Showing error 1304

User: Jiri Slaby
Error type: Leaving function in locked state
Error type description: Some lock is not unlocked on all paths of a function, so it is leaked
File location: drivers/net/wireless/strip.c
Line in file: 955
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2012-05-21 20:30:05 UTC


Source:

   1/*
   2 * Copyright 1996 The Board of Trustees of The Leland Stanford
   3 * Junior University. All Rights Reserved.
   4 *
   5 * Permission to use, copy, modify, and distribute this
   6 * software and its documentation for any purpose and without
   7 * fee is hereby granted, provided that the above copyright
   8 * notice appear in all copies.  Stanford University
   9 * makes no representations about the suitability of this
  10 * software for any purpose.  It is provided "as is" without
  11 * express or implied warranty.
  12 *
  13 * strip.c        This module implements Starmode Radio IP (STRIP)
  14 *                for kernel-based devices like TTY.  It interfaces between a
  15 *                raw TTY, and the kernel's INET protocol layers (via DDI).
  16 *
  17 * Version:        @(#)strip.c        1.3        July 1997
  18 *
  19 * Author:        Stuart Cheshire <cheshire@cs.stanford.edu>
  20 *
  21 * Fixes:        v0.9 12th Feb 1996 (SC)
  22 *                New byte stuffing (2+6 run-length encoding)
  23 *                New watchdog timer task
  24 *                New Protocol key (SIP0)
  25 *                
  26 *                v0.9.1 3rd March 1996 (SC)
  27 *                Changed to dynamic device allocation -- no more compile
  28 *                time (or boot time) limit on the number of STRIP devices.
  29 *                
  30 *                v0.9.2 13th March 1996 (SC)
  31 *                Uses arp cache lookups (but doesn't send arp packets yet)
  32 *                
  33 *                v0.9.3 17th April 1996 (SC)
  34 *                Fixed bug where STR_ERROR flag was getting set unneccessarily
  35 *                (causing otherwise good packets to be unneccessarily dropped)
  36 *                
  37 *                v0.9.4 27th April 1996 (SC)
  38 *                First attempt at using "&COMMAND" Starmode AT commands
  39 *                
  40 *                v0.9.5 29th May 1996 (SC)
  41 *                First attempt at sending (unicast) ARP packets
  42 *                
  43 *                v0.9.6 5th June 1996 (Elliot)
  44 *                Put "message level" tags in every "printk" statement
  45 *                
  46 *                v0.9.7 13th June 1996 (laik)
  47 *                Added support for the /proc fs
  48 *
  49 *              v0.9.8 July 1996 (Mema)
  50 *              Added packet logging
  51 *
  52 *              v1.0 November 1996 (SC)
  53 *              Fixed (severe) memory leaks in the /proc fs code
  54 *              Fixed race conditions in the logging code
  55 *
  56 *              v1.1 January 1997 (SC)
  57 *              Deleted packet logging (use tcpdump instead)
  58 *              Added support for Metricom Firmware v204 features
  59 *              (like message checksums)
  60 *
  61 *              v1.2 January 1997 (SC)
  62 *              Put portables list back in
  63 *
  64 *              v1.3 July 1997 (SC)
  65 *              Made STRIP driver set the radio's baud rate automatically.
  66 *              It is no longer necessarily to manually set the radio's
  67 *              rate permanently to 115200 -- the driver handles setting
  68 *              the rate automatically.
  69 */
  70
  71#ifdef MODULE
  72static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR";
  73#else
  74static const char StripVersion[] = "1.3A-STUART.CHESHIRE";
  75#endif
  76
  77#define TICKLE_TIMERS 0
  78#define EXT_COUNTERS 1
  79
  80
  81/************************************************************************/
  82/* Header files                                                                */
  83
  84#include <linux/kernel.h>
  85#include <linux/module.h>
  86#include <linux/init.h>
  87#include <linux/bitops.h>
  88#include <asm/system.h>
  89#include <asm/uaccess.h>
  90
  91# include <linux/ctype.h>
  92#include <linux/string.h>
  93#include <linux/mm.h>
  94#include <linux/interrupt.h>
  95#include <linux/in.h>
  96#include <linux/tty.h>
  97#include <linux/errno.h>
  98#include <linux/netdevice.h>
  99#include <linux/inetdevice.h>
 100#include <linux/etherdevice.h>
 101#include <linux/skbuff.h>
 102#include <linux/if_arp.h>
 103#include <linux/if_strip.h>
 104#include <linux/proc_fs.h>
 105#include <linux/seq_file.h>
 106#include <linux/serial.h>
 107#include <linux/serialP.h>
 108#include <linux/rcupdate.h>
 109#include <net/arp.h>
 110#include <net/net_namespace.h>
 111
 112#include <linux/ip.h>
 113#include <linux/tcp.h>
 114#include <linux/time.h>
 115#include <linux/jiffies.h>
 116
 117/************************************************************************/
 118/* Useful structures and definitions                                        */
 119
 120/*
 121 * A MetricomKey identifies the protocol being carried inside a Metricom
 122 * Starmode packet.
 123 */
 124
 125typedef union {
 126        __u8 c[4];
 127        __u32 l;
 128} MetricomKey;
 129
 130/*
 131 * An IP address can be viewed as four bytes in memory (which is what it is) or as
 132 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
 133 */
 134
 135typedef union {
 136        __u8 b[4];
 137        __u32 l;
 138} IPaddr;
 139
 140/*
 141 * A MetricomAddressString is used to hold a printable representation of
 142 * a Metricom address.
 143 */
 144
 145typedef struct {
 146        __u8 c[24];
 147} MetricomAddressString;
 148
 149/* Encapsulation can expand packet of size x to 65/64x + 1
 150 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
 151 *                           1 1   1-18  1  4         ?         1
 152 * eg.                     <CR>*0000-1234*SIP0<encaps payload><CR>
 153 * We allow 31 bytes for the stars, the key, the address and the <CR>s
 154 */
 155#define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
 156
 157/*
 158 * A STRIP_Header is never really sent over the radio, but making a dummy
 159 * header for internal use within the kernel that looks like an Ethernet
 160 * header makes certain other software happier. For example, tcpdump
 161 * already understands Ethernet headers.
