Showing error 1443

User: Jiri Slaby
Error type: Leaving function in locked state
Error type description: Some lock is not unlocked on all paths of a function, so it is leaked
File location: mm/rmap.c
Line in file: 208
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2012-05-21 20:30:05 UTC


Source:

   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex        (while writing or truncating, not reading or faulting)
  24 *   inode->i_alloc_sem (vmtruncate_range)
  25 *   mm->mmap_sem
  26 *     page->flags PG_locked (lock_page)
  27 *       mapping->i_mmap_lock
  28 *         anon_vma->lock
  29 *           mm->page_table_lock or pte_lock
  30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *             swap_lock (in swap_duplicate, swap_info_get)
  32 *               mmlist_lock (in mmput, drain_mmlist and others)
  33 *               mapping->private_lock (in __set_page_dirty_buffers)
  34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
  35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
  36 *                 mapping->tree_lock (widely used, in set_page_dirty,
  37 *                           in arch-dependent flush_dcache_mmap_lock,
  38 *                           within inode_lock in __sync_single_inode)
  39 */
  40
  41#include <linux/mm.h>
  42#include <linux/pagemap.h>
  43#include <linux/swap.h>
  44#include <linux/swapops.h>
  45#include <linux/slab.h>
  46#include <linux/init.h>
  47#include <linux/rmap.h>
  48#include <linux/rcupdate.h>
  49#include <linux/module.h>
  50#include <linux/kallsyms.h>
  51#include <linux/memcontrol.h>
  52#include <linux/mmu_notifier.h>
  53
  54#include <asm/tlbflush.h>
  55
  56#include "internal.h"
  57
  58static struct kmem_cache *anon_vma_cachep;
  59
  60static inline struct anon_vma *anon_vma_alloc(void)
  61{
  62        return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  63}
  64
  65static inline void anon_vma_free(struct anon_vma *anon_vma)
  66{
  67        kmem_cache_free(anon_vma_cachep, anon_vma);
  68}
  69
  70/**
  71 * anon_vma_prepare - attach an anon_vma to a memory region
  72 * @vma: the memory region in question
  73 *
  74 * This makes sure the memory mapping described by 'vma' has
  75 * an 'anon_vma' attached to it, so that we can associate the
  76 * anonymous pages mapped into it with that anon_vma.
  77 *
  78 * The common case will be that we already have one, but if
  79 * if not we either need to find an adjacent mapping that we
  80 * can re-use the anon_vma from (very common when the only
  81 * reason for splitting a vma has been mprotect()), or we
  82 * allocate a new one.
  83 *
  84 * Anon-vma allocations are very subtle, because we may have
  85 * optimistically looked up an anon_vma in page_lock_anon_vma()
  86 * and that may actually touch the spinlock even in the newly
  87 * allocated vma (it depends on RCU to make sure that the
  88 * anon_vma isn't actually destroyed).
  89 *
  90 * As a result, we need to do proper anon_vma locking even
  91 * for the new allocation. At the same time, we do not want
  92 * to do any locking for the common case of already having
  93 * an anon_vma.
  94 *
  95 * This must be called with the mmap_sem held for reading.
  96 */
  97int anon_vma_prepare(struct vm_area_struct *vma)
  98{
  99        struct anon_vma *anon_vma = vma->anon_vma;
 100
 101        might_sleep();
 102        if (unlikely(!anon_vma)) {
 103                struct mm_struct *mm = vma->vm_mm;
 104                struct anon_vma *allocated;
 105
 106                anon_vma = find_mergeable_anon_vma(vma);
 107                allocated = NULL;
 108                if (!anon_vma) {
 109                        anon_vma = anon_vma_alloc();
 110                        if (unlikely(!anon_vma))
 111                                return -ENOMEM;
 112                        allocated = anon_vma;
 113                }
 114                spin_lock(&anon_vma->lock);
 115
 116                /* page_table_lock to protect against threads */
 117                spin_lock(&mm->page_table_lock);
 118                if (likely(!vma->anon_vma)) {
 119                        vma->anon_vma = anon_vma;
 120                        list_add_tail(&vma->anon_vma_node, &anon_vma->head);
 121                        allocated = NULL;
 122                }
 123                spin_unlock(&mm->page_table_lock);
 124
 125                spin_unlock(&anon_vma->lock);
 126                if (unlikely(allocated))
 127                        anon_vma_free(allocated);
 128        }
 129        return 0;
 130}
 131
 132void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
 133{
 134        BUG_ON(vma->anon_vma != next->anon_vma);
 135        list_del(&next->anon_vma_node);
 136}
 137
 138void __anon_vma_link(struct vm_area_struct *vma)
 139{
 140        struct anon_vma *anon_vma = vma->anon_vma;
 141
 142        if (anon_vma)
 143                list_add_tail(&vma->anon_vma_node, &anon_vma->head);
 144}
 145
 146void anon_vma_link(struct vm_area_struct *vma)
 147{
 148        struct anon_vma *anon_vma = vma->anon_vma;
 149
 150        if (anon_vma) {
 151                spin_lock(&anon_vma->lock);
 152                list_add_tail(&vma->anon_vma_node, &anon_vma->head);
 153                spin_unlock(&anon_vma->lock);
 154        }
 155}
 156
 157void anon_vma_unlink(struct vm_area_struct *vma)
 158{
 159        struct anon_vma *anon_vma = vma->anon_vma;
 160        int empty;
 161
 162        if (!anon_vma)
 163                return;
 164
 165        spin_lock(&anon_vma->lock);
