Showing error 1696

User: Jiri Slaby
Error type: Double Unlock
Error type description: Some lock is unlocked twice unintentionally in a sequence
File location: arch/x86/mm/fault.c
Line in file: 777
Project: Linux Kernel
Project version: 2.6.28
Tools: Smatch (1.59)
Entered: 2013-09-10 15:16:58 UTC


Source:

  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *  Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
  4 */
  5
  6#include <linux/signal.h>
  7#include <linux/sched.h>
  8#include <linux/kernel.h>
  9#include <linux/errno.h>
 10#include <linux/string.h>
 11#include <linux/types.h>
 12#include <linux/ptrace.h>
 13#include <linux/mmiotrace.h>
 14#include <linux/mman.h>
 15#include <linux/mm.h>
 16#include <linux/smp.h>
 17#include <linux/interrupt.h>
 18#include <linux/init.h>
 19#include <linux/tty.h>
 20#include <linux/vt_kern.h>                /* For unblank_screen() */
 21#include <linux/compiler.h>
 22#include <linux/highmem.h>
 23#include <linux/bootmem.h>                /* for max_low_pfn */
 24#include <linux/vmalloc.h>
 25#include <linux/module.h>
 26#include <linux/kprobes.h>
 27#include <linux/uaccess.h>
 28#include <linux/kdebug.h>
 29
 30#include <asm/system.h>
 31#include <asm/desc.h>
 32#include <asm/segment.h>
 33#include <asm/pgalloc.h>
 34#include <asm/smp.h>
 35#include <asm/tlbflush.h>
 36#include <asm/proto.h>
 37#include <asm-generic/sections.h>
 38#include <asm/traps.h>
 39
 40/*
 41 * Page fault error code bits
 42 *        bit 0 == 0 means no page found, 1 means protection fault
 43 *        bit 1 == 0 means read, 1 means write
 44 *        bit 2 == 0 means kernel, 1 means user-mode
 45 *        bit 3 == 1 means use of reserved bit detected
 46 *        bit 4 == 1 means fault was an instruction fetch
 47 */
 48#define PF_PROT                (1<<0)
 49#define PF_WRITE        (1<<1)
 50#define PF_USER                (1<<2)
 51#define PF_RSVD                (1<<3)
 52#define PF_INSTR        (1<<4)
 53
 54static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
 55{
 56#ifdef CONFIG_MMIOTRACE_HOOKS
 57        if (unlikely(is_kmmio_active()))
 58                if (kmmio_handler(regs, addr) == 1)
 59                        return -1;
 60#endif
 61        return 0;
 62}
 63
 64static inline int notify_page_fault(struct pt_regs *regs)
 65{
 66#ifdef CONFIG_KPROBES
 67        int ret = 0;
 68
 69        /* kprobe_running() needs smp_processor_id() */
 70        if (!user_mode_vm(regs)) {
 71                preempt_disable();
 72                if (kprobe_running() && kprobe_fault_handler(regs, 14))
 73                        ret = 1;
 74                preempt_enable();
 75        }
 76
 77        return ret;
 78#else
 79        return 0;
 80#endif
 81}
 82
 83/*
 84 * X86_32
 85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 86 * Check that here and ignore it.
 87 *
 88 * X86_64
 89 * Sometimes the CPU reports invalid exceptions on prefetch.
 90 * Check that here and ignore it.
 91 *
 92 * Opcode checker based on code by Richard Brunner
 93 */
 94static int is_prefetch(struct pt_regs *regs, unsigned long addr,
 95                       unsigned long error_code)
 96{
 97        unsigned char *instr;
 98        int scan_more = 1;
 99        int prefetch = 0;
100        unsigned char *max_instr;
101
102        /*
103         * If it was a exec (instruction fetch) fault on NX page, then
104         * do not ignore the fault:
105         */
106        if (error_code & PF_INSTR)
107                return 0;
108
109        instr = (unsigned char *)convert_ip_to_linear(current, regs);
110        max_instr = instr + 15;
111
112        if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
113                return 0;
114
115        while (scan_more && instr < max_instr) {
116                unsigned char opcode;
117                unsigned char instr_hi;
118                unsigned char instr_lo;
119
120                if (probe_kernel_address(instr, opcode))
121                        break;
122
123                instr_hi = opcode & 0xf0;
124                instr_lo = opcode & 0x0f;
125                instr++;
126
127                switch (instr_hi) {
128                case 0x20:
129                case 0x30:
130                        /*
131                         * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
132                         * In X86_64 long mode, the CPU will signal invalid
133                         * opcode if some of these prefixes are present so
134                         * X86_64 will never get here anyway
135                         */
136                        scan_more = ((instr_lo & 7) == 0x6);
137                        break;
138#ifdef CONFIG_X86_64
139                case 0x40:
140                        /*
141                         * In AMD64 long mode 0x40..0x4F are valid REX prefixes
142                         * Need to figure out under what instruction mode the
143                         * instruction was issued. Could check the LDT for lm,
144                         * but for now it's good enough to assume that long
145                         * mode only uses well known segments or kernel.