 162 */
 163
 164typedef struct {
 165        MetricomAddress dst_addr;        /* Destination address, e.g. "0000-1234"   */
 166        MetricomAddress src_addr;        /* Source address, e.g. "0000-5678"        */
 167        unsigned short protocol;        /* The protocol type, using Ethernet codes */
 168} STRIP_Header;
 169
 170typedef struct {
 171        char c[60];
 172} MetricomNode;
 173
 174#define NODE_TABLE_SIZE 32
 175typedef struct {
 176        struct timeval timestamp;
 177        int num_nodes;
 178        MetricomNode node[NODE_TABLE_SIZE];
 179} MetricomNodeTable;
 180
 181enum { FALSE = 0, TRUE = 1 };
 182
 183/*
 184 * Holds the radio's firmware version.
 185 */
 186typedef struct {
 187        char c[50];
 188} FirmwareVersion;
 189
 190/*
 191 * Holds the radio's serial number.
 192 */
 193typedef struct {
 194        char c[18];
 195} SerialNumber;
 196
 197/*
 198 * Holds the radio's battery voltage.
 199 */
 200typedef struct {
 201        char c[11];
 202} BatteryVoltage;
 203
 204typedef struct {
 205        char c[8];
 206} char8;
 207
 208enum {
 209        NoStructure = 0,        /* Really old firmware */
 210        StructuredMessages = 1,        /* Parsable AT response msgs */
 211        ChecksummedMessages = 2        /* Parsable AT response msgs with checksums */
 212};
 213
 214struct strip {
 215        int magic;
 216        /*
 217         * These are pointers to the malloc()ed frame buffers.
 218         */
 219
 220        unsigned char *rx_buff;        /* buffer for received IP packet */
 221        unsigned char *sx_buff;        /* buffer for received serial data */
 222        int sx_count;                /* received serial data counter */
 223        int sx_size;                /* Serial buffer size           */
 224        unsigned char *tx_buff;        /* transmitter buffer           */
 225        unsigned char *tx_head;        /* pointer to next byte to XMIT */
 226        int tx_left;                /* bytes left in XMIT queue     */
 227        int tx_size;                /* Serial buffer size           */
 228
 229        /*
 230         * STRIP interface statistics.
 231         */
 232
 233        unsigned long rx_packets;        /* inbound frames counter       */
 234        unsigned long tx_packets;        /* outbound frames counter      */
 235        unsigned long rx_errors;        /* Parity, etc. errors          */
 236        unsigned long tx_errors;        /* Planned stuff                */
 237        unsigned long rx_dropped;        /* No memory for skb            */
 238        unsigned long tx_dropped;        /* When MTU change              */
 239        unsigned long rx_over_errors;        /* Frame bigger then STRIP buf. */
 240
 241        unsigned long pps_timer;        /* Timer to determine pps       */
 242        unsigned long rx_pps_count;        /* Counter to determine pps     */
 243        unsigned long tx_pps_count;        /* Counter to determine pps     */
 244        unsigned long sx_pps_count;        /* Counter to determine pps     */
 245        unsigned long rx_average_pps;        /* rx packets per second * 8    */
 246        unsigned long tx_average_pps;        /* tx packets per second * 8    */
 247        unsigned long sx_average_pps;        /* sent packets per second * 8  */
 248
 249#ifdef EXT_COUNTERS
 250        unsigned long rx_bytes;                /* total received bytes */
 251        unsigned long tx_bytes;                /* total received bytes */
 252        unsigned long rx_rbytes;        /* bytes thru radio i/f */
 253        unsigned long tx_rbytes;        /* bytes thru radio i/f */
 254        unsigned long rx_sbytes;        /* tot bytes thru serial i/f */
 255        unsigned long tx_sbytes;        /* tot bytes thru serial i/f */
 256        unsigned long rx_ebytes;        /* tot stat/err bytes */
 257        unsigned long tx_ebytes;        /* tot stat/err bytes */
 258#endif
 259
 260        /*
 261         * Internal variables.
 262         */
 263
 264        struct list_head  list;                /* Linked list of devices */
 265
 266        int discard;                        /* Set if serial error          */
 267        int working;                        /* Is radio working correctly?  */
 268        int firmware_level;                /* Message structuring level    */
 269        int next_command;                /* Next periodic command        */
 270        unsigned int user_baud;                /* The user-selected baud rate  */
 271        int mtu;                        /* Our mtu (to spot changes!)   */
 272        long watchdog_doprobe;                /* Next time to test the radio  */
 273        long watchdog_doreset;                /* Time to do next reset        */
 274        long gratuitous_arp;                /* Time to send next ARP refresh */
 275        long arp_interval;                /* Next ARP interval            */
 276        struct timer_list idle_timer;        /* For periodic wakeup calls    */
 277        MetricomAddress true_dev_addr;        /* True address of radio        */
 278        int manual_dev_addr;                /* Hack: See note below         */
 279
 280        FirmwareVersion firmware_version;        /* The radio's firmware version */
 281        SerialNumber serial_number;        /* The radio's serial number    */
 282        BatteryVoltage battery_voltage;        /* The radio's battery voltage  */
 283
 284        /*
 285         * Other useful structures.
 286         */
 287
 288        struct tty_struct *tty;                /* ptr to TTY structure         */
 289        struct net_device *dev;                /* Our device structure         */
 290
 291        /*
 292         * Neighbour radio records
 293         */
 294
 295        MetricomNodeTable portables;
 296        MetricomNodeTable poletops;
 297};
 298
 299/*
 300 * Note: manual_dev_addr hack
 301 * 
 302 * It is not possible to change the hardware address of a Metricom radio,
 303 * or to send packets with a user-specified hardware source address, thus
 304 * trying to manually set a hardware source address is a questionable
 305 * thing to do.  However, if the user *does* manually set the hardware
 306 * source address of a STRIP interface, then the kernel will believe it,
 307 * and use it in certain places. For example, the hardware address listed
 308 * by ifconfig will be the manual address, not the true one.
