bit = plen;
 550
 551                ln->parent = in;
 552                fn->parent = in;
 553
 554                ln->fn_sernum = sernum;
 555
 556                if (addr_bit_set(addr, bit)) {
 557                        in->right = ln;
 558                        in->left  = fn;
 559                } else {
 560                        in->left  = ln;
 561                        in->right = fn;
 562                }
 563        } else { /* plen <= bit */
 564
 565                /*
 566                 *                (new leaf node)[ln]
 567                 *                  /           \
 568                 *             (old node)[fn] NULL
 569                 */
 570
 571                ln = node_alloc();
 572
 573                if (ln == NULL)
 574                        return NULL;
 575
 576                ln->fn_bit = plen;
 577
 578                ln->parent = pn;
 579
 580                ln->fn_sernum = sernum;
 581
 582                if (dir)
 583                        pn->right = ln;
 584                else
 585                        pn->left  = ln;
 586
 587                if (addr_bit_set(&key->addr, plen))
 588                        ln->right = fn;
 589                else
 590                        ln->left  = fn;
 591
 592                fn->parent = ln;
 593        }
 594        return ln;
 595}
 596
 597/*
 598 *        Insert routing information in a node.
 599 */
 600
 601static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 602                            struct nl_info *info)
 603{
 604        struct rt6_info *iter = NULL;
 605        struct rt6_info **ins;
 606
 607        ins = &fn->leaf;
 608
 609        for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
 610                /*
 611                 *        Search for duplicates
 612                 */
 613
 614                if (iter->rt6i_metric == rt->rt6i_metric) {
 615                        /*
 616                         *        Same priority level
 617                         */
 618
 619                        if (iter->rt6i_dev == rt->rt6i_dev &&
 620                            iter->rt6i_idev == rt->rt6i_idev &&
 621                            ipv6_addr_equal(&iter->rt6i_gateway,
 622                                            &rt->rt6i_gateway)) {
 623                                if (!(iter->rt6i_flags&RTF_EXPIRES))
 624                                        return -EEXIST;
 625                                iter->rt6i_expires = rt->rt6i_expires;
 626                                if (!(rt->rt6i_flags&RTF_EXPIRES)) {
 627                                        iter->rt6i_flags &= ~RTF_EXPIRES;
 628                                        iter->rt6i_expires = 0;
 629                                }
 630                                return -EEXIST;
 631                        }
 632                }
 633
 634                if (iter->rt6i_metric > rt->rt6i_metric)
 635                        break;
 636
 637                ins = &iter->u.dst.rt6_next;
 638        }
 639
 640        /* Reset round-robin state, if necessary */
 641        if (ins == &fn->leaf)
 642                fn->rr_ptr = NULL;
 643
 644        /*
 645         *        insert node
 646         */
 647
 648        rt->u.dst.rt6_next = iter;
 649        *ins = rt;
 650        rt->rt6i_node = fn;
 651        atomic_inc(&rt->rt6i_ref);
 652        inet6_rt_notify(RTM_NEWROUTE, rt, info);
 653        info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 654
 655        if ((fn->fn_flags & RTN_RTINFO) == 0) {
 656                info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 657                fn->fn_flags |= RTN_RTINFO;
 658        }
 659
 660        return 0;
 661}
 662
 663static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
 664{
 665        if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 666            (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
 667                mod_timer(&net->ipv6.ip6_fib_timer,
 668                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 669}
 670
 671void fib6_force_start_gc(struct net *net)
 672{
 673        if (!timer_pending(&net->ipv6.ip6_fib_timer))
 674                mod_timer(&net->ipv6.ip6_fib_timer,
 675                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 676}
 677
 678/*
 679 *        Add routing information to the routing tree.
 680 *        <destination addr>/<source addr>
 681 *        with source addr info in sub-trees
 682 */
 683
 684int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
 685{
 686        struct fib6_node *fn, *pn = NULL;
 687        int err = -ENOMEM;
 688
 689        fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
 690                        rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
 691
 692        if (fn == NULL)
 693                goto out;
 694
 695        pn = fn;
 696
 697#ifdef CONFIG_IPV6_SUBTREES
 698        if (rt->rt6i_src.plen) {
 699                struct fib6_node *sn;
 700
 701                if (fn->subtree == NULL) {
 702                        struct fib6_node *sfn;
 703
 704                        /*
 705                         * Create subtree.
