Showing error 1599

User: Jiri Slaby
Error type: Leaving function in locked state
Error type description: Some lock is not unlocked on all paths of a function, so it is leaked
File location: kernel/sched_stats.h
Line in file: 71
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2012-05-29 20:11:37 UTC


Source:

  1
  2#ifdef CONFIG_SCHEDSTATS
  3/*
  4 * bump this up when changing the output format or the meaning of an existing
  5 * format, so that tools can adapt (or abort)
  6 */
  7#define SCHEDSTAT_VERSION 14
  8
  9static int show_schedstat(struct seq_file *seq, void *v)
 10{
 11        int cpu;
 12        int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9;
 13        char *mask_str = kmalloc(mask_len, GFP_KERNEL);
 14
 15        if (mask_str == NULL)
 16                return -ENOMEM;
 17
 18        seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
 19        seq_printf(seq, "timestamp %lu\n", jiffies);
 20        for_each_online_cpu(cpu) {
 21                struct rq *rq = cpu_rq(cpu);
 22#ifdef CONFIG_SMP
 23                struct sched_domain *sd;
 24                int dcount = 0;
 25#endif
 26
 27                /* runqueue-specific stats */
 28                seq_printf(seq,
 29                    "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu",
 30                    cpu, rq->yld_both_empty,
 31                    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count,
 32                    rq->sched_switch, rq->sched_count, rq->sched_goidle,
 33                    rq->ttwu_count, rq->ttwu_local,
 34                    rq->rq_sched_info.cpu_time,
 35                    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
 36
 37                seq_printf(seq, "\n");
 38
 39#ifdef CONFIG_SMP
 40                /* domain-specific stats */
 41                preempt_disable();
 42                for_each_domain(cpu, sd) {
 43                        enum cpu_idle_type itype;
 44
 45                        cpumask_scnprintf(mask_str, mask_len, sd->span);
 46                        seq_printf(seq, "domain%d %s", dcount++, mask_str);
 47                        for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
 48                                        itype++) {
 49                                seq_printf(seq, " %u %u %u %u %u %u %u %u",
 50                                    sd->lb_count[itype],
 51                                    sd->lb_balanced[itype],
 52                                    sd->lb_failed[itype],
 53                                    sd->lb_imbalance[itype],
 54                                    sd->lb_gained[itype],
 55                                    sd->lb_hot_gained[itype],
 56                                    sd->lb_nobusyq[itype],
 57                                    sd->lb_nobusyg[itype]);
 58                        }
 59                        seq_printf(seq,
 60                                   " %u %u %u %u %u %u %u %u %u %u %u %u\n",
 61                            sd->alb_count, sd->alb_failed, sd->alb_pushed,
 62                            sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
 63                            sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
 64                            sd->ttwu_wake_remote, sd->ttwu_move_affine,
 65                            sd->ttwu_move_balance);
 66                }
 67                preempt_enable();
 68#endif
 69        }
 70        kfree(mask_str);
 71        return 0;
 72}
 73
 74static int schedstat_open(struct inode *inode, struct file *file)
 75{
 76        unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
 77        char *buf = kmalloc(size, GFP_KERNEL);
 78        struct seq_file *m;
 79        int res;
 80
 81        if (!buf)
 82                return -ENOMEM;
 83        res = single_open(file, show_schedstat, NULL);
 84        if (!res) {
 85                m = file->private_data;
 86                m->buf = buf;
 87                m->size = size;
 88        } else
 89                kfree(buf);
 90        return res;
 91}
 92
 93static const struct file_operations proc_schedstat_operations = {
 94        .open    = schedstat_open,
 95        .read    = seq_read,
 96        .llseek  = seq_lseek,
 97        .release = single_release,
 98};
 99
100static int __init proc_schedstat_init(void)
101{
102        proc_create("schedstat", 0, NULL, &proc_schedstat_operations);
103        return 0;
104}
105module_init(proc_schedstat_init);
106
107/*
108 * Expects runqueue lock to be held for atomicity of update
109 */
110static inline void
111rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
112{
113        if (rq) {
114                rq->rq_sched_info.run_delay += delta;