146                         */
147                        scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
148                        break;
149#endif
150                case 0x60:
151                        /* 0x64 thru 0x67 are valid prefixes in all modes. */
152                        scan_more = (instr_lo & 0xC) == 0x4;
153                        break;
154                case 0xF0:
155                        /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
156                        scan_more = !instr_lo || (instr_lo>>1) == 1;
157                        break;
158                case 0x00:
159                        /* Prefetch instruction is 0x0F0D or 0x0F18 */
160                        scan_more = 0;
161
162                        if (probe_kernel_address(instr, opcode))
163                                break;
164                        prefetch = (instr_lo == 0xF) &&
165                                (opcode == 0x0D || opcode == 0x18);
166                        break;
167                default:
168                        scan_more = 0;
169                        break;
170                }
171        }
172        return prefetch;
173}
174
175static void force_sig_info_fault(int si_signo, int si_code,
176        unsigned long address, struct task_struct *tsk)
177{
178        siginfo_t info;
179
180        info.si_signo = si_signo;
181        info.si_errno = 0;
182        info.si_code = si_code;
183        info.si_addr = (void __user *)address;
184        force_sig_info(si_signo, &info, tsk);
185}
186
187#ifdef CONFIG_X86_64
188static int bad_address(void *p)
189{
190        unsigned long dummy;
191        return probe_kernel_address((unsigned long *)p, dummy);
192}
193#endif
194
195static void dump_pagetable(unsigned long address)
196{
197#ifdef CONFIG_X86_32
198        __typeof__(pte_val(__pte(0))) page;
199
200        page = read_cr3();
201        page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
202#ifdef CONFIG_X86_PAE
203        printk("*pdpt = %016Lx ", page);
204        if ((page >> PAGE_SHIFT) < max_low_pfn
205            && page & _PAGE_PRESENT) {
206                page &= PAGE_MASK;
207                page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
208                                                         & (PTRS_PER_PMD - 1)];
209                printk(KERN_CONT "*pde = %016Lx ", page);
210                page &= ~_PAGE_NX;
211        }
212#else
213        printk("*pde = %08lx ", page);
214#endif
215
216        /*
217         * We must not directly access the pte in the highpte
218         * case if the page table is located in highmem.
219         * And let's rather not kmap-atomic the pte, just in case
220         * it's allocated already.
221         */
222        if ((page >> PAGE_SHIFT) < max_low_pfn
223            && (page & _PAGE_PRESENT)
224            && !(page & _PAGE_PSE)) {
225                page &= PAGE_MASK;
226                page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
227                                                         & (PTRS_PER_PTE - 1)];
228                printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
229        }
230
231        printk("\n");
232#else /* CONFIG_X86_64 */
233        pgd_t *pgd;
234        pud_t *pud;
235        pmd_t *pmd;
236        pte_t *pte;
237
238        pgd = (pgd_t *)read_cr3();
239
240        pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
241        pgd += pgd_index(address);
242        if (bad_address(pgd)) goto bad;
243        printk("PGD %lx ", pgd_val(*pgd));
244        if (!pgd_present(*pgd)) goto ret;
245
246        pud = pud_offset(pgd, address);
247        if (bad_address(pud)) goto bad;
248        printk("PUD %lx ", pud_val(*pud));
249        if (!pud_present(*pud) || pud_large(*pud))
250                goto ret;
251
252        pmd = pmd_offset(pud, address);
253        if (bad_address(pmd)) goto bad;
254        printk("PMD %lx ", pmd_val(*pmd));
255        if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
256
257        pte = pte_offset_kernel(pmd, address);
258        if (bad_address(pte)) goto bad;
259        printk("PTE %lx", pte_val(*pte));
260ret:
261        printk("\n");
262        return;
263bad:
264        printk("BAD\n");
265#endif
266}
267
268#ifdef CONFIG_X86_32
269static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
270{
271        unsigned index = pgd_index(address);
272        pgd_t *pgd_k;
273        pud_t *pud, *pud_k;
274        pmd_t *pmd, *pmd_k;
275
276        pgd += index;
277        pgd_k = init_mm.pgd + index;
278
279        if (!pgd_present(*pgd_k))
280                return NULL;
281
282        /*
283         * set_pgd(pgd, *pgd_k); here would be useless on PAE
284         * and redundant with the set_pmd() on non-PAE. As would
285         * set_pud.