 309 * (Both addresses are listed in /proc/net/strip.)
 310 * Also, ARP packets will be sent out giving the user-specified address as
 311 * the source address, not the real address. This is dangerous, because
 312 * it means you won't receive any replies -- the ARP replies will go to
 313 * the specified address, which will be some other radio. The case where
 314 * this is useful is when that other radio is also connected to the same
 315 * machine. This allows you to connect a pair of radios to one machine,
 316 * and to use one exclusively for inbound traffic, and the other
 317 * exclusively for outbound traffic. Pretty neat, huh?
 318 * 
 319 * Here's the full procedure to set this up:
 320 * 
 321 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
 322 *    and st1 for incoming packets
 323 * 
 324 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
 325 *    which is the real hardware address of st1 (inbound radio).
 326 *    Now when it sends out packets, it will masquerade as st1, and
 327 *    replies will be sent to that radio, which is exactly what we want.
 328 * 
 329 * 3. Set the route table entry ("route add default ..." or
 330 *    "route add -net ...", as appropriate) to send packets via the st0
 331 *    interface (outbound radio). Do not add any route which sends packets
 332 *    out via the st1 interface -- that radio is for inbound traffic only.
 333 * 
 334 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
 335 *    This tells the STRIP driver to "shut down" that interface and not
 336 *    send any packets through it. In particular, it stops sending the
 337 *    periodic gratuitous ARP packets that a STRIP interface normally sends.
 338 *    Also, when packets arrive on that interface, it will search the
 339 *    interface list to see if there is another interface who's manual
 340 *    hardware address matches its own real address (i.e. st0 in this
 341 *    example) and if so it will transfer ownership of the skbuff to
 342 *    that interface, so that it looks to the kernel as if the packet
 343 *    arrived on that interface. This is necessary because when the
 344 *    kernel sends an ARP packet on st0, it expects to get a reply on
 345 *    st0, and if it sees the reply come from st1 then it will ignore
 346 *    it (to be accurate, it puts the entry in the ARP table, but
 347 *    labelled in such a way that st0 can't use it).
 348 * 
 349 * Thanks to Petros Maniatis for coming up with the idea of splitting
 350 * inbound and outbound traffic between two interfaces, which turned
 351 * out to be really easy to implement, even if it is a bit of a hack.
 352 * 
 353 * Having set a manual address on an interface, you can restore it
 354 * to automatic operation (where the address is automatically kept
 355 * consistent with the real address of the radio) by setting a manual
 356 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
 357 * This 'turns off' manual override mode for the device address.
 358 * 
 359 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
 360 * radio addresses the packets were sent and received from, so that you
 361 * can see what is really going on with packets, and which interfaces
 362 * they are really going through.
 363 */
 364
 365
 366/************************************************************************/
 367/* Constants                                                                */
 368
 369/*
 370 * CommandString1 works on all radios
 371 * Other CommandStrings are only used with firmware that provides structured responses.
 372 * 
 373 * ats319=1 Enables Info message for node additions and deletions
 374 * ats319=2 Enables Info message for a new best node
 375 * ats319=4 Enables checksums
 376 * ats319=8 Enables ACK messages
 377 */
 378
 379static const int MaxCommandStringLength = 32;
 380static const int CompatibilityCommand = 1;
 381
 382static const char CommandString0[] = "*&COMMAND*ATS319=7";        /* Turn on checksums & info messages */
 383static const char CommandString1[] = "*&COMMAND*ATS305?";        /* Query radio name */
 384static const char CommandString2[] = "*&COMMAND*ATS325?";        /* Query battery voltage */
 385static const char CommandString3[] = "*&COMMAND*ATS300?";        /* Query version information */
 386static const char CommandString4[] = "*&COMMAND*ATS311?";        /* Query poletop list */
 387static const char CommandString5[] = "*&COMMAND*AT~LA";                /* Query portables list */
 388typedef struct {
 389        const char *string;
 390        long length;
 391} StringDescriptor;
 392
 393static const StringDescriptor CommandString[] = {
 394        {CommandString0, sizeof(CommandString0) - 1},
 395        {CommandString1, sizeof(CommandString1) - 1},
 396        {CommandString2, sizeof(CommandString2) - 1},
 397        {CommandString3, sizeof(CommandString3) - 1},
 398        {CommandString4, sizeof(CommandString4) - 1},
 399        {CommandString5, sizeof(CommandString5) - 1}
 400};
 401
 402#define GOT_ALL_RADIO_INFO(S)      \
 403    ((S)->firmware_version.c[0] && \
 404     (S)->battery_voltage.c[0]  && \
 405     memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
 406
 407static const char hextable[16] = "0123456789ABCDEF";
 408
 409static const MetricomAddress zero_address;
 410static const MetricomAddress broadcast_address =
 411    { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
 412
 413static const MetricomKey SIP0Key = { "SIP0" };
 414static const MetricomKey ARP0Key = { "ARP0" };
 415static const MetricomKey ATR_Key = { "ATR " };
 416static const MetricomKey ACK_Key = { "ACK_" };
 417static const MetricomKey INF_Key = { "INF_" };
 418static const MetricomKey ERR_Key = { "ERR_" };
 419
 420static const long MaxARPInterval = 60 * HZ;        /* One minute */
 421
 422/*
 423 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
 424 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
 425 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
 426 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
 427 * long, including IP header, UDP header, and NFS header. Setting the STRIP
 428 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
 429 */
 430static const unsigned short MAX_SEND_MTU = 1152;
 431static const unsigned short MAX_RECV_MTU = 1500;        /* Hoping for Ethernet sized packets in the future! */
 432static const unsigned short DEFAULT_STRIP_MTU = 1152;
 433static const int STRIP_MAGIC = 0x5303;
 434static const long LongTime = 0x7FFFFFFF;
 435
 436/************************************************************************/
 437/* Global variables                                                        */
 438
 439static LIST_HEAD(strip_list);
 440static DEFINE_SPINLOCK(strip_lock);
 441
 442/************************************************************************/
 443/* Macros                                                                */
 444
 445/* Returns TRUE if text T begins with prefix P */
 446#define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
 447
 448/* Returns TRUE if text T of length L is equal to string S */
 449#define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
 450
 451#define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' :      \
 452                    (X)>='a' && (X)<='f' ? (X)-'a'+10 :   \
 453                    (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
 454