 166        list_del(&vma->anon_vma_node);
 167
 168        /* We must garbage collect the anon_vma if it's empty */
 169        empty = list_empty(&anon_vma->head);
 170        spin_unlock(&anon_vma->lock);
 171
 172        if (empty)
 173                anon_vma_free(anon_vma);
 174}
 175
 176static void anon_vma_ctor(void *data)
 177{
 178        struct anon_vma *anon_vma = data;
 179
 180        spin_lock_init(&anon_vma->lock);
 181        INIT_LIST_HEAD(&anon_vma->head);
 182}
 183
 184void __init anon_vma_init(void)
 185{
 186        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 187                        0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
 188}
 189
 190/*
 191 * Getting a lock on a stable anon_vma from a page off the LRU is
 192 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
 193 */
 194struct anon_vma *page_lock_anon_vma(struct page *page)
 195{
 196        struct anon_vma *anon_vma;
 197        unsigned long anon_mapping;
 198
 199        rcu_read_lock();
 200        anon_mapping = (unsigned long) page->mapping;
 201        if (!(anon_mapping & PAGE_MAPPING_ANON))
 202                goto out;
 203        if (!page_mapped(page))
 204                goto out;
 205
 206        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 207        spin_lock(&anon_vma->lock);
 208        return anon_vma;
 209out:
 210        rcu_read_unlock();
 211        return NULL;
 212}
 213
 214void page_unlock_anon_vma(struct anon_vma *anon_vma)
 215{
 216        spin_unlock(&anon_vma->lock);
 217        rcu_read_unlock();
 218}
 219
 220/*
 221 * At what user virtual address is page expected in @vma?
 222 * Returns virtual address or -EFAULT if page's index/offset is not
 223 * within the range mapped the @vma.
 224 */
 225static inline unsigned long
 226vma_address(struct page *page, struct vm_area_struct *vma)
 227{
 228        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 229        unsigned long address;
 230
 231        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 232        if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
 233                /* page should be within @vma mapping range */
 234                return -EFAULT;
 235        }
 236        return address;
 237}
 238
 239/*
 240 * At what user virtual address is page expected in vma? checking that the
 241 * page matches the vma: currently only used on anon pages, by unuse_vma;
 242 */
 243unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 244{
 245        if (PageAnon(page)) {
 246                if ((void *)vma->anon_vma !=
 247                    (void *)page->mapping - PAGE_MAPPING_ANON)
 248                        return -EFAULT;
 249        } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
 250                if (!vma->vm_file ||
 251                    vma->vm_file->f_mapping != page->mapping)
 252                        return -EFAULT;
 253        } else
 254                return -EFAULT;
 255        return vma_address(page, vma);
 256}
 257
 258/*
 259 * Check that @page is mapped at @address into @mm.
 260 *
 261 * If @sync is false, page_check_address may perform a racy check to avoid
 262 * the page table lock when the pte is not present (helpful when reclaiming
 263 * highly shared pages).
 264 *
 265 * On success returns with pte mapped and locked.
 266 */
 267pte_t *page_check_address(struct page *page, struct mm_struct *mm,
 268                          unsigned long address, spinlock_t **ptlp, int sync)
 269{
 270        pgd_t *pgd;
 271        pud_t *pud;
 272        pmd_t *pmd;
 273        pte_t *pte;
 274        spinlock_t *ptl;
 275
 276        pgd = pgd_offset(mm, address);
 277        if (!pgd_present(*pgd))
 278                return NULL;
 279
 280        pud = pud_offset(pgd, address);
 281        if (!pud_present(*pud))
 282                return NULL;
 283
 284        pmd = pmd_offset(pud, address);
 285        if (!pmd_present(*pmd))
 286                return NULL;
 287
 288        pte = pte_offset_map(pmd, address);
 289        /* Make a quick check before getting the lock */
 290        if (!sync && !pte_present(*pte)) {
 291                pte_unmap(pte);
 292                return NULL;
 293        }
 294
 295        ptl = pte_lockptr(mm, pmd);
 296        spin_lock(ptl);
 297        if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 298                *ptlp = ptl;
 299                return pte;
 300        }
 301        pte_unmap_unlock(pte, ptl);
 302        return NULL;
 303}
 304
 305/**
 306 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 307 * @page: the page to test
 308 * @vma: the VMA to test
 309 *
 310 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 311 * if the page is not mapped into the page tables of this VMA.  Only
 312 * valid for normal file or anonymous VMAs.
 313 */
 314static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 315{
 316        unsigned long address;
 317        pte_t *pte;
 318        spinlock_t *ptl;
 319
 320        address = vma_address(page, vma);
 321        if (address == -EFAULT)                /* out of vma range */
 322                return 0;
 323        pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 324        if (!pte)                        /* the page is not in this mm */
 325                return 0;
 326        pte_unmap_unlock(pte, ptl);
 327
 328        return 1;
 329}
 330
 331/*
 332 * Subfunctions of page_referenced: page_referenced_one called
 333 * repeatedly from either page_referenced_anon or page_referenced_file.