286         */
287
288        pud = pud_offset(pgd, address);
289        pud_k = pud_offset(pgd_k, address);
290        if (!pud_present(*pud_k))
291                return NULL;
292
293        pmd = pmd_offset(pud, address);
294        pmd_k = pmd_offset(pud_k, address);
295        if (!pmd_present(*pmd_k))
296                return NULL;
297        if (!pmd_present(*pmd)) {
298                set_pmd(pmd, *pmd_k);
299                arch_flush_lazy_mmu_mode();
300        } else
301                BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
302        return pmd_k;
303}
304#endif
305
306#ifdef CONFIG_X86_64
307static const char errata93_warning[] =
308KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
309KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
310KERN_ERR "******* Please consider a BIOS update.\n"
311KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
312#endif
313
314/* Workaround for K8 erratum #93 & buggy BIOS.
315   BIOS SMM functions are required to use a specific workaround
316   to avoid corruption of the 64bit RIP register on C stepping K8.
317   A lot of BIOS that didn't get tested properly miss this.
318   The OS sees this as a page fault with the upper 32bits of RIP cleared.
319   Try to work around it here.
320   Note we only handle faults in kernel here.
321   Does nothing for X86_32
322 */
323static int is_errata93(struct pt_regs *regs, unsigned long address)
324{
325#ifdef CONFIG_X86_64
326        static int warned;
327        if (address != regs->ip)
328                return 0;
329        if ((address >> 32) != 0)
330                return 0;
331        address |= 0xffffffffUL << 32;
332        if ((address >= (u64)_stext && address <= (u64)_etext) ||
333            (address >= MODULES_VADDR && address <= MODULES_END)) {
334                if (!warned) {
335                        printk(errata93_warning);
336                        warned = 1;
337                }
338                regs->ip = address;
339                return 1;
340        }
341#endif
342        return 0;
343}
344
345/*
346 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
347 * addresses >4GB.  We catch this in the page fault handler because these
348 * addresses are not reachable. Just detect this case and return.  Any code
349 * segment in LDT is compatibility mode.
350 */
351static int is_errata100(struct pt_regs *regs, unsigned long address)
352{
353#ifdef CONFIG_X86_64
354        if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
355            (address >> 32))
356                return 1;
357#endif
358        return 0;
359}
360
361static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
362{
363#ifdef CONFIG_X86_F00F_BUG
364        unsigned long nr;
365        /*
366         * Pentium F0 0F C7 C8 bug workaround.