 706                         *
 707                         *                fn[main tree]
 708                         *                |
 709                         *                sfn[subtree root]
 710                         *                   \
 711                         *                    sn[new leaf node]
 712                         */
 713
 714                        /* Create subtree root node */
 715                        sfn = node_alloc();
 716                        if (sfn == NULL)
 717                                goto st_failure;
 718
 719                        sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
 720                        atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
 721                        sfn->fn_flags = RTN_ROOT;
 722                        sfn->fn_sernum = fib6_new_sernum();
 723
 724                        /* Now add the first leaf node to new subtree */
 725
 726                        sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
 727                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
 728                                        offsetof(struct rt6_info, rt6i_src));
 729
 730                        if (sn == NULL) {
 731                                /* If it is failed, discard just allocated
 732                                   root, and then (in st_failure) stale node
 733                                   in main tree.
 734                                 */
 735                                node_free(sfn);
 736                                goto st_failure;
 737                        }
 738
 739                        /* Now link new subtree to main tree */
 740                        sfn->parent = fn;
 741                        fn->subtree = sfn;
 742                } else {
 743                        sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
 744                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
 745                                        offsetof(struct rt6_info, rt6i_src));
 746
 747                        if (sn == NULL)
 748                                goto st_failure;
 749                }
 750
 751                if (fn->leaf == NULL) {
 752                        fn->leaf = rt;
 753                        atomic_inc(&rt->rt6i_ref);
 754                }
 755                fn = sn;
 756        }
 757#endif
 758
 759        err = fib6_add_rt2node(fn, rt, info);
 760
 761        if (err == 0) {
 762                fib6_start_gc(info->nl_net, rt);
 763                if (!(rt->rt6i_flags&RTF_CACHE))
 764                        fib6_prune_clones(info->nl_net, pn, rt);
 765        }
 766
 767out:
 768        if (err) {
 769#ifdef CONFIG_IPV6_SUBTREES
 770                /*
 771                 * If fib6_add_1 has cleared the old leaf pointer in the
 772                 * super-tree leaf node we have to find a new one for it.
 773                 */
 774                if (pn != fn && pn->leaf == rt) {
 775                        pn->leaf = NULL;
 776                        atomic_dec(&rt->rt6i_ref);
 777                }
 778                if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
 779                        pn->leaf = fib6_find_prefix(info->nl_net, pn);
 780#if RT6_DEBUG >= 2
 781                        if (!pn->leaf) {
 782                                WARN_ON(pn->leaf == NULL);
 783                                pn->leaf = info->nl_net->ipv6.ip6_null_entry;
 784                        }
 785#endif
 786                        atomic_inc(&pn->leaf->rt6i_ref);
 787                }
 788#endif
 789                dst_free(&rt->u.dst);
 790        }
 791        return err;
 792
 793#ifdef CONFIG_IPV6_SUBTREES
 794        /* Subtree creation failed, probably main tree node
 795           is orphan. If it is, shoot it.
 796         */
 797st_failure:
 798        if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
 799                fib6_repair_tree(info->nl_net, fn);
 800        dst_free(&rt->u.dst);
 801        return err;
 802#endif
 803}
 804
 805/*
 806 *        Routing tree lookup
 807 *
 808 */
 809
 810struct lookup_args {
 811        int                offset;                /* key offset on rt6_info        */
 812        struct in6_addr        *addr;                /* search key                        */
 813};
 814
 815static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
 816                                        struct lookup_args *args)
 817{
 818        struct fib6_node *fn;
 819        __be32 dir;
 820
 821        if (unlikely(args->offset == 0))
 822                return NULL;
 823
 824        /*
 825         *        Descend on a tree
 826         */
 827
 828        fn = root;
 829
 830        for (;;) {
 831                struct fib6_node *next;