 334 */
 335static int page_referenced_one(struct page *page,
 336        struct vm_area_struct *vma, unsigned int *mapcount)
 337{
 338        struct mm_struct *mm = vma->vm_mm;
 339        unsigned long address;
 340        pte_t *pte;
 341        spinlock_t *ptl;
 342        int referenced = 0;
 343
 344        address = vma_address(page, vma);
 345        if (address == -EFAULT)
 346                goto out;
 347
 348        pte = page_check_address(page, mm, address, &ptl, 0);
 349        if (!pte)
 350                goto out;
 351
 352        /*
 353         * Don't want to elevate referenced for mlocked page that gets this far,
 354         * in order that it progresses to try_to_unmap and is moved to the
 355         * unevictable list.
 356         */
 357        if (vma->vm_flags & VM_LOCKED) {
 358                *mapcount = 1;        /* break early from loop */
 359                goto out_unmap;
 360        }
 361
 362        if (ptep_clear_flush_young_notify(vma, address, pte))
 363                referenced++;
 364
 365        /* Pretend the page is referenced if the task has the
 366           swap token and is in the middle of a page fault. */
 367        if (mm != current->mm && has_swap_token(mm) &&
 368                        rwsem_is_locked(&mm->mmap_sem))
 369                referenced++;
 370
 371out_unmap:
 372        (*mapcount)--;
 373        pte_unmap_unlock(pte, ptl);
 374out:
 375        return referenced;
 376}
 377
 378static int page_referenced_anon(struct page *page,
 379                                struct mem_cgroup *mem_cont)
 380{
 381        unsigned int mapcount;
 382        struct anon_vma *anon_vma;
 383        struct vm_area_struct *vma;
 384        int referenced = 0;
 385
 386        anon_vma = page_lock_anon_vma(page);
 387        if (!anon_vma)
 388                return referenced;
 389
 390        mapcount = page_mapcount(page);
 391        list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
 392                /*
 393                 * If we are reclaiming on behalf of a cgroup, skip
 394                 * counting on behalf of references from different
 395                 * cgroups
 396                 */
 397                if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
 398                        continue;
 399                referenced += page_referenced_one(page, vma, &mapcount);
 400                if (!mapcount)
 401                        break;
 402        }
 403
 404        page_unlock_anon_vma(anon_vma);
 405        return referenced;
 406}
 407
 408/**
 409 * page_referenced_file - referenced check for object-based rmap
 410 * @page: the page we're checking references on.
 411 * @mem_cont: target memory controller
 412 *
 413 * For an object-based mapped page, find all the places it is mapped and
 414 * check/clear the referenced flag.  This is done by following the page->mapping
 415 * pointer, then walking the chain of vmas it holds.  It returns the number
 416 * of references it found.
 417 *
 418 * This function is only called from page_referenced for object-based pages.
 419 */
 420static int page_referenced_file(struct page *page,
 421                                struct mem_cgroup *mem_cont)
 422{
 423        unsigned int mapcount;
 424        struct address_space *mapping = page->mapping;
 425        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 426        struct vm_area_struct *vma;
 427        struct prio_tree_iter iter;
 428        int referenced = 0;
 429
 430        /*
 431         * The caller's checks on page->mapping and !PageAnon have made
 432         * sure that this is a file page: the check for page->mapping
 433         * excludes the case just before it gets set on an anon page.
 434         */
 435        BUG_ON(PageAnon(page));
 436
 437        /*
 438         * The page lock not only makes sure that page->mapping cannot
 439         * suddenly be NULLified by truncation, it makes sure that the
 440         * structure at mapping cannot be freed and reused yet,
 441         * so we can safely take mapping->i_mmap_lock.
 442         */
 443        BUG_ON(!PageLocked(page));
 444
 445        spin_lock(&mapping->i_mmap_lock);
 446
 447        /*
 448         * i_mmap_lock does not stabilize mapcount at all, but mapcount
 449         * is more likely to be accurate if we note it after spinning.
 450         */
 451        mapcount = page_mapcount(page);
 452
 453        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 454                /*
 455                 * If we are reclaiming on behalf of a cgroup, skip
 456                 * counting on behalf of references from different
 457                 * cgroups
 458                 */
 459                if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
 460                        continue;
 461                referenced += page_referenced_one(page, vma, &mapcount);
 462                if (!mapcount)
 463                        break;
 464        }
 465
 466        spin_unlock(&mapping->i_mmap_lock);
 467        return referenced;
 468}
 469
 470/**
 471 * page_referenced - test if the page was referenced
 472 * @page: the page to test
 473 * @is_locked: caller holds lock on the page
 474 * @mem_cont: target memory controller
 475 *
 476 * Quick test_and_clear_referenced for all mappings to a page,
 477 * returns the number of ptes which referenced the page.