367         */
368        if (boot_cpu_data.f00f_bug) {
369                nr = (address - idt_descr.address) >> 3;
370
371                if (nr == 6) {
372                        do_invalid_op(regs, 0);
373                        return 1;
374                }
375        }
376#endif
377        return 0;
378}
379
380static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
381                            unsigned long address)
382{
383#ifdef CONFIG_X86_32
384        if (!oops_may_print())
385                return;
386#endif
387
388#ifdef CONFIG_X86_PAE
389        if (error_code & PF_INSTR) {
390                unsigned int level;
391                pte_t *pte = lookup_address(address, &level);
392
393                if (pte && pte_present(*pte) && !pte_exec(*pte))
394                        printk(KERN_CRIT "kernel tried to execute "
395                                "NX-protected page - exploit attempt? "
396                                "(uid: %d)\n", current->uid);
397        }
398#endif
399
400        printk(KERN_ALERT "BUG: unable to handle kernel ");
401        if (address < PAGE_SIZE)
402                printk(KERN_CONT "NULL pointer dereference");
403        else
404                printk(KERN_CONT "paging request");
405        printk(KERN_CONT " at %p\n", (void *) address);
406        printk(KERN_ALERT "IP:");
407        printk_address(regs->ip, 1);
408        dump_pagetable(address);
409}
410
411#ifdef CONFIG_X86_64
412static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
413                                 unsigned long error_code)
414{
415        unsigned long flags = oops_begin();
416        struct task_struct *tsk;
417
418        printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
419               current->comm, address);
420        dump_pagetable(address);
421        tsk = current;
422        tsk->thread.cr2 = address;
423        tsk->thread.trap_no = 14;
424        tsk->thread.error_code = error_code;
425        if (__die("Bad pagetable", regs, error_code))
426                regs = NULL;
427        oops_end(flags, regs, SIGKILL);
428}
429#endif
430
431static int spurious_fault_check(unsigned long error_code, pte_t *pte)
432{
433        if ((error_code & PF_WRITE) && !pte_write(*pte))
434                return 0;
435        if ((error_code & PF_INSTR) && !pte_exec(*pte))
436                return 0;
437
438        return 1;
439}
440
441/*
442 * Handle a spurious fault caused by a stale TLB entry.  This allows
443 * us to lazily refresh the TLB when increasing the permissions of a
444 * kernel page (RO -> RW or NX -> X).  Doing it eagerly is very
445 * expensive since that implies doing a full cross-processor TLB
446 * flush, even if no stale TLB entries exist on other processors.
447 * There are no security implications to leaving a stale TLB when
448 * increasing the permissions on a page.
449 */
450static int spurious_fault(unsigned long address,
451                          unsigned long error_code)
452{
453        pgd_t *pgd;
454        pud_t *pud;
455        pmd_t *pmd;
456        pte_t *pte;
457
458        /* Reserved-bit violation or user access to kernel space? */
459        if (error_code & (PF_USER | PF_RSVD))
460                return 0;
461
462        pgd = init_mm.pgd + pgd_index(address);
463        if (!pgd_present(*pgd))
464                return 0;
465
466        pud = pud_offset(pgd, address);
467        if (!pud_present(*pud))
468                return 0;
469
470        if (pud_large(*pud))
471                return spurious_fault_check(error_code, (pte_t *) pud);
472
473        pmd = pmd_offset(pud, address);
474        if (!pmd_present(*pmd))
475                return 0;
476
477        if (pmd_large(*pmd))
478                return spurious_fault_check(error_code, (pte_t *) pmd);
479
480        pte = pte_offset_kernel(pmd, address);
481        if (!pte_present(*pte))
482                return 0;
483
484        return spurious_fault_check(error_code, pte);
485}
486
487/*
488 * X86_32
489 * Handle a fault on the vmalloc or module mapping area
490 *
491 * X86_64
492 * Handle a fault on the vmalloc area
493 *
494 * This assumes no large pages in there.
495 */
496static int vmalloc_fault(unsigned long address)
497{
498#ifdef CONFIG_X86_32
499        unsigned long pgd_paddr;
500        pmd_t *pmd_k;
501        pte_t *pte_k;
502
503        /* Make sure we are in vmalloc area */
504        if (!(address >= VMALLOC_START && address < VMALLOC_END))
505                return -1;
506
507        /*
508         * Synchronize this task's top level page-table
509         * with the 'reference' page table.
510         *
511         * Do _not_ use "current" here. We might be inside
512         * an interrupt in the middle of a task switch..