 455#define READHEX16(X) ((__u16)(READHEX(X)))
 456
 457#define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
 458
 459#define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
 460
 461#define JIFFIE_TO_SEC(X) ((X) / HZ)
 462
 463
 464/************************************************************************/
 465/* Utility routines                                                        */
 466
 467static int arp_query(unsigned char *haddr, u32 paddr,
 468                     struct net_device *dev)
 469{
 470        struct neighbour *neighbor_entry;
 471        int ret = 0;
 472
 473        neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
 474
 475        if (neighbor_entry != NULL) {
 476                neighbor_entry->used = jiffies;
 477                if (neighbor_entry->nud_state & NUD_VALID) {
 478                        memcpy(haddr, neighbor_entry->ha, dev->addr_len);
 479                        ret = 1;
 480                }
 481                neigh_release(neighbor_entry);
 482        }
 483        return ret;
 484}
 485
 486static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr,
 487                     __u8 * end)
 488{
 489        static const int MAX_DumpData = 80;
 490        __u8 pkt_text[MAX_DumpData], *p = pkt_text;
 491
 492        *p++ = '\"';
 493
 494        while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) {
 495                if (*ptr == '\\') {
 496                        *p++ = '\\';
 497                        *p++ = '\\';
 498                } else {
 499                        if (*ptr >= 32 && *ptr <= 126) {
 500                                *p++ = *ptr;
 501                        } else {
 502                                sprintf(p, "\\%02X", *ptr);
 503                                p += 3;
 504                        }
 505                }
 506                ptr++;
 507        }
 508
 509        if (ptr == end)
 510                *p++ = '\"';
 511        *p++ = 0;
 512
 513        printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text);
 514}
 515
 516
 517/************************************************************************/
 518/* Byte stuffing/unstuffing routines                                        */
 519
 520/* Stuffing scheme:
 521 * 00    Unused (reserved character)
 522 * 01-3F Run of 2-64 different characters
 523 * 40-7F Run of 1-64 different characters plus a single zero at the end
 524 * 80-BF Run of 1-64 of the same character
 525 * C0-FF Run of 1-64 zeroes (ASCII 0)
 526 */
 527
 528typedef enum {
 529        Stuff_Diff = 0x00,
 530        Stuff_DiffZero = 0x40,
 531        Stuff_Same = 0x80,
 532        Stuff_Zero = 0xC0,
 533        Stuff_NoCode = 0xFF,        /* Special code, meaning no code selected */
 534
 535        Stuff_CodeMask = 0xC0,
 536        Stuff_CountMask = 0x3F,
 537        Stuff_MaxCount = 0x3F,
 538        Stuff_Magic = 0x0D        /* The value we are eliminating */
 539} StuffingCode;
 540
 541/* StuffData encodes the data starting at "src" for "length" bytes.
 542 * It writes it to the buffer pointed to by "dst" (which must be at least
 543 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
 544 * larger than the input for pathological input, but will usually be smaller.
 545 * StuffData returns the new value of the dst pointer as its result.
 546 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
 547 * between calls, allowing an encoded packet to be incrementally built up
 548 * from small parts. On the first call, the "__u8 *" pointed to should be
 549 * initialized to NULL; between subsequent calls the calling routine should
 550 * leave the value alone and simply pass it back unchanged so that the
 551 * encoder can recover its current state.
 552 */
 553
 554#define StuffData_FinishBlock(X) \
 555(*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
 556
 557static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst,
 558                       __u8 ** code_ptr_ptr)
 559{
 560        __u8 *end = src + length;
 561        __u8 *code_ptr = *code_ptr_ptr;
 562        __u8 code = Stuff_NoCode, count = 0;
 563
 564        if (!length)
 565                return (dst);
 566
 567        if (code_ptr) {
 568                /*
 569                 * Recover state from last call, if applicable
 570                 */
 571                code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
 572                count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
 573        }
 574
 575        while (src < end) {
 576                switch (code) {
 577                        /* Stuff_NoCode: If no current code, select one */
 578                case Stuff_NoCode:
 579                        /* Record where we're going to put this code */
 580                        code_ptr = dst++;
 581                        count = 0;        /* Reset the count (zero means one instance) */
 582                        /* Tentatively start a new block */
 583                        if (*src == 0) {
 584                                code = Stuff_Zero;
 585                                src++;
 586                        } else {
 587                                code = Stuff_Same;
 588                                *dst++ = *src++ ^ Stuff_Magic;
 589                        }
 590                        /* Note: We optimistically assume run of same -- */
 591                        /* which will be fixed later in Stuff_Same */
 592                        /* if it turns out not to be true. */
 593                        break;
 594
 595                        /* Stuff_Zero: We already have at least one zero encoded */
 596                case Stuff_Zero:
 597                        /* If another zero, count it, else finish this code block */
 598                        if (*src == 0) {
 599                                count++;
 600                                src++;
 601                        } else {
 602                                StuffData_FinishBlock(Stuff_Zero + count);
 603                        }
 604                        break;
 605
 606                        /* Stuff_Same: We already have at least one byte encoded */
 607                case Stuff_Same:
 608                        /* If another one the same, count it */
 609                        if ((*src ^ Stuff_Magic) == code_ptr[1]) {
 610                                count++;
 611                                src++;
 612                                break;
 613                        }
 614                        /* else, this byte does not match this block. */
 615                        /* If we already have two or more bytes encoded, finish this code block */
 616                        if (count) {
 617                                StuffData_FinishBlock(Stuff_Same + count);
 618                                break;
 619                        }
 620                        /* else, we only have one so far, so switch to Stuff_Diff code */
 621                        code = Stuff_Diff;
 622                        /* and fall through to Stuff_Diff case below
 623                         * Note cunning cleverness here: case Stuff_Diff compares 
 624                         * the current character with the previous two to see if it
 625                         * has a run of three the same. Won't this be an error if
 626                         * there aren't two previous characters stored to compare with?