 478 */
 479int page_referenced(struct page *page, int is_locked,
 480                        struct mem_cgroup *mem_cont)
 481{
 482        int referenced = 0;
 483
 484        if (TestClearPageReferenced(page))
 485                referenced++;
 486
 487        if (page_mapped(page) && page->mapping) {
 488                if (PageAnon(page))
 489                        referenced += page_referenced_anon(page, mem_cont);
 490                else if (is_locked)
 491                        referenced += page_referenced_file(page, mem_cont);
 492                else if (!trylock_page(page))
 493                        referenced++;
 494                else {
 495                        if (page->mapping)
 496                                referenced +=
 497                                        page_referenced_file(page, mem_cont);
 498                        unlock_page(page);
 499                }
 500        }
 501
 502        if (page_test_and_clear_young(page))
 503                referenced++;
 504
 505        return referenced;
 506}
 507
 508static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
 509{
 510        struct mm_struct *mm = vma->vm_mm;
 511        unsigned long address;
 512        pte_t *pte;
 513        spinlock_t *ptl;
 514        int ret = 0;
 515
 516        address = vma_address(page, vma);
 517        if (address == -EFAULT)
 518                goto out;
 519
 520        pte = page_check_address(page, mm, address, &ptl, 1);
 521        if (!pte)
 522                goto out;
 523
 524        if (pte_dirty(*pte) || pte_write(*pte)) {
 525                pte_t entry;
 526
 527                flush_cache_page(vma, address, pte_pfn(*pte));
 528                entry = ptep_clear_flush_notify(vma, address, pte);
 529                entry = pte_wrprotect(entry);
 530                entry = pte_mkclean(entry);
 531                set_pte_at(mm, address, pte, entry);
 532                ret = 1;
 533        }
 534
 535        pte_unmap_unlock(pte, ptl);
 536out:
 537        return ret;
 538}
 539
 540static int page_mkclean_file(struct address_space *mapping, struct page *page)
 541{
 542        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 543        struct vm_area_struct *vma;
 544        struct prio_tree_iter iter;
 545        int ret = 0;
 546
 547        BUG_ON(PageAnon(page));
 548
 549        spin_lock(&mapping->i_mmap_lock);
 550        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 551                if (vma->vm_flags & VM_SHARED)
 552                        ret += page_mkclean_one(page, vma);
 553        }
 554        spin_unlock(&mapping->i_mmap_lock);
 555        return ret;
 556}
 557
 558int page_mkclean(struct page *page)
 559{
 560        int ret = 0;
 561
 562        BUG_ON(!PageLocked(page));
 563
 564        if (page_mapped(page)) {
 565                struct address_space *mapping = page_mapping(page);
 566                if (mapping) {
 567                        ret = page_mkclean_file(mapping, page);
 568                        if (page_test_dirty(page)) {
 569                                page_clear_dirty(page);
 570                                ret = 1;
 571                        }
 572                }
 573        }
 574
 575        return ret;
 576}
 577EXPORT_SYMBOL_GPL(page_mkclean);
 578
 579/**
 580 * __page_set_anon_rmap - setup new anonymous rmap
 581 * @page:        the page to add the mapping to
 582 * @vma:        the vm area in which the mapping is added
 583 * @address:        the user virtual address mapped
 584 */
 585static void __page_set_anon_rmap(struct page *page,
 586        struct vm_area_struct *vma, unsigned long address)
 587{
 588        struct anon_vma *anon_vma = vma->anon_vma;
 589
 590        BUG_ON(!anon_vma);
 591        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 592        page->mapping = (struct address_space *) anon_vma;
 593
 594        page->index = linear_page_index(vma, address);
 595
 596        /*
 597         * nr_mapped state can be updated without turning off
 598         * interrupts because it is not modified via interrupt.
 599         */
 600        __inc_zone_page_state(page, NR_ANON_PAGES);
 601}
 602
 603/**
 604 * __page_check_anon_rmap - sanity check anonymous rmap addition
 605 * @page:        the page to add the mapping to
 606 * @vma:        the vm area in which the mapping is added
 607 * @address:        the user virtual address mapped
 608 */
 609static void __page_check_anon_rmap(struct page *page,
 610        struct vm_area_struct *vma, unsigned long address)
 611{
 612#ifdef CONFIG_DEBUG_VM
 613        /*
 614         * The page's anon-rmap details (mapping and index) are guaranteed to
 615         * be set up correctly at this point.
 616         *
 617         * We have exclusion against page_add_anon_rmap because the caller
 618         * always holds the page locked, except if called from page_dup_rmap,
 619         * in which case the page is already known to be setup.
 620         *
 621         * We have exclusion against page_add_new_anon_rmap because those pages
 622         * are initially only visible via the pagetables, and the pte is locked
 623         * over the call to page_add_new_anon_rmap.
 624         */
 625        struct anon_vma *anon_vma = vma->anon_vma;
 626        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 627        BUG_ON(page->mapping != (struct address_space *)anon_vma);
 628        BUG_ON(page->index != linear_page_index(vma, address));
 629#endif
 630}
 631
 632/**
 633 * page_add_anon_rmap - add pte mapping to an anonymous page
 634 * @page:        the page to add the mapping to
 635 * @vma:        the vm area in which the mapping is added
 636 * @address:        the user virtual address mapped
 637 *
 638 * The caller needs to hold the pte lock and the page must be locked.
 639 */
 640void page_add_anon_rmap(struct page *page,
 641        struct vm_area_struct *vma, unsigned long address)
 642{
 643        VM_BUG_ON(!PageLocked(page));
 644        VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 645        if (atomic_inc_and_test(&page->_mapcount))
 646                __page_set_anon_rmap(page, vma, address);
 647        else
 648                __page_check_anon_rmap(page, vma, address);
 649}
 650
 651/**
 652 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
 653 * @page:        the page to add the mapping to
 654 * @vma:        the vm area in which the mapping is added
 655 * @address:        the user virtual address mapped
 656 *
 657 * Same as page_add_anon_rmap but must only be called on *new* pages.