 832
 833                dir = addr_bit_set(args->addr, fn->fn_bit);
 834
 835                next = dir ? fn->right : fn->left;
 836
 837                if (next) {
 838                        fn = next;
 839                        continue;
 840                }
 841
 842                break;
 843        }
 844
 845        while(fn) {
 846                if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
 847                        struct rt6key *key;
 848
 849                        key = (struct rt6key *) ((u8 *) fn->leaf +
 850                                                 args->offset);
 851
 852                        if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
 853#ifdef CONFIG_IPV6_SUBTREES
 854                                if (fn->subtree)
 855                                        fn = fib6_lookup_1(fn->subtree, args + 1);
 856#endif
 857                                if (!fn || fn->fn_flags & RTN_RTINFO)
 858                                        return fn;
 859                        }
 860                }
 861
 862                if (fn->fn_flags & RTN_ROOT)
 863                        break;
 864
 865                fn = fn->parent;
 866        }
 867
 868        return NULL;
 869}
 870
 871struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
 872                               struct in6_addr *saddr)
 873{
 874        struct fib6_node *fn;
 875        struct lookup_args args[] = {
 876                {
 877                        .offset = offsetof(struct rt6_info, rt6i_dst),
 878                        .addr = daddr,
 879                },
 880#ifdef CONFIG_IPV6_SUBTREES
 881                {
 882                        .offset = offsetof(struct rt6_info, rt6i_src),
 883                        .addr = saddr,
 884                },
 885#endif
 886                {
 887                        .offset = 0,        /* sentinel */
 888                }
 889        };
 890
 891        fn = fib6_lookup_1(root, daddr ? args : args + 1);
 892
 893        if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
 894                fn = root;
 895
 896        return fn;
 897}
 898
 899/*
 900 *        Get node with specified destination prefix (and source prefix,
 901 *        if subtrees are used)
 902 */
 903
 904
 905static struct fib6_node * fib6_locate_1(struct fib6_node *root,
 906                                        struct in6_addr *addr,
 907                                        int plen, int offset)
 908{
 909        struct fib6_node *fn;
 910
 911        for (fn = root; fn ; ) {
 912                struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
 913
 914                /*
 915                 *        Prefix match
 916                 */
 917                if (plen < fn->fn_bit ||
 918                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 919                        return NULL;
 920
 921                if (plen == fn->fn_bit)
 922                        return fn;
 923
 924                /*
 925                 *        We have more bits to go
 926                 */
 927                if (addr_bit_set(addr, fn->fn_bit))
 928                        fn = fn->right;
 929                else
 930                        fn = fn->left;
 931        }
 932        return NULL;
 933}
 934
 935struct fib6_node * fib6_locate(struct fib6_node *root,
 936                               struct in6_addr *daddr, int dst_len,
 937                               struct in6_addr *saddr, int src_len)
 938{
 939        struct fib6_node *fn;
 940
 941        fn = fib6_locate_1(root, daddr, dst_len,
 942                           offsetof(struct rt6_info, rt6i_dst));
 943
 944#ifdef CONFIG_IPV6_SUBTREES
 945        if (src_len) {
 946                WARN_ON(saddr == NULL);
 947                if (fn && fn->subtree)
 948                        fn = fib6_locate_1(fn->subtree, saddr, src_len,
 949                                           offsetof(struct rt6_info, rt6i_src));
 950        }
 951#endif
 952
 953        if (fn && fn->fn_flags&RTN_RTINFO)
 954                return fn;
 955
 956        return NULL;
 957}
 958
 959
 960/*
 961 *        Deletion
 962 *
 963 */
 964
 965static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
 966{
 967        if (fn->fn_flags&RTN_ROOT)
 968                return net->ipv6.ip6_null_entry;
 969
 970        while(fn) {
 971                if(fn->left)
 972                        return fn->left->leaf;
 973
 974                if(fn->right)
 975                        return fn->right->leaf;
 976
 977                fn = FIB6_SUBTREE(fn);
 978        }
 979        return NULL;
 980}
 981
 982/*
 983 *        Called to trim the tree of intermediate nodes when possible. "fn"
 984 *        is the node we want to try and remove.