 627                         * No. Because we know the current character is *not* the same
 628                         * as the previous one, the first test below will necessarily
 629                         * fail and the send half of the "if" won't be executed.
 630                         */
 631
 632                        /* Stuff_Diff: We have at least two *different* bytes encoded */
 633                case Stuff_Diff:
 634                        /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
 635                        if (*src == 0) {
 636                                StuffData_FinishBlock(Stuff_DiffZero +
 637                                                      count);
 638                        }
 639                        /* else, if we have three in a row, it is worth starting a Stuff_Same block */
 640                        else if ((*src ^ Stuff_Magic) == dst[-1]
 641                                 && dst[-1] == dst[-2]) {
 642                                /* Back off the last two characters we encoded */
 643                                code += count - 2;
 644                                /* Note: "Stuff_Diff + 0" is an illegal code */
 645                                if (code == Stuff_Diff + 0) {
 646                                        code = Stuff_Same + 0;
 647                                }
 648                                StuffData_FinishBlock(code);
 649                                code_ptr = dst - 2;
 650                                /* dst[-1] already holds the correct value */
 651                                count = 2;        /* 2 means three bytes encoded */
 652                                code = Stuff_Same;
 653                        }
 654                        /* else, another different byte, so add it to the block */
 655                        else {
 656                                *dst++ = *src ^ Stuff_Magic;
 657                                count++;
 658                        }
 659                        src++;        /* Consume the byte */
 660                        break;
 661                }
 662                if (count == Stuff_MaxCount) {
 663                        StuffData_FinishBlock(code + count);
 664                }
 665        }
 666        if (code == Stuff_NoCode) {
 667                *code_ptr_ptr = NULL;
 668        } else {
 669                *code_ptr_ptr = code_ptr;
 670                StuffData_FinishBlock(code + count);
 671        }
 672        return (dst);
 673}
 674
 675/*
 676 * UnStuffData decodes the data at "src", up to (but not including) "end".
 677 * It writes the decoded data into the buffer pointed to by "dst", up to a
 678 * maximum of "dst_length", and returns the new value of "src" so that a
 679 * follow-on call can read more data, continuing from where the first left off.
 680 * 
 681 * There are three types of results:
 682 * 1. The source data runs out before extracting "dst_length" bytes:
 683 *    UnStuffData returns NULL to indicate failure.
 684 * 2. The source data produces exactly "dst_length" bytes:
 685 *    UnStuffData returns new_src = end to indicate that all bytes were consumed.
 686 * 3. "dst_length" bytes are extracted, with more remaining.
 687 *    UnStuffData returns new_src < end to indicate that there are more bytes
 688 *    to be read.
 689 * 
 690 * Note: The decoding may be destructive, in that it may alter the source
 691 * data in the process of decoding it (this is necessary to allow a follow-on
 692 * call to resume correctly).
 693 */
 694
 695static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst,
 696                         __u32 dst_length)
 697{
 698        __u8 *dst_end = dst + dst_length;
 699        /* Sanity check */
 700        if (!src || !end || !dst || !dst_length)
 701                return (NULL);
 702        while (src < end && dst < dst_end) {
 703                int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
 704                switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) {
 705                case Stuff_Diff:
 706                        if (src + 1 + count >= end)
 707                                return (NULL);
 708                        do {
 709                                *dst++ = *++src ^ Stuff_Magic;
 710                        }
 711                        while (--count >= 0 && dst < dst_end);
 712                        if (count < 0)
 713                                src += 1;
 714                        else {
 715                                if (count == 0)
 716                                        *src = Stuff_Same ^ Stuff_Magic;
 717                                else
 718                                        *src =
 719                                            (Stuff_Diff +
 720                                             count) ^ Stuff_Magic;
 721                        }
 722                        break;
 723                case Stuff_DiffZero:
 724                        if (src + 1 + count >= end)
 725                                return (NULL);
 726                        do {
 727                                *dst++ = *++src ^ Stuff_Magic;
 728                        }
 729                        while (--count >= 0 && dst < dst_end);
 730                        if (count < 0)
 731                                *src = Stuff_Zero ^ Stuff_Magic;
 732                        else
 733                                *src =
 734                                    (Stuff_DiffZero + count) ^ Stuff_Magic;
 735                        break;
 736                case Stuff_Same:
 737                        if (src + 1 >= end)
 738                                return (NULL);
 739                        do {
 740                                *dst++ = src[1] ^ Stuff_Magic;
 741                        }
 742                        while (--count >= 0 && dst < dst_end);
 743                        if (count < 0)
 744                                src += 2;
 745                        else
 746                                *src = (Stuff_Same + count) ^ Stuff_Magic;
 747                        break;
 748                case Stuff_Zero:
 749                        do {
 750                                *dst++ = 0;
 751                        }
 752                        while (--count >= 0 && dst < dst_end);
 753                        if (count < 0)
 754                                src += 1;
 755                        else
 756                                *src = (Stuff_Zero + count) ^ Stuff_Magic;
 757                        break;
 758                }
 759        }
 760        if (dst < dst_end)
 761                return (NULL);
 762        else
 763                return (src);
 764}
 765
 766
 767/************************************************************************/
 768/* General routines for STRIP                                                */
 769
 770/*
 771 * set_baud sets the baud rate to the rate defined by baudcode
 772 */
 773static void set_baud(struct tty_struct *tty, speed_t baudrate)
 774{
 775        struct ktermios old_termios;
 776
 777        mutex_lock(&tty->termios_mutex);
 778        old_termios =*(tty->termios);
 779        tty_encode_baud_rate(tty, baudrate, baudrate);
 780        tty->ops->set_termios(tty, &old_termios);
 781        mutex_unlock(&tty->termios_mutex);
 782}
 783
 784/*
 785 * Convert a string to a Metricom Address.