 658 * This means the inc-and-test can be bypassed.
 659 * Page does not have to be locked.
 660 */
 661void page_add_new_anon_rmap(struct page *page,
 662        struct vm_area_struct *vma, unsigned long address)
 663{
 664        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 665        atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
 666        __page_set_anon_rmap(page, vma, address);
 667}
 668
 669/**
 670 * page_add_file_rmap - add pte mapping to a file page
 671 * @page: the page to add the mapping to
 672 *
 673 * The caller needs to hold the pte lock.
 674 */
 675void page_add_file_rmap(struct page *page)
 676{
 677        if (atomic_inc_and_test(&page->_mapcount))
 678                __inc_zone_page_state(page, NR_FILE_MAPPED);
 679}
 680
 681#ifdef CONFIG_DEBUG_VM
 682/**
 683 * page_dup_rmap - duplicate pte mapping to a page
 684 * @page:        the page to add the mapping to
 685 * @vma:        the vm area being duplicated
 686 * @address:        the user virtual address mapped
 687 *
 688 * For copy_page_range only: minimal extract from page_add_file_rmap /
 689 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
 690 * quicker.
 691 *
 692 * The caller needs to hold the pte lock.
 693 */
 694void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
 695{
 696        BUG_ON(page_mapcount(page) == 0);
 697        if (PageAnon(page))
 698                __page_check_anon_rmap(page, vma, address);
 699        atomic_inc(&page->_mapcount);
 700}
 701#endif
 702
 703/**
 704 * page_remove_rmap - take down pte mapping from a page
 705 * @page: page to remove mapping from
 706 * @vma: the vm area in which the mapping is removed
 707 *
 708 * The caller needs to hold the pte lock.
 709 */
 710void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
 711{
 712        if (atomic_add_negative(-1, &page->_mapcount)) {
 713                if (unlikely(page_mapcount(page) < 0)) {
 714                        printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
 715                        printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
 716                        printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
 717                        printk (KERN_EMERG "  page->count = %x\n", page_count(page));
 718                        printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
 719                        print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
 720                        if (vma->vm_ops) {
 721                                print_symbol (KERN_EMERG "  vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
 722                        }
 723                        if (vma->vm_file && vma->vm_file->f_op)
 724                                print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
 725                        BUG();
 726                }
 727
 728                /*
 729                 * Now that the last pte has gone, s390 must transfer dirty
 730                 * flag from storage key to struct page.  We can usually skip
 731                 * this if the page is anon, so about to be freed; but perhaps
 732                 * not if it's in swapcache - there might be another pte slot
 733                 * containing the swap entry, but page not yet written to swap.
 734                 */
 735                if ((!PageAnon(page) || PageSwapCache(page)) &&
 736                    page_test_dirty(page)) {
 737                        page_clear_dirty(page);
 738                        set_page_dirty(page);
 739                }
 740                if (PageAnon(page))
 741                        mem_cgroup_uncharge_page(page);
 742                __dec_zone_page_state(page,
 743                        PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
 744                /*
 745                 * It would be tidy to reset the PageAnon mapping here,
 746                 * but that might overwrite a racing page_add_anon_rmap
 747                 * which increments mapcount after us but sets mapping
 748                 * before us: so leave the reset to free_hot_cold_page,
 749                 * and remember that it's only reliable while mapped.
 750                 * Leaving it set also helps swapoff to reinstate ptes
 751                 * faster for those pages still in swapcache.
 752                 */
 753        }
 754}
 755
 756/*
 757 * Subfunctions of try_to_unmap: try_to_unmap_one called
 758 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
 759 */
 760static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
 761                                int migration)
 762{
 763        struct mm_struct *mm = vma->vm_mm;
 764        unsigned long address;
 765        pte_t *pte;
 766        pte_t pteval;
 767        spinlock_t *ptl;
 768        int ret = SWAP_AGAIN;
 769
 770        address = vma_address(page, vma);
 771        if (address == -EFAULT)
 772                goto out;
 773
 774        pte = page_check_address(page, mm, address, &ptl, 0);
 775        if (!pte)
 776                goto out;
 777
 778        /*
 779         * If the page is mlock()d, we cannot swap it out.
 780         * If it's recently referenced (perhaps page_referenced
 781         * skipped over this mm) then we should reactivate it.
 782         */
 783        if (!migration) {
 784                if (vma->vm_flags & VM_LOCKED) {
 785                        ret = SWAP_MLOCK;
 786                        goto out_unmap;
 787                }
 788                if (ptep_clear_flush_young_notify(vma, address, pte)) {
 789                        ret = SWAP_FAIL;
 790                        goto out_unmap;
 791                }
 792          }
 793
 794        /* Nuke the page table entry. */
 795        flush_cache_page(vma, address, page_to_pfn(page));
 796        pteval = ptep_clear_flush_notify(vma, address, pte);
 797
 798        /* Move the dirty bit to the physical page now the pte is gone. */
 799        if (pte_dirty(pteval))
 800                set_page_dirty(page);
 801
 802        /* Update high watermark before we lower rss */
 803        update_hiwater_rss(mm);
 804
 805        if (PageAnon(page)) {
 806                swp_entry_t entry = { .val = page_private(page) };
 807
 808                if (PageSwapCache(page)) {
 809                        /*
 810                         * Store the swap location in the pte.