115                rq->rq_sched_info.pcount++;
116        }
117}
118
119/*
120 * Expects runqueue lock to be held for atomicity of update
121 */
122static inline void
123rq_sched_info_depart(struct rq *rq, unsigned long long delta)
124{
125        if (rq)
126                rq->rq_sched_info.cpu_time += delta;
127}
128
129static inline void
130rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
131{
132        if (rq)
133                rq->rq_sched_info.run_delay += delta;
134}
135# define schedstat_inc(rq, field)        do { (rq)->field++; } while (0)
136# define schedstat_add(rq, field, amt)        do { (rq)->field += (amt); } while (0)
137# define schedstat_set(var, val)        do { var = (val); } while (0)
138#else /* !CONFIG_SCHEDSTATS */
139static inline void
140rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
141{}
142static inline void
143rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
144{}
145static inline void
146rq_sched_info_depart(struct rq *rq, unsigned long long delta)
147{}
148# define schedstat_inc(rq, field)        do { } while (0)
149# define schedstat_add(rq, field, amt)        do { } while (0)
150# define schedstat_set(var, val)        do { } while (0)
151#endif
152
153#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
154static inline void sched_info_reset_dequeued(struct task_struct *t)
155{
156        t->sched_info.last_queued = 0;
157}
158
159/*
160 * Called when a process is dequeued from the active array and given
161 * the cpu.  We should note that with the exception of interactive
162 * tasks, the expired queue will become the active queue after the active
163 * queue is empty, without explicitly dequeuing and requeuing tasks in the
164 * expired queue.  (Interactive tasks may be requeued directly to the
165 * active queue, thus delaying tasks in the expired queue from running;
166 * see scheduler_tick()).
167 *
168 * Though we are interested in knowing how long it was from the *first* time a
169 * task was queued to the time that it finally hit a cpu, we call this routine
170 * from dequeue_task() to account for possible rq->clock skew across cpus. The
171 * delta taken on each cpu would annul the skew.
172 */
173static inline void sched_info_dequeued(struct task_struct *t)
174{
175        unsigned long long now = task_rq(t)->clock, delta = 0;
176
177        if (unlikely(sched_info_on()))
178                if (t->sched_info.last_queued)
179                        delta = now - t->sched_info.last_queued;
180        sched_info_reset_dequeued(t);
181        t->sched_info.run_delay += delta;
182
183        rq_sched_info_dequeued(task_rq(t), delta);
184}
185
186/*
187 * Called when a task finally hits the cpu.  We can now calculate how
188 * long it was waiting to run.  We also note when it began so that we
189 * can keep stats on how long its timeslice is.
190 */
191static void sched_info_arrive(struct task_struct *t)
192{
193        unsigned long long now = task_rq(t)->clock, delta = 0;
194
195        if (t->sched_info.last_queued)
196                delta = now - t->sched_info.last_queued;
197        sched_info_reset_dequeued(t);
198        t->sched_info.run_delay += delta;
199        t->sched_info.last_arrival = now;
200        t->sched_info.pcount++;
201
202        rq_sched_info_arrive(task_rq(t), delta);
203}
204
205/*
206 * Called when a process is queued into either the active or expired
207 * array.  The time is noted and later used to determine how long we
208 * had to wait for us to reach the cpu.  Since the expired queue will
209 * become the active queue after active queue is empty, without dequeuing
210 * and requeuing any tasks, we are interested in queuing to either. It
211 * is unusual but not impossible for tasks to be dequeued and immediately
212 * requeued in the same or another array: this can happen in sched_yield(),
213 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
214 * to runqueue.
215 *
216 * This function is only called from enqueue_task(), but also only updates
217 * the timestamp if it is already not set.  It's assumed that
218 * sched_info_dequeued() will clear that stamp when appropriate.
219 */
220static inline void sched_info_queued(struct task_struct *t)
221{
222        if (unlikely(sched_info_on()))
223                if (!t->sched_info.last_queued)
224                        t->sched_info.last_queued = task_rq(t)->clock;
225}
226
227/*
228 * Called when a process ceases being the active-running process, either
229 * voluntarily or involuntarily.  Now we can calculate how long we ran.
230 * Also, if the process is still in the TASK_RUNNING state, call
231 * sched_info_queued() to mark that it has now again started waiting on
232 * the runqueue.