513         */
514        pgd_paddr = read_cr3();
515        pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
516        if (!pmd_k)
517                return -1;
518        pte_k = pte_offset_kernel(pmd_k, address);
519        if (!pte_present(*pte_k))
520                return -1;
521        return 0;
522#else
523        pgd_t *pgd, *pgd_ref;
524        pud_t *pud, *pud_ref;
525        pmd_t *pmd, *pmd_ref;
526        pte_t *pte, *pte_ref;
527
528        /* Make sure we are in vmalloc area */
529        if (!(address >= VMALLOC_START && address < VMALLOC_END))
530                return -1;
531
532        /* Copy kernel mappings over when needed. This can also
533           happen within a race in page table update. In the later
534           case just flush. */
535
536        pgd = pgd_offset(current->mm ?: &init_mm, address);
537        pgd_ref = pgd_offset_k(address);
538        if (pgd_none(*pgd_ref))
539                return -1;
540        if (pgd_none(*pgd))
541                set_pgd(pgd, *pgd_ref);
542        else
543                BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
544
545        /* Below here mismatches are bugs because these lower tables
546           are shared */
547
548        pud = pud_offset(pgd, address);
549        pud_ref = pud_offset(pgd_ref, address);
550        if (pud_none(*pud_ref))
551                return -1;
552        if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
553                BUG();
554        pmd = pmd_offset(pud, address);
555        pmd_ref = pmd_offset(pud_ref, address);
556        if (pmd_none(*pmd_ref))
557                return -1;
558        if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
559                BUG();
560        pte_ref = pte_offset_kernel(pmd_ref, address);
561        if (!pte_present(*pte_ref))
562                return -1;
563        pte = pte_offset_kernel(pmd, address);
564        /* Don't use pte_page here, because the mappings can point
565           outside mem_map, and the NUMA hash lookup cannot handle
566           that. */
567        if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
568                BUG();
569        return 0;
570#endif
571}
572
573int show_unhandled_signals = 1;
574
575/*
576 * This routine handles page faults.  It determines the address,
577 * and the problem, and then passes it off to one of the appropriate
578 * routines.
579 */
580#ifdef CONFIG_X86_64
581asmlinkage
582#endif
583void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
584{
585        struct task_struct *tsk;
586        struct mm_struct *mm;
587        struct vm_area_struct *vma;
588        unsigned long address;
589        int write, si_code;
590        int fault;
591#ifdef CONFIG_X86_64
592        unsigned long flags;
593#endif
594
595        tsk = current;
596        mm = tsk->mm;
597        prefetchw(&mm->mmap_sem);
598
599        /* get the address */
600        address = read_cr2();
601
602        si_code = SEGV_MAPERR;
603
604        if (notify_page_fault(regs))
605                return;
606        if (unlikely(kmmio_fault(regs, address)))
607                return;
608
609        /*
610         * We fault-in kernel-space virtual memory on-demand. The
611         * 'reference' page table is init_mm.pgd.
612         *
613         * NOTE! We MUST NOT take any locks for this case. We may
614         * be in an interrupt or a critical region, and should
615         * only copy the information from the master page table,
616         * nothing more.
617         *
618         * This verifies that the fault happens in kernel space
619         * (error_code & 4) == 0, and that the fault was not a
620         * protection error (error_code & 9) == 0.
621         */
622#ifdef CONFIG_X86_32
623        if (unlikely(address >= TASK_SIZE)) {
624#else
625        if (unlikely(address >= TASK_SIZE64)) {
626#endif
627                if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
628                    vmalloc_fault(address) >= 0)
629                        return;
630
631                /* Can handle a stale RO->RW TLB */
632                if (spurious_fault(address, error_code))
633                        return;
634
635                /*
636                 * Don't take the mm semaphore here. If we fixup a prefetch
637                 * fault we could otherwise deadlock.
638                 */
639                goto bad_area_nosemaphore;
640        }
641
642
643        /*
644         * It's safe to allow irq's after cr2 has been saved and the
645         * vmalloc fault has been handled.
646         *
647         * User-mode registers count as a user access even for any
648         * potential system fault or CPU buglet.
649         */
650        if (user_mode_vm(regs)) {
651                local_irq_enable();
652                error_code |= PF_USER;
653        } else if (regs->flags & X86_EFLAGS_IF)
654                local_irq_enable();
655
656#ifdef CONFIG_X86_64
657        if (unlikely(error_code & PF_RSVD))
658                pgtable_bad(address, regs, error_code);
659#endif
660
661        /*
662         * If we're in an interrupt, have no user context or are running in an
663         * atomic region then we must not take the fault.
664         */
665        if (unlikely(in_atomic() || !mm))
666                goto bad_area_nosemaphore;
667
668again:
669        /*
670         * When running in the kernel we expect faults to occur only to
671         * addresses in user space.  All other faults represent errors in the
672         * kernel and should generate an OOPS.  Unfortunately, in the case of an
673         * erroneous fault occurring in a code path which already holds mmap_sem
674         * we will deadlock attempting to validate the fault against the
675         * address space.  Luckily the kernel only validly references user
676         * space from well defined areas of code, which are listed in the
677         * exceptions table.