 985 */
 986
 987static struct fib6_node *fib6_repair_tree(struct net *net,
 988                                           struct fib6_node *fn)
 989{
 990        int children;
 991        int nstate;
 992        struct fib6_node *child, *pn;
 993        struct fib6_walker_t *w;
 994        int iter = 0;
 995
 996        for (;;) {
 997                RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
 998                iter++;
 999
1000                WARN_ON(fn->fn_flags & RTN_RTINFO);
1001                WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1002                WARN_ON(fn->leaf != NULL);
1003
1004                children = 0;
1005                child = NULL;
1006                if (fn->right) child = fn->right, children |= 1;
1007                if (fn->left) child = fn->left, children |= 2;
1008
1009                if (children == 3 || FIB6_SUBTREE(fn)
1010#ifdef CONFIG_IPV6_SUBTREES
1011                    /* Subtree root (i.e. fn) may have one child */
1012                    || (children && fn->fn_flags&RTN_ROOT)
1013#endif
1014                    ) {
1015                        fn->leaf = fib6_find_prefix(net, fn);
1016#if RT6_DEBUG >= 2
1017                        if (fn->leaf==NULL) {
1018                                WARN_ON(!fn->leaf);
1019                                fn->leaf = net->ipv6.ip6_null_entry;
1020                        }
1021#endif
1022                        atomic_inc(&fn->leaf->rt6i_ref);
1023                        return fn->parent;
1024                }
1025
1026                pn = fn->parent;
1027#ifdef CONFIG_IPV6_SUBTREES
1028                if (FIB6_SUBTREE(pn) == fn) {
1029                        WARN_ON(!(fn->fn_flags & RTN_ROOT));
1030                        FIB6_SUBTREE(pn) = NULL;
1031                        nstate = FWS_L;
1032                } else {
1033                        WARN_ON(fn->fn_flags & RTN_ROOT);
1034#endif
1035                        if (pn->right == fn) pn->right = child;
1036                        else if (pn->left == fn) pn->left = child;
1037#if RT6_DEBUG >= 2
1038                        else
1039                                WARN_ON(1);
1040#endif
1041                        if (child)
1042                                child->parent = pn;
1043                        nstate = FWS_R;
1044#ifdef CONFIG_IPV6_SUBTREES
1045                }
1046#endif
1047
1048                read_lock(&fib6_walker_lock);
1049                FOR_WALKERS(w) {
1050                        if (child == NULL) {
1051                                if (w->root == fn) {
1052                                        w->root = w->node = NULL;
1053                                        RT6_TRACE("W %p adjusted by delroot 1\n", w);
1054                                } else if (w->node == fn) {
1055                                        RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1056                                        w->node = pn;
1057                                        w->state = nstate;
1058                                }
1059                        } else {
1060                                if (w->root == fn) {
1061                                        w->root = child;
1062                                        RT6_TRACE("W %p adjusted by delroot 2\n", w);
1063                                }
1064                                if (w->node == fn) {
1065                                        w->node = child;
1066                                        if (children&2) {
1067                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1068                                                w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1069                                        } else {
1070                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1071                                                w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1072                                        }
1073                                }
1074                        }
1075                }
1076                read_unlock(&fib6_walker_lock);
1077
1078                node_free(fn);
1079                if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1080                        return pn;
1081
1082                rt6_release(pn->leaf);
1083                pn->leaf = NULL;
1084                fn = pn;
1085        }
1086}
1087
1088static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1089                           struct nl_info *info)
1090{
1091        struct fib6_walker_t *w;
1092        struct rt6_info *rt = *rtp;
1093        struct net *net = info->nl_net;
1094
1095        RT6_TRACE("fib6_del_route\n");
1096
1097        /* Unlink it */
1098        *rtp = rt->u.dst.rt6_next;
1099        rt->rt6i_node = NULL;
1100        net->ipv6.rt6_stats->fib_rt_entries--;
1101        net->ipv6.rt6_stats->fib_discarded_routes++;
1102
1103        /* Reset round-robin state, if necessary */
1104        if (fn->rr_ptr == rt)
1105                fn->rr_ptr = NULL;
1106
1107        /* Adjust walkers */
1108        read_lock(&fib6_walker_lock);
1109        FOR_WALKERS(w) {
1110                if (w->state == FWS_C && w->leaf == rt) {
1111                        RT6_TRACE("walker %p adjusted by delroute\n", w);
1112                        w->leaf = rt->u.dst.rt6_next;
1113                        if (w->leaf == NULL)
1114                                w->state = FWS_U;
1115                }
1116        }
1117        read_unlock(&fib6_walker_lock);
1118
1119        rt->u.dst.rt6_next = NULL;
1120
1121        /* If it was last route, expunge its radix tree node */
1122        if (fn->leaf == NULL) {
1123                fn->fn_flags &= ~RTN_RTINFO;
1124                net->ipv6.rt6_stats->fib_route_nodes--;
1125                fn = fib6_repair_tree(net, fn);
1126        }
1127
1128        if (atomic_read(&rt->rt6i_ref) != 1) {
1129                /* This route is used as dummy address holder in some split
1130                 * nodes. It is not leaked, but it still holds other resources,
1131                 * which must be released in time. So, scan ascendant nodes
1132                 * and replace dummy references to this route with references
1133                 * to still alive ones.