233 */
234static inline void sched_info_depart(struct task_struct *t)
235{
236        unsigned long long delta = task_rq(t)->clock -
237                                        t->sched_info.last_arrival;
238
239        t->sched_info.cpu_time += delta;
240        rq_sched_info_depart(task_rq(t), delta);
241
242        if (t->state == TASK_RUNNING)
243                sched_info_queued(t);
244}
245
246/*
247 * Called when tasks are switched involuntarily due, typically, to expiring
248 * their time slice.  (This may also be called when switching to or from
249 * the idle task.)  We are only called when prev != next.
250 */
251static inline void
252__sched_info_switch(struct task_struct *prev, struct task_struct *next)
253{
254        struct rq *rq = task_rq(prev);
255
256        /*
257         * prev now departs the cpu.  It's not interesting to record
258         * stats about how efficient we were at scheduling the idle
259         * process, however.
260         */
261        if (prev != rq->idle)
262                sched_info_depart(prev);
263
264        if (next != rq->idle)
265                sched_info_arrive(next);
266}
267static inline void
268sched_info_switch(struct task_struct *prev, struct task_struct *next)
269{
270        if (unlikely(sched_info_on()))
271                __sched_info_switch(prev, next);
272}
273#else
274#define sched_info_queued(t)                        do { } while (0)
275#define sched_info_reset_dequeued(t)        do { } while (0)
276#define sched_info_dequeued(t)                        do { } while (0)
277#define sched_info_switch(t, next)                do { } while (0)
278#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
279
280/*
281 * The following are functions that support scheduler-internal time accounting.
282 * These functions are generally called at the timer tick.  None of this depends
283 * on CONFIG_SCHEDSTATS.
284 */
285
286/**
287 * account_group_user_time - Maintain utime for a thread group.
288 *
289 * @tsk:        Pointer to task structure.
290 * @cputime:        Time value by which to increment the utime field of the
291 *                thread_group_cputime structure.
292 *
293 * If thread group time is being maintained, get the structure for the
294 * running CPU and update the utime field there.
295 */
296static inline void account_group_user_time(struct task_struct *tsk,
297                                           cputime_t cputime)
298{
299        struct signal_struct *sig;
300
301        /* tsk == current, ensure it is safe to use ->signal */
302        if (unlikely(tsk->exit_state))
303                return;
304
305        sig = tsk->signal;
306        if (sig->cputime.totals) {
307                struct task_cputime *times;
308
309                times = per_cpu_ptr(sig->cputime.totals, get_cpu());
310                times->utime = cputime_add(times->utime, cputime);
311                put_cpu_no_resched();
312        }
313}
314
315/**
316 * account_group_system_time - Maintain stime for a thread group.
317 *
318 * @tsk:        Pointer to task structure.
319 * @cputime:        Time value by which to increment the stime field of the
320 *                thread_group_cputime structure.
321 *
322 * If thread group time is being maintained, get the structure for the
323 * running CPU and update the stime field there.
324 */
325static inline void account_group_system_time(struct task_struct *tsk,
326                                             cputime_t cputime)
327{
328        struct signal_struct *sig;
329
330        /* tsk == current, ensure it is safe to use ->signal */
331        if (unlikely(tsk->exit_state))
332                return;
333
334        sig = tsk->signal;
335        if (sig->cputime.totals) {
336                struct task_cputime *times;
337
338                times = per_cpu_ptr(sig->cputime.totals, get_cpu());
339                times->stime = cputime_add(times->stime, cputime);
340                put_cpu_no_resched();
341        }
342}
343
344/**
345 * account_group_exec_runtime - Maintain exec runtime for a thread group.
346 *
347 * @tsk:        Pointer to task structure.
348 * @ns:                Time value by which to increment the sum_exec_runtime field
349 *                of the thread_group_cputime structure.
350 *
351 * If thread group time is being maintained, get the structure for the
352 * running CPU and update the sum_exec_runtime field there.
353 */
354static inline void account_group_exec_runtime(struct task_struct *tsk,
355                                              unsigned long long ns)
356{
357        struct signal_struct *sig;
358
359        sig = tsk->signal;
360        /* see __exit_signal()->task_rq_unlock_wait() */
361        barrier();
362        if (unlikely(!sig))
363                return;
364
365        if (sig->cputime.totals) {
366                struct task_cputime *times;
367
368                times = per_cpu_ptr(sig->cputime.totals, get_cpu());
369                times->sum_exec_runtime += ns;
370                put_cpu_no_resched();
371        }
372}