 786 */
 787
 788#define IS_RADIO_ADDRESS(p) (                                                 \
 789  isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
 790  (p)[4] == '-' &&                                                            \
 791  isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8])    )
 792
 793static int string_to_radio_address(MetricomAddress * addr, __u8 * p)
 794{
 795        if (!IS_RADIO_ADDRESS(p))
 796                return (1);
 797        addr->c[0] = 0;
 798        addr->c[1] = 0;
 799        addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
 800        addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
 801        addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
 802        addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
 803        return (0);
 804}
 805
 806/*
 807 * Convert a Metricom Address to a string.
 808 */
 809
 810static __u8 *radio_address_to_string(const MetricomAddress * addr,
 811                                     MetricomAddressString * p)
 812{
 813        sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3],
 814                addr->c[4], addr->c[5]);
 815        return (p->c);
 816}
 817
 818/*
 819 * Note: Must make sure sx_size is big enough to receive a stuffed
 820 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
 821 * big enough to receive a large radio neighbour list (currently 4K).
 822 */
 823
 824static int allocate_buffers(struct strip *strip_info, int mtu)
 825{
 826        struct net_device *dev = strip_info->dev;
 827        int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
 828        int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength;
 829        __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
 830        __u8 *s = kmalloc(sx_size, GFP_ATOMIC);
 831        __u8 *t = kmalloc(tx_size, GFP_ATOMIC);
 832        if (r && s && t) {
 833                strip_info->rx_buff = r;
 834                strip_info->sx_buff = s;
 835                strip_info->tx_buff = t;
 836                strip_info->sx_size = sx_size;
 837                strip_info->tx_size = tx_size;
 838                strip_info->mtu = dev->mtu = mtu;
 839                return (1);
 840        }
 841        kfree(r);
 842        kfree(s);
 843        kfree(t);
 844        return (0);
 845}
 846
 847/*
 848 * MTU has been changed by the IP layer. 
 849 * We could be in
 850 * an upcall from the tty driver, or in an ip packet queue.
 851 */
 852static int strip_change_mtu(struct net_device *dev, int new_mtu)
 853{
 854        struct strip *strip_info = netdev_priv(dev);
 855        int old_mtu = strip_info->mtu;
 856        unsigned char *orbuff = strip_info->rx_buff;
 857        unsigned char *osbuff = strip_info->sx_buff;
 858        unsigned char *otbuff = strip_info->tx_buff;
 859
 860        if (new_mtu > MAX_SEND_MTU) {
 861                printk(KERN_ERR
 862                       "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
 863                       strip_info->dev->name, MAX_SEND_MTU);
 864                return -EINVAL;
 865        }
 866
 867        spin_lock_bh(&strip_lock);
 868        if (!allocate_buffers(strip_info, new_mtu)) {
 869                printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
 870                       strip_info->dev->name);
 871                spin_unlock_bh(&strip_lock);
 872                return -ENOMEM;
 873        }
 874
 875        if (strip_info->sx_count) {
 876                if (strip_info->sx_count <= strip_info->sx_size)
 877                        memcpy(strip_info->sx_buff, osbuff,
 878                               strip_info->sx_count);
 879                else {
 880                        strip_info->discard = strip_info->sx_count;
 881                        strip_info->rx_over_errors++;
 882                }
 883        }
 884
 885        if (strip_info->tx_left) {
 886                if (strip_info->tx_left <= strip_info->tx_size)
 887                        memcpy(strip_info->tx_buff, strip_info->tx_head,
 888                               strip_info->tx_left);
 889                else {
 890                        strip_info->tx_left = 0;
 891                        strip_info->tx_dropped++;
 892                }
 893        }
 894        strip_info->tx_head = strip_info->tx_buff;
 895        spin_unlock_bh(&strip_lock);
 896
 897        printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
 898               strip_info->dev->name, old_mtu, strip_info->mtu);
 899
 900        kfree(orbuff);
 901        kfree(osbuff);
 902        kfree(otbuff);
 903        return 0;
 904}
 905
 906static void strip_unlock(struct strip *strip_info)
 907{
 908        /*
 909         * Set the timer to go off in one second.
 910         */
 911        strip_info->idle_timer.expires = jiffies + 1 * HZ;
 912        add_timer(&strip_info->idle_timer);
 913        netif_wake_queue(strip_info->dev);
 914}
 915
 916
 917
 918/*
 919 * If the time is in the near future, time_delta prints the number of
 920 * seconds to go into the buffer and returns the address of the buffer.
 921 * If the time is not in the near future, it returns the address of the
 922 * string "Not scheduled" The buffer must be long enough to contain the
 923 * ascii representation of the number plus 9 charactes for the " seconds"
 924 * and the null character.
 925 */
 926#ifdef CONFIG_PROC_FS
 927static char *time_delta(char buffer[], long time)
 928{
 929        time -= jiffies;
 930        if (time > LongTime / 2)
 931                return ("Not scheduled");
 932        if (time < 0)
 933                time = 0;        /* Don't print negative times */
 934        sprintf(buffer, "%ld seconds", time / HZ);
 935        return (buffer);
 936}
 937
 938/* get Nth element of the linked list */
 939static struct strip *strip_get_idx(loff_t pos) 
 940{
 941        struct strip *str;
 942        int i = 0;
 943
 944        list_for_each_entry_rcu(str, &strip_list, list) {
 945                if (pos == i)
 946                        return str;
 947                ++i;
 948        }
 949        return NULL;
 950}
 951
 952static void *strip_seq_start(struct seq_file *seq, loff_t *pos)
 953{
 954        rcu_read_lock();
 955        return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN;
 956}
 957
 958static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 959{
 960        struct list_head *l;
 961        struct strip *s;
 962
 963        ++*pos;
 964        if (v == SEQ_START_TOKEN)
 965                return strip_get_idx(1);
 966
 967        s = v;
 968        l = &s->list;
 969        list_for_each_continue_rcu(l, &strip_list) {
 970                return list_entry(l, struct strip, list);
 971        }
 972        return NULL;
 973}
 974
 975static void strip_seq_stop(struct seq_file *seq, void *v)
 976{
 977        rcu_read_unlock();
 978}
 979
 980static void strip_seq_neighbours(struct seq_file *seq,
 981                           const MetricomNodeTable * table,
 982                           const char *title)
 983{
 984        /* We wrap this in a do/while loop, so if the table changes */
 985        /* while we're reading it, we just go around and try again. */
 986        struct timeval t;
 987
 988        do {
 989                int i;
 990                t = table->timestamp;
 991                if (table->num_nodes)
 992                        seq_printf(seq, "\n %s\n", title);
 993                for (i = 0; i < table->num_nodes; i++) {
 994                        MetricomNode node;
 995
 996                        spin_lock_bh(&strip_lock);
 997                        node = table->node[i];
 998                        spin_unlock_bh(&strip_lock);
 999                        seq_printf(seq, "  %s\n", node.c);
1000                }
1001        } while (table->timestamp.tv_sec != t.tv_sec
1002                 || table->timestamp.tv_usec != t.tv_usec);
1003}
1004
1005/*
1006 * This function prints radio status information via the seq_file
1007 * interface.  The interface takes care of buffer size and over
1008 * run issues. 