1134                 */
1135                while (fn) {
1136                        if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1137                                fn->leaf = fib6_find_prefix(net, fn);
1138                                atomic_inc(&fn->leaf->rt6i_ref);
1139                                rt6_release(rt);
1140                        }
1141                        fn = fn->parent;
1142                }
1143                /* No more references are possible at this point. */
1144                BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1145        }
1146
1147        inet6_rt_notify(RTM_DELROUTE, rt, info);
1148        rt6_release(rt);
1149}
1150
1151int fib6_del(struct rt6_info *rt, struct nl_info *info)
1152{
1153        struct net *net = info->nl_net;
1154        struct fib6_node *fn = rt->rt6i_node;
1155        struct rt6_info **rtp;
1156
1157#if RT6_DEBUG >= 2
1158        if (rt->u.dst.obsolete>0) {
1159                WARN_ON(fn != NULL);
1160                return -ENOENT;
1161        }
1162#endif
1163        if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1164                return -ENOENT;
1165
1166        WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1167
1168        if (!(rt->rt6i_flags&RTF_CACHE)) {
1169                struct fib6_node *pn = fn;
1170#ifdef CONFIG_IPV6_SUBTREES
1171                /* clones of this route might be in another subtree */
1172                if (rt->rt6i_src.plen) {
1173                        while (!(pn->fn_flags&RTN_ROOT))
1174                                pn = pn->parent;
1175                        pn = pn->parent;
1176                }
1177#endif
1178                fib6_prune_clones(info->nl_net, pn, rt);
1179        }
1180
1181        /*
1182         *        Walk the leaf entries looking for ourself
1183         */
1184
1185        for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1186                if (*rtp == rt) {
1187                        fib6_del_route(fn, rtp, info);
1188                        return 0;
1189                }
1190        }
1191        return -ENOENT;
1192}
1193
1194/*
1195 *        Tree traversal function.
1196 *
1197 *        Certainly, it is not interrupt safe.
1198 *        However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1199 *        It means, that we can modify tree during walking
1200 *        and use this function for garbage collection, clone pruning,
1201 *        cleaning tree when a device goes down etc. etc.
1202 *
1203 *        It guarantees that every node will be traversed,
1204 *        and that it will be traversed only once.
1205 *
1206 *        Callback function w->func may return:
1207 *        0 -> continue walking.
1208 *        positive value -> walking is suspended (used by tree dumps,
1209 *        and probably by gc, if it will be split to several slices)
1210 *        negative value -> terminate walking.
1211 *
1212 *        The function itself returns:
1213 *        0   -> walk is complete.
1214 *        >0  -> walk is incomplete (i.e. suspended)
1215 *        <0  -> walk is terminated by an error.
1216 */
1217
1218static int fib6_walk_continue(struct fib6_walker_t *w)
1219{
1220        struct fib6_node *fn, *pn;
1221
1222        for (;;) {
1223                fn = w->node;
1224                if (fn == NULL)
1225                        return 0;
1226
1227                if (w->prune && fn != w->root &&
1228                    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1229                        w->state = FWS_C;
1230                        w->leaf = fn->leaf;
1231                }
1232                switch (w->state) {
1233#ifdef CONFIG_IPV6_SUBTREES
1234                case FWS_S:
1235                        if (FIB6_SUBTREE(fn)) {
1236                                w->node = FIB6_SUBTREE(fn);
1237                                continue;
1238                        }
1239                        w->state = FWS_L;
1240#endif
1241                case FWS_L:
1242                        if (fn->left) {
1243                                w->node = fn->left;
1244                                w->state = FWS_INIT;
1245                                continue;
1246                        }
1247                        w->state = FWS_R;
1248                case FWS_R:
1249                        if (fn->right) {
1250                                w->node = fn->right;
1251                                w->state = FWS_INIT;
1252                                continue;
1253                        }
1254                        w->state = FWS_C;
1255                        w->leaf = fn->leaf;
1256                case FWS_C:
1257                        if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1258                                int err = w->func(w);
1259                                if (err)
1260                                        return err;
1261                                continue;
1262                        }
1263                        w->state = FWS_U;