 811                         * See handle_pte_fault() ...
 812                         */
 813                        swap_duplicate(entry);
 814                        if (list_empty(&mm->mmlist)) {
 815                                spin_lock(&mmlist_lock);
 816                                if (list_empty(&mm->mmlist))
 817                                        list_add(&mm->mmlist, &init_mm.mmlist);
 818                                spin_unlock(&mmlist_lock);
 819                        }
 820                        dec_mm_counter(mm, anon_rss);
 821#ifdef CONFIG_MIGRATION
 822                } else {
 823                        /*
 824                         * Store the pfn of the page in a special migration
 825                         * pte. do_swap_page() will wait until the migration
 826                         * pte is removed and then restart fault handling.
 827                         */
 828                        BUG_ON(!migration);
 829                        entry = make_migration_entry(page, pte_write(pteval));
 830#endif
 831                }
 832                set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
 833                BUG_ON(pte_file(*pte));
 834        } else
 835#ifdef CONFIG_MIGRATION
 836        if (migration) {
 837                /* Establish migration entry for a file page */
 838                swp_entry_t entry;
 839                entry = make_migration_entry(page, pte_write(pteval));
 840                set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
 841        } else
 842#endif
 843                dec_mm_counter(mm, file_rss);
 844
 845
 846        page_remove_rmap(page, vma);
 847        page_cache_release(page);
 848
 849out_unmap:
 850        pte_unmap_unlock(pte, ptl);
 851out:
 852        return ret;
 853}
 854
 855/*
 856 * objrmap doesn't work for nonlinear VMAs because the assumption that
 857 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
 858 * Consequently, given a particular page and its ->index, we cannot locate the
 859 * ptes which are mapping that page without an exhaustive linear search.
 860 *
 861 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
 862 * maps the file to which the target page belongs.  The ->vm_private_data field
 863 * holds the current cursor into that scan.  Successive searches will circulate
 864 * around the vma's virtual address space.
 865 *
 866 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
 867 * more scanning pressure is placed against them as well.   Eventually pages
 868 * will become fully unmapped and are eligible for eviction.
 869 *
 870 * For very sparsely populated VMAs this is a little inefficient - chances are
 871 * there there won't be many ptes located within the scan cluster.  In this case
 872 * maybe we could scan further - to the end of the pte page, perhaps.
 873 *
 874 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
 875 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
 876 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
 877 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
 878 */
 879#define CLUSTER_SIZE        min(32*PAGE_SIZE, PMD_SIZE)
 880#define CLUSTER_MASK        (~(CLUSTER_SIZE - 1))
 881
 882static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
 883                struct vm_area_struct *vma, struct page *check_page)
 884{
 885        struct mm_struct *mm = vma->vm_mm;
 886        pgd_t *pgd;
 887        pud_t *pud;
 888        pmd_t *pmd;
 889        pte_t *pte;
 890        pte_t pteval;
 891        spinlock_t *ptl;
 892        struct page *page;
 893        unsigned long address;
 894        unsigned long end;
 895        int ret = SWAP_AGAIN;
 896        int locked_vma = 0;
 897
 898        address = (vma->vm_start + cursor) & CLUSTER_MASK;
 899        end = address + CLUSTER_SIZE;
 900        if (address < vma->vm_start)
 901                address = vma->vm_start;
 902        if (end > vma->vm_end)
 903                end = vma->vm_end;
 904
 905        pgd = pgd_offset(mm, address);
 906        if (!pgd_present(*pgd))
 907                return ret;
 908
 909        pud = pud_offset(pgd, address);
 910        if (!pud_present(*pud))
 911                return ret;
 912
 913        pmd = pmd_offset(pud, address);
 914        if (!pmd_present(*pmd))
 915                return ret;
 916
 917        /*
 918         * MLOCK_PAGES => feature is configured.
 919         * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
 920         * keep the sem while scanning the cluster for mlocking pages.