1009 *
1010 * The buffer in seq_file is PAGESIZE (4K) 
1011 * so this routine should never print more or it will get truncated.
1012 * With the maximum of 32 portables and 32 poletops
1013 * reported, the routine outputs 3107 bytes into the buffer.
1014 */
1015static void strip_seq_status_info(struct seq_file *seq, 
1016                                  const struct strip *strip_info)
1017{
1018        char temp[32];
1019        MetricomAddressString addr_string;
1020
1021        /* First, we must copy all of our data to a safe place, */
1022        /* in case a serial interrupt comes in and changes it.  */
1023        int tx_left = strip_info->tx_left;
1024        unsigned long rx_average_pps = strip_info->rx_average_pps;
1025        unsigned long tx_average_pps = strip_info->tx_average_pps;
1026        unsigned long sx_average_pps = strip_info->sx_average_pps;
1027        int working = strip_info->working;
1028        int firmware_level = strip_info->firmware_level;
1029        long watchdog_doprobe = strip_info->watchdog_doprobe;
1030        long watchdog_doreset = strip_info->watchdog_doreset;
1031        long gratuitous_arp = strip_info->gratuitous_arp;
1032        long arp_interval = strip_info->arp_interval;
1033        FirmwareVersion firmware_version = strip_info->firmware_version;
1034        SerialNumber serial_number = strip_info->serial_number;
1035        BatteryVoltage battery_voltage = strip_info->battery_voltage;
1036        char *if_name = strip_info->dev->name;
1037        MetricomAddress true_dev_addr = strip_info->true_dev_addr;
1038        MetricomAddress dev_dev_addr =
1039            *(MetricomAddress *) strip_info->dev->dev_addr;
1040        int manual_dev_addr = strip_info->manual_dev_addr;
1041#ifdef EXT_COUNTERS
1042        unsigned long rx_bytes = strip_info->rx_bytes;
1043        unsigned long tx_bytes = strip_info->tx_bytes;
1044        unsigned long rx_rbytes = strip_info->rx_rbytes;
1045        unsigned long tx_rbytes = strip_info->tx_rbytes;
1046        unsigned long rx_sbytes = strip_info->rx_sbytes;
1047        unsigned long tx_sbytes = strip_info->tx_sbytes;
1048        unsigned long rx_ebytes = strip_info->rx_ebytes;
1049        unsigned long tx_ebytes = strip_info->tx_ebytes;
1050#endif
1051
1052        seq_printf(seq, "\nInterface name\t\t%s\n", if_name);
1053        seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No");
1054        radio_address_to_string(&true_dev_addr, &addr_string);
1055        seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c);
1056        if (manual_dev_addr) {
1057                radio_address_to_string(&dev_dev_addr, &addr_string);
1058                seq_printf(seq, " Device address:\t%s\n", addr_string.c);
1059        }
1060        seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" :
1061                     !firmware_level ? "Should be upgraded" :
1062                     firmware_version.c);
1063        if (firmware_level >= ChecksummedMessages)
1064                seq_printf(seq, " (Checksums Enabled)");
1065        seq_printf(seq, "\n");
1066        seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c);
1067        seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c);
1068        seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left);
1069        seq_printf(seq, " Receive packet rate:   %ld packets per second\n",
1070                     rx_average_pps / 8);
1071        seq_printf(seq, " Transmit packet rate:  %ld packets per second\n",
1072                     tx_average_pps / 8);
1073        seq_printf(seq, " Sent packet rate:      %ld packets per second\n",
1074                     sx_average_pps / 8);
1075        seq_printf(seq, " Next watchdog probe:\t%s\n",
1076                     time_delta(temp, watchdog_doprobe));
1077        seq_printf(seq, " Next watchdog reset:\t%s\n",
1078                     time_delta(temp, watchdog_doreset));
1079        seq_printf(seq, " Next gratuitous ARP:\t");
1080
1081        if (!memcmp
1082            (strip_info->dev->dev_addr, zero_address.c,
1083             sizeof(zero_address)))
1084                seq_printf(seq, "Disabled\n");
1085        else {
1086                seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp));
1087                seq_printf(seq, " Next ARP interval:\t%ld seconds\n",
1088                             JIFFIE_TO_SEC(arp_interval));
1089        }
1090
1091        if (working) {
1092#ifdef EXT_COUNTERS
1093                seq_printf(seq, "\n");
1094                seq_printf(seq,
1095                             " Total bytes:         \trx:\t%lu\ttx:\t%lu\n",
1096                             rx_bytes, tx_bytes);
1097                seq_printf(seq,
1098                             "  thru radio:         \trx:\t%lu\ttx:\t%lu\n",
1099                             rx_rbytes, tx_rbytes);
1100                seq_printf(seq,
1101                             "  thru serial port:   \trx:\t%lu\ttx:\t%lu\n",
1102                             rx_sbytes, tx_sbytes);
1103                seq_printf(seq,
1104                             " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n",
1105                             rx_ebytes, tx_ebytes);
1106#endif
1107                strip_seq_neighbours(seq, &strip_info->poletops,
1108                                        "Poletops:");
1109                strip_seq_neighbours(seq, &strip_info->portables,
1110                                        "Portables:");
1111        }
1112}
1113
1114/*
1115 * This function is exports status information from the STRIP driver through
1116 * the /proc file system.