678         *
679         * As the vast majority of faults will be valid we will only perform
680         * the source reference check when there is a possibility of a deadlock.
681         * Attempt to lock the address space, if we cannot we then validate the
682         * source.  If this is invalid we can skip the address space check,
683         * thus avoiding the deadlock.
684         */
685        if (!down_read_trylock(&mm->mmap_sem)) {
686                if ((error_code & PF_USER) == 0 &&
687                    !search_exception_tables(regs->ip))
688                        goto bad_area_nosemaphore;
689                down_read(&mm->mmap_sem);
690        }
691
692        vma = find_vma(mm, address);
693        if (!vma)
694                goto bad_area;
695        if (vma->vm_start <= address)
696                goto good_area;
697        if (!(vma->vm_flags & VM_GROWSDOWN))
698                goto bad_area;
699        if (error_code & PF_USER) {
700                /*
701                 * Accessing the stack below %sp is always a bug.
702                 * The large cushion allows instructions like enter
703                 * and pusha to work.  ("enter $65535,$31" pushes
704                 * 32 pointers and then decrements %sp by 65535.)
705                 */
706                if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
707                        goto bad_area;
708        }
709        if (expand_stack(vma, address))
710                goto bad_area;
711/*
712 * Ok, we have a good vm_area for this memory access, so
713 * we can handle it..
714 */
715good_area:
716        si_code = SEGV_ACCERR;
717        write = 0;
718        switch (error_code & (PF_PROT|PF_WRITE)) {
719        default:        /* 3: write, present */
720                /* fall through */
721        case PF_WRITE:                /* write, not present */
722                if (!(vma->vm_flags & VM_WRITE))
723                        goto bad_area;
724                write++;
725                break;
726        case PF_PROT:                /* read, present */
727                goto bad_area;
728        case 0:                        /* read, not present */
729                if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
730                        goto bad_area;
731        }
732
733        /*
734         * If for any reason at all we couldn't handle the fault,
735         * make sure we exit gracefully rather than endlessly redo
736         * the fault.
737         */
738        fault = handle_mm_fault(mm, vma, address, write);
739        if (unlikely(fault & VM_FAULT_ERROR)) {
740                if (fault & VM_FAULT_OOM)
741                        goto out_of_memory;
742                else if (fault & VM_FAULT_SIGBUS)
743                        goto do_sigbus;
744                BUG();
745        }
746        if (fault & VM_FAULT_MAJOR)
747                tsk->maj_flt++;
748        else
749                tsk->min_flt++;
750
751#ifdef CONFIG_X86_32
752        /*
753         * Did it hit the DOS screen memory VA from vm86 mode?
754         */
755        if (v8086_mode(regs)) {
756                unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
757                if (bit < 32)
758                        tsk->thread.screen_bitmap |= 1 << bit;
759        }
760#endif
761        up_read(&mm->mmap_sem);
762        return;
763
764/*
765 * Something tried to access memory that isn't in our memory map..
766 * Fix it, but check if it's kernel or user first..
767 */
768bad_area:
769        up_read(&mm->mmap_sem);
770
771bad_area_nosemaphore:
772        /* User mode accesses just cause a SIGSEGV */
773        if (error_code & PF_USER) {
774                /*
775                 * It's possible to have interrupts off here.
776                 */
777                local_irq_enable();
778
779                /*
780                 * Valid to do another page fault here because this one came
781                 * from user space.
782                 */
783                if (is_prefetch(regs, address, error_code))
784                        return;
785
786                if (is_errata100(regs, address))
787                        return;
788
789                if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
790                    printk_ratelimit()) {
791                        printk(
792                        "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
793                        task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
794                        tsk->comm, task_pid_nr(tsk), address,
795                        (void *) regs->ip, (void *) regs->sp, error_code);
796                        print_vma_addr(" in ", regs->ip);
797                        printk("\n");
798                }
799
800                tsk->thread.cr2 = address;
801                /* Kernel addresses are always protection faults */
802                tsk->thread.error_code = error_code | (address >= TASK_SIZE);
803                tsk->thread.trap_no = 14;
804                force_sig_info_fault(SIGSEGV, si_code, address, tsk);
805                return;
806        }
807
808        if (is_f00f_bug(regs, address))
809                return;
810
811no_context:
812        /* Are we prepared to handle this kernel fault?  */
813        if (fixup_exception(regs))
814                return;
815
816        /*
817         * X86_32
818         * Valid to do another page fault here, because if this fault
819         * had been triggered by is_prefetch fixup_exception would have
820         * handled it.