1264                case FWS_U:
1265                        if (fn == w->root)
1266                                return 0;
1267                        pn = fn->parent;
1268                        w->node = pn;
1269#ifdef CONFIG_IPV6_SUBTREES
1270                        if (FIB6_SUBTREE(pn) == fn) {
1271                                WARN_ON(!(fn->fn_flags & RTN_ROOT));
1272                                w->state = FWS_L;
1273                                continue;
1274                        }
1275#endif
1276                        if (pn->left == fn) {
1277                                w->state = FWS_R;
1278                                continue;
1279                        }
1280                        if (pn->right == fn) {
1281                                w->state = FWS_C;
1282                                w->leaf = w->node->leaf;
1283                                continue;
1284                        }
1285#if RT6_DEBUG >= 2
1286                        WARN_ON(1);
1287#endif
1288                }
1289        }
1290}
1291
1292static int fib6_walk(struct fib6_walker_t *w)
1293{
1294        int res;
1295
1296        w->state = FWS_INIT;
1297        w->node = w->root;
1298
1299        fib6_walker_link(w);
1300        res = fib6_walk_continue(w);
1301        if (res <= 0)
1302                fib6_walker_unlink(w);
1303        return res;
1304}
1305
1306static int fib6_clean_node(struct fib6_walker_t *w)
1307{
1308        int res;
1309        struct rt6_info *rt;
1310        struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1311        struct nl_info info = {
1312                .nl_net = c->net,
1313        };
1314
1315        for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1316                res = c->func(rt, c->arg);
1317                if (res < 0) {
1318                        w->leaf = rt;
1319                        res = fib6_del(rt, &info);
1320                        if (res) {
1321#if RT6_DEBUG >= 2
1322                                printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1323#endif
1324                                continue;
1325                        }
1326                        return 0;
1327                }
1328                WARN_ON(res != 0);
1329        }
1330        w->leaf = rt;
1331        return 0;
1332}
1333
1334/*
1335 *        Convenient frontend to tree walker.
1336 *
1337 *        func is called on each route.
1338 *                It may return -1 -> delete this route.
1339 *                              0  -> continue walking
1340 *
1341 *        prune==1 -> only immediate children of node (certainly,
1342 *        ignoring pure split nodes) will be scanned.
1343 */
1344
1345static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1346                            int (*func)(struct rt6_info *, void *arg),
1347                            int prune, void *arg)
1348{
1349        struct fib6_cleaner_t c;
1350
1351        c.w.root = root;
1352        c.w.func = fib6_clean_node;
1353        c.w.prune = prune;
1354        c.func = func;
1355        c.arg = arg;
1356        c.net = net;
1357
1358        fib6_walk(&c.w);
1359}
1360
1361void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1362                    int prune, void *arg)
1363{
1364        struct fib6_table *table;
1365        struct hlist_node *node;
1366        struct hlist_head *head;
1367        unsigned int h;
1368
1369        rcu_read_lock();
1370        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1371                head = &net->ipv6.fib_table_hash[h];
1372                hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1373                        write_lock_bh(&table->tb6_lock);
1374                        fib6_clean_tree(net, &table->tb6_root,
1375                                        func, prune, arg);
1376                        write_unlock_bh(&table->tb6_lock);
1377                }
1378        }
1379        rcu_read_unlock();
1380}
1381
1382static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1383{
1384        if (rt->rt6i_flags & RTF_CACHE) {
1385                RT6_TRACE("pruning clone %p\n", rt);
1386                return -1;
1387        }
1388
1389        return 0;
1390}
1391
1392static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1393                              struct rt6_info *rt)
1394{
1395        fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1396}
1397
1398/*
1399 *        Garbage collection
1400 */
1401
1402static struct fib6_gc_args
1403{
1404        int                        timeout;
1405        int                        more;
1406} gc_args;
1407
1408static int fib6_age(struct rt6_info *rt, void *arg)
1409{
1410        unsigned long now = jiffies;
1411
1412        /*
1413         *        check addrconf expiration here.
1414         *        Routes are expired even if they are in use.
1415         *
1416         *        Also age clones. Note, that clones are aged out
1417         *        only if they are not in use now.