 921         */
 922        if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
 923                locked_vma = (vma->vm_flags & VM_LOCKED);
 924                if (!locked_vma)
 925                        up_read(&vma->vm_mm->mmap_sem); /* don't need it */
 926        }
 927
 928        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
 929
 930        /* Update high watermark before we lower rss */
 931        update_hiwater_rss(mm);
 932
 933        for (; address < end; pte++, address += PAGE_SIZE) {
 934                if (!pte_present(*pte))
 935                        continue;
 936                page = vm_normal_page(vma, address, *pte);
 937                BUG_ON(!page || PageAnon(page));
 938
 939                if (locked_vma) {
 940                        mlock_vma_page(page);   /* no-op if already mlocked */
 941                        if (page == check_page)
 942                                ret = SWAP_MLOCK;
 943                        continue;        /* don't unmap */
 944                }
 945
 946                if (ptep_clear_flush_young_notify(vma, address, pte))
 947                        continue;
 948
 949                /* Nuke the page table entry. */
 950                flush_cache_page(vma, address, pte_pfn(*pte));
 951                pteval = ptep_clear_flush_notify(vma, address, pte);
 952
 953                /* If nonlinear, store the file page offset in the pte. */
 954                if (page->index != linear_page_index(vma, address))
 955                        set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
 956
 957                /* Move the dirty bit to the physical page now the pte is gone. */
 958                if (pte_dirty(pteval))
 959                        set_page_dirty(page);
 960
 961                page_remove_rmap(page, vma);
 962                page_cache_release(page);
 963                dec_mm_counter(mm, file_rss);
 964                (*mapcount)--;
 965        }
 966        pte_unmap_unlock(pte - 1, ptl);
 967        if (locked_vma)
 968                up_read(&vma->vm_mm->mmap_sem);
 969        return ret;
 970}
 971
 972/*
 973 * common handling for pages mapped in VM_LOCKED vmas
 974 */
 975static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
 976{
 977        int mlocked = 0;
 978
 979        if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
 980                if (vma->vm_flags & VM_LOCKED) {
 981                        mlock_vma_page(page);
 982                        mlocked++;        /* really mlocked the page */
 983                }
 984                up_read(&vma->vm_mm->mmap_sem);
 985        }
 986        return mlocked;
 987}
 988
 989/**
 990 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
 991 * rmap method
 992 * @page: the page to unmap/unlock
 993 * @unlock:  request for unlock rather than unmap [unlikely]
 994 * @migration:  unmapping for migration - ignored if @unlock
 995 *
 996 * Find all the mappings of a page using the mapping pointer and the vma chains
 997 * contained in the anon_vma struct it points to.
 998 *
 999 * This function is only called from try_to_unmap/try_to_munlock for
1000 * anonymous pages.
1001 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1002 * where the page was found will be held for write.  So, we won't recheck
1003 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1004 * 'LOCKED.
1005 */
1006static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1007{
1008        struct anon_vma *anon_vma;
1009        struct vm_area_struct *vma;
1010        unsigned int mlocked = 0;
1011        int ret = SWAP_AGAIN;
1012
1013        if (MLOCK_PAGES && unlikely(unlock))
1014                ret = SWAP_SUCCESS;        /* default for try_to_munlock() */
1015
1016        anon_vma = page_lock_anon_vma(page);
1017        if (!anon_vma)
1018                return ret;
1019
1020        list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1021                if (MLOCK_PAGES && unlikely(unlock)) {
1022                        if (!((vma->vm_flags & VM_LOCKED) &&
1023                              page_mapped_in_vma(page, vma)))
1024                                continue;  /* must visit all unlocked vmas */
1025                        ret = SWAP_MLOCK;  /* saw at least one mlocked vma */
1026                } else {
1027                        ret = try_to_unmap_one(page, vma, migration);
1028                        if (ret == SWAP_FAIL || !page_mapped(page))
1029                                break;
1030                }
1031                if (ret == SWAP_MLOCK) {
1032                        mlocked = try_to_mlock_page(page, vma);
1033                        if (mlocked)
1034                                break;        /* stop if actually mlocked page */
1035                }
1036        }
1037
1038        page_unlock_anon_vma(anon_vma);
1039
1040        if (mlocked)
1041                ret = SWAP_MLOCK;        /* actually mlocked the page */
1042        else if (ret == SWAP_MLOCK)
1043                ret = SWAP_AGAIN;        /* saw VM_LOCKED vma */
1044
1045        return ret;
1046}
1047
1048/**
1049 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1050 * @page: the page to unmap/unlock
1051 * @unlock:  request for unlock rather than unmap [unlikely]
1052 * @migration:  unmapping for migration - ignored if @unlock
1053 *
1054 * Find all the mappings of a page using the mapping pointer and the vma chains
1055 * contained in the address_space struct it points to.
1056 *
1057 * This function is only called from try_to_unmap/try_to_munlock for
1058 * object-based pages.
1059 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1060 * where the page was found will be held for write.  So, we won't recheck
1061 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1062 * 'LOCKED.
1063 */
1064static int try_to_unmap_file(struct page *page, int unlock, int migration)
1065{
1066        struct address_space *mapping = page->mapping;
1067        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1068        struct vm_area_struct *vma;
1069        struct prio_tree_iter iter;
1070        int ret = SWAP_AGAIN;
1071        unsigned long cursor;
1072        unsigned long max_nl_cursor = 0;
1073        unsigned long max_nl_size = 0;
1074        unsigned int mapcount;
1075        unsigned int mlocked = 0;
1076
1077        if (MLOCK_PAGES && unlikely(unlock))
1078                ret = SWAP_SUCCESS;        /* default for try_to_munlock() */
1079
1080        spin_lock(&mapping->i_mmap_lock);
1081        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1082                if (MLOCK_PAGES && unlikely(unlock)) {
1083                        if (!(vma->vm_flags & VM_LOCKED))
1084                                continue;        /* must visit all vmas */
1085                        ret = SWAP_MLOCK;
1086                } else {
1087                        ret = try_to_unmap_one(page, vma, migration);
1088                        if (ret == SWAP_FAIL || !page_mapped(page))
1089                                goto out;
1090                }
1091                if (ret == SWAP_MLOCK) {
1092                        mlocked = try_to_mlock_page(page, vma);
1093                        if (mlocked)
1094                                break;  /* stop if actually mlocked page */
1095                }
1096        }
1097
1098        if (mlocked)
1099                goto out;
1100
1101        if (list_empty(&mapping->i_mmap_nonlinear))
1102                goto out;
1103
1104        list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1105                                                shared.vm_set.list) {
1106                if (MLOCK_PAGES && unlikely(unlock)) {
1107                        if (!(vma->vm_flags & VM_LOCKED))
1108                                continue;        /* must visit all vmas */
1109                        ret = SWAP_MLOCK;        /* leave mlocked == 0 */
1110                        goto out;                /* no need to look further */
1111                }
1112                if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1113                        continue;
1114                cursor = (unsigned long) vma->vm_private_data;
1115                if (cursor > max_nl_cursor)
1116                        max_nl_cursor = cursor;
1117                cursor = vma->vm_end - vma->vm_start;
1118                if (cursor > max_nl_size)
1119                        max_nl_size = cursor;
1120        }
1121
1122        if (max_nl_size == 0) {        /* all nonlinears locked or reserved ? */
1123                ret = SWAP_FAIL;
1124                goto out;
1125        }
1126
1127        /*
1128         * We don't try to search for this page in the nonlinear vmas,
1129         * and page_referenced wouldn't have found it anyway.  Instead
1130         * just walk the nonlinear vmas trying to age and unmap some.