821         *
822         * X86_64
823         * Hall of shame of CPU/BIOS bugs.
824         */
825        if (is_prefetch(regs, address, error_code))
826                return;
827
828        if (is_errata93(regs, address))
829                return;
830
831/*
832 * Oops. The kernel tried to access some bad page. We'll have to
833 * terminate things with extreme prejudice.
834 */
835#ifdef CONFIG_X86_32
836        bust_spinlocks(1);
837#else
838        flags = oops_begin();
839#endif
840
841        show_fault_oops(regs, error_code, address);
842
843        tsk->thread.cr2 = address;
844        tsk->thread.trap_no = 14;
845        tsk->thread.error_code = error_code;
846
847#ifdef CONFIG_X86_32
848        die("Oops", regs, error_code);
849        bust_spinlocks(0);
850        do_exit(SIGKILL);
851#else
852        if (__die("Oops", regs, error_code))
853                regs = NULL;
854        /* Executive summary in case the body of the oops scrolled away */
855        printk(KERN_EMERG "CR2: %016lx\n", address);
856        oops_end(flags, regs, SIGKILL);
857#endif
858
859/*
860 * We ran out of memory, or some other thing happened to us that made
861 * us unable to handle the page fault gracefully.
862 */
863out_of_memory:
864        up_read(&mm->mmap_sem);
865        if (is_global_init(tsk)) {
866                yield();
867                /*
868                 * Re-lookup the vma - in theory the vma tree might
869                 * have changed:
870                 */
871                goto again;
872        }
873
874        printk("VM: killing process %s\n", tsk->comm);
875        if (error_code & PF_USER)
876                do_group_exit(SIGKILL);
877        goto no_context;
878
879do_sigbus:
880        up_read(&mm->mmap_sem);
881
882        /* Kernel mode? Handle exceptions or die */
883        if (!(error_code & PF_USER))
884                goto no_context;
885#ifdef CONFIG_X86_32
886        /* User space => ok to do another page fault */
887        if (is_prefetch(regs, address, error_code))
888                return;
889#endif
890        tsk->thread.cr2 = address;
891        tsk->thread.error_code = error_code;
892        tsk->thread.trap_no = 14;
893        force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
894}
895
896DEFINE_SPINLOCK(pgd_lock);
897LIST_HEAD(pgd_list);
898
899void vmalloc_sync_all(void)
900{
901        unsigned long address;
902
903#ifdef CONFIG_X86_32
904        if (SHARED_KERNEL_PMD)
905                return;
906
907        for (address = VMALLOC_START & PMD_MASK;
908             address >= TASK_SIZE && address < FIXADDR_TOP;
909             address += PMD_SIZE) {
910                unsigned long flags;
911                struct page *page;
912
913                spin_lock_irqsave(&pgd_lock, flags);
914                list_for_each_entry(page, &pgd_list, lru) {
915                        if (!vmalloc_sync_one(page_address(page),
916                                              address))
917                                break;
918                }
919                spin_unlock_irqrestore(&pgd_lock, flags);
920        }
921#else /* CONFIG_X86_64 */
922        for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
923             address += PGDIR_SIZE) {
924                const pgd_t *pgd_ref = pgd_offset_k(address);
925                unsigned long flags;
926                struct page *page;
927
928                if (pgd_none(*pgd_ref))
929                        continue;
930                spin_lock_irqsave(&pgd_lock, flags);
931                list_for_each_entry(page, &pgd_list, lru) {
932                        pgd_t *pgd;
933                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
934                        if (pgd_none(*pgd))
935                                set_pgd(pgd, *pgd_ref);
936                        else
937                                BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
938                }
939                spin_unlock_irqrestore(&pgd_lock, flags);
940        }
941#endif
942}