1418         */
1419
1420        if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1421                if (time_after(now, rt->rt6i_expires)) {
1422                        RT6_TRACE("expiring %p\n", rt);
1423                        return -1;
1424                }
1425                gc_args.more++;
1426        } else if (rt->rt6i_flags & RTF_CACHE) {
1427                if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1428                    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1429                        RT6_TRACE("aging clone %p\n", rt);
1430                        return -1;
1431                } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1432                           (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1433                        RT6_TRACE("purging route %p via non-router but gateway\n",
1434                                  rt);
1435                        return -1;
1436                }
1437                gc_args.more++;
1438        }
1439
1440        return 0;
1441}
1442
1443static DEFINE_SPINLOCK(fib6_gc_lock);
1444
1445void fib6_run_gc(unsigned long expires, struct net *net)
1446{
1447        if (expires != ~0UL) {
1448                spin_lock_bh(&fib6_gc_lock);
1449                gc_args.timeout = expires ? (int)expires :
1450                        net->ipv6.sysctl.ip6_rt_gc_interval;
1451        } else {
1452                if (!spin_trylock_bh(&fib6_gc_lock)) {
1453                        mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1454                        return;
1455                }
1456                gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1457        }
1458
1459        gc_args.more = icmp6_dst_gc();
1460
1461        fib6_clean_all(net, fib6_age, 0, NULL);
1462
1463        if (gc_args.more)
1464                mod_timer(&net->ipv6.ip6_fib_timer,
1465                          round_jiffies(jiffies
1466                                        + net->ipv6.sysctl.ip6_rt_gc_interval));
1467        else
1468                del_timer(&net->ipv6.ip6_fib_timer);
1469        spin_unlock_bh(&fib6_gc_lock);
1470}
1471
1472static void fib6_gc_timer_cb(unsigned long arg)
1473{
1474        fib6_run_gc(0, (struct net *)arg);
1475}
1476
1477static int fib6_net_init(struct net *net)
1478{
1479        setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1480
1481        net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1482        if (!net->ipv6.rt6_stats)
1483                goto out_timer;
1484
1485        net->ipv6.fib_table_hash = kcalloc(FIB_TABLE_HASHSZ,
1486                                           sizeof(*net->ipv6.fib_table_hash),
1487                                           GFP_KERNEL);
1488        if (!net->ipv6.fib_table_hash)
1489                goto out_rt6_stats;
1490
1491        net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1492                                          GFP_KERNEL);
1493        if (!net->ipv6.fib6_main_tbl)
1494                goto out_fib_table_hash;
1495
1496        net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1497        net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1498        net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1499                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1500
1501#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1502        net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1503                                           GFP_KERNEL);
1504        if (!net->ipv6.fib6_local_tbl)
1505                goto out_fib6_main_tbl;
1506        net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1507        net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1508        net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1509                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1510#endif
1511        fib6_tables_init(net);
1512
1513        return 0;
1514
1515#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1516out_fib6_main_tbl:
1517        kfree(net->ipv6.fib6_main_tbl);
1518#endif
1519out_fib_table_hash:
1520        kfree(net->ipv6.fib_table_hash);
1521out_rt6_stats:
1522        kfree(net->ipv6.rt6_stats);
1523out_timer:
1524        return -ENOMEM;
1525 }
1526
1527static void fib6_net_exit(struct net *net)
1528{
1529        rt6_ifdown(net, NULL);
1530        del_timer_sync(&net->ipv6.ip6_fib_timer);
1531
1532#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1533        kfree(net->ipv6.fib6_local_tbl);
1534#endif
1535        kfree(net->ipv6.fib6_main_tbl);
1536        kfree(net->ipv6.fib_table_hash);
1537        kfree(net->ipv6.rt6_stats);
1538}
1539
1540static struct pernet_operations fib6_net_ops = {
1541        .init = fib6_net_init,
1542        .exit = fib6_net_exit,
1543};
1544
1545int __init fib6_init(void)
1546{
1547        int ret = -ENOMEM;
1548
1549        fib6_node_kmem = kmem_cache_create("fib6_nodes",
1550                                           sizeof(struct fib6_node),
1551                                           0, SLAB_HWCACHE_ALIGN,
1552                                           NULL);
1553        if (!fib6_node_kmem)
1554                goto out;
1555
1556        ret = register_pernet_subsys(&fib6_net_ops);
1557        if (ret)
1558                goto out_kmem_cache_create;
1559
1560        ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1561        if (ret)
1562                goto out_unregister_subsys;
1563out:
1564        return ret;
1565
1566out_unregister_subsys:
1567        unregister_pernet_subsys(&fib6_net_ops);
1568out_kmem_cache_create:
1569        kmem_cache_destroy(fib6_node_kmem);
1570        goto out;
1571}
1572
1573void fib6_gc_cleanup(void)
1574{
1575        unregister_pernet_subsys(&fib6_net_ops);
1576        kmem_cache_destroy(fib6_node_kmem);
1577}