1131         * The mapcount of the page we came in with is irrelevant,
1132         * but even so use it as a guide to how hard we should try?
1133         */
1134        mapcount = page_mapcount(page);
1135        if (!mapcount)
1136                goto out;
1137        cond_resched_lock(&mapping->i_mmap_lock);
1138
1139        max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1140        if (max_nl_cursor == 0)
1141                max_nl_cursor = CLUSTER_SIZE;
1142
1143        do {
1144                list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1145                                                shared.vm_set.list) {
1146                        if (!MLOCK_PAGES && !migration &&
1147                            (vma->vm_flags & VM_LOCKED))
1148                                continue;
1149                        cursor = (unsigned long) vma->vm_private_data;
1150                        while ( cursor < max_nl_cursor &&
1151                                cursor < vma->vm_end - vma->vm_start) {
1152                                ret = try_to_unmap_cluster(cursor, &mapcount,
1153                                                                vma, page);
1154                                if (ret == SWAP_MLOCK)
1155                                        mlocked = 2;        /* to return below */
1156                                cursor += CLUSTER_SIZE;
1157                                vma->vm_private_data = (void *) cursor;
1158                                if ((int)mapcount <= 0)
1159                                        goto out;
1160                        }
1161                        vma->vm_private_data = (void *) max_nl_cursor;
1162                }
1163                cond_resched_lock(&mapping->i_mmap_lock);
1164                max_nl_cursor += CLUSTER_SIZE;
1165        } while (max_nl_cursor <= max_nl_size);
1166
1167        /*
1168         * Don't loop forever (perhaps all the remaining pages are
1169         * in locked vmas).  Reset cursor on all unreserved nonlinear
1170         * vmas, now forgetting on which ones it had fallen behind.
1171         */
1172        list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1173                vma->vm_private_data = NULL;
1174out:
1175        spin_unlock(&mapping->i_mmap_lock);
1176        if (mlocked)
1177                ret = SWAP_MLOCK;        /* actually mlocked the page */
1178        else if (ret == SWAP_MLOCK)
1179                ret = SWAP_AGAIN;        /* saw VM_LOCKED vma */
1180        return ret;
1181}
1182
1183/**
1184 * try_to_unmap - try to remove all page table mappings to a page
1185 * @page: the page to get unmapped
1186 * @migration: migration flag
1187 *
1188 * Tries to remove all the page table entries which are mapping this
1189 * page, used in the pageout path.  Caller must hold the page lock.
1190 * Return values are:
1191 *
1192 * SWAP_SUCCESS        - we succeeded in removing all mappings
1193 * SWAP_AGAIN        - we missed a mapping, try again later
1194 * SWAP_FAIL        - the page is unswappable
1195 * SWAP_MLOCK        - page is mlocked.
1196 */
1197int try_to_unmap(struct page *page, int migration)
1198{
1199        int ret;
1200
1201        BUG_ON(!PageLocked(page));
1202
1203        if (PageAnon(page))
1204                ret = try_to_unmap_anon(page, 0, migration);
1205        else
1206                ret = try_to_unmap_file(page, 0, migration);
1207        if (ret != SWAP_MLOCK && !page_mapped(page))
1208                ret = SWAP_SUCCESS;
1209        return ret;
1210}
1211
1212#ifdef CONFIG_UNEVICTABLE_LRU
1213/**
1214 * try_to_munlock - try to munlock a page
1215 * @page: the page to be munlocked
1216 *
1217 * Called from munlock code.  Checks all of the VMAs mapping the page
1218 * to make sure nobody else has this page mlocked. The page will be
1219 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1220 *
1221 * Return values are:
1222 *
1223 * SWAP_SUCCESS        - no vma's holding page mlocked.
1224 * SWAP_AGAIN        - page mapped in mlocked vma -- couldn't acquire mmap sem
1225 * SWAP_MLOCK        - page is now mlocked.
1226 */
1227int try_to_munlock(struct page *page)
1228{
1229        VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1230
1231        if (PageAnon(page))
1232                return try_to_unmap_anon(page, 1, 0);
1233        else
1234                return try_to_unmap_file(page, 1, 0);
1235}
1236#endif