1117 */
1118static int strip_seq_show(struct seq_file *seq, void *v)
1119{
1120        if (v == SEQ_START_TOKEN)
1121                seq_printf(seq, "strip_version: %s\n", StripVersion);
1122        else
1123                strip_seq_status_info(seq, (const struct strip *)v);
1124        return 0;
1125}
1126
1127
1128static struct seq_operations strip_seq_ops = {
1129        .start = strip_seq_start,
1130        .next  = strip_seq_next,
1131        .stop  = strip_seq_stop,
1132        .show  = strip_seq_show,
1133};
1134
1135static int strip_seq_open(struct inode *inode, struct file *file)
1136{
1137        return seq_open(file, &strip_seq_ops);
1138}
1139
1140static const struct file_operations strip_seq_fops = {
1141        .owner         = THIS_MODULE,
1142        .open    = strip_seq_open,
1143        .read    = seq_read,
1144        .llseek  = seq_lseek,
1145        .release = seq_release,
1146};
1147#endif
1148
1149
1150
1151/************************************************************************/
1152/* Sending routines                                                        */
1153
1154static void ResetRadio(struct strip *strip_info)
1155{
1156        struct tty_struct *tty = strip_info->tty;
1157        static const char init[] = "ate0q1dt**starmode\r**";
1158        StringDescriptor s = { init, sizeof(init) - 1 };
1159
1160        /* 
1161         * If the radio isn't working anymore,
1162         * we should clear the old status information.
1163         */
1164        if (strip_info->working) {
1165                printk(KERN_INFO "%s: No response: Resetting radio.\n",
1166                       strip_info->dev->name);
1167                strip_info->firmware_version.c[0] = '\0';
1168                strip_info->serial_number.c[0] = '\0';
1169                strip_info->battery_voltage.c[0] = '\0';
1170                strip_info->portables.num_nodes = 0;
1171                do_gettimeofday(&strip_info->portables.timestamp);
1172                strip_info->poletops.num_nodes = 0;
1173                do_gettimeofday(&strip_info->poletops.timestamp);
1174        }
1175
1176        strip_info->pps_timer = jiffies;
1177        strip_info->rx_pps_count = 0;
1178        strip_info->tx_pps_count = 0;
1179        strip_info->sx_pps_count = 0;
1180        strip_info->rx_average_pps = 0;
1181        strip_info->tx_average_pps = 0;
1182        strip_info->sx_average_pps = 0;
1183
1184        /* Mark radio address as unknown */
1185        *(MetricomAddress *) & strip_info->true_dev_addr = zero_address;
1186        if (!strip_info->manual_dev_addr)
1187                *(MetricomAddress *) strip_info->dev->dev_addr =
1188                    zero_address;
1189        strip_info->working = FALSE;
1190        strip_info->firmware_level = NoStructure;
1191        strip_info->next_command = CompatibilityCommand;
1192        strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1193        strip_info->watchdog_doreset = jiffies + 1 * HZ;
1194
1195        /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1196        if (strip_info->user_baud > 38400) {
1197                /*
1198                 * Subtle stuff: Pay attention :-)
1199                 * If the serial port is currently at the user's selected (>38.4) rate,
1200                 * then we temporarily switch to 19.2 and issue the ATS304 command
1201                 * to tell the radio to switch to the user's selected rate.
1202                 * If the serial port is not currently at that rate, that means we just
1203                 * issued the ATS304 command last time through, so this time we restore
1204                 * the user's selected rate and issue the normal starmode reset string.
1205                 */
1206                if (strip_info->user_baud == tty_get_baud_rate(tty)) {
1207                        static const char b0[] = "ate0q1s304=57600\r";
1208                        static const char b1[] = "ate0q1s304=115200\r";
1209                        static const StringDescriptor baudstring[2] =
1210                            { {b0, sizeof(b0) - 1}
1211                        , {b1, sizeof(b1) - 1}
1212                        };
1213                        set_baud(tty, 19200);
1214                        if (strip_info->user_baud == 57600)
1215                                s = baudstring[0];
1216                        else if (strip_info->user_baud == 115200)
1217                                s = baudstring[1];
1218                        else
1219                                s = baudstring[1];        /* For now */
1220                } else
1221                        set_baud(tty, strip_info->user_baud);
1222        }
1223
1224        tty->ops->write(tty, s.string, s.length);
1225#ifdef EXT_COUNTERS
1226        strip_info->tx_ebytes += s.length;
1227#endif
1228}
1229
1230/*
1231 * Called by the driver when there's room for more data.  If we have
1232 * more packets to send, we send them here.
1233 */
1234
1235static void strip_write_some_more(struct tty_struct *tty)
1236{
1237        struct strip *strip_info = (struct strip *) tty->disc_data;
1238
1239        /* First make sure we're connected. */
1240        if (!strip_info || strip_info->magic != STRIP_MAGIC ||
1241            !netif_running(strip_info->dev))
1242                return;
1243
1244        if (strip_info->tx_left > 0) {
1245                int num_written =
1246                    tty->ops->write(tty, strip_info->tx_head,
1247                                      strip_info->tx_left);
1248                strip_info->tx_left -= num_written;
1249                strip_info->tx_head += num_written;
1250#ifdef EXT_COUNTERS
1251                strip_info->tx_sbytes += num_written;
1252#endif
1253        } else {                /* Else start transmission of another packet */
1254
1255                tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
1256                strip_unlock(strip_info);
1257        }
1258}
1259
1260static __u8 *add_checksum(__u8 * buffer, __u8 * end)
1261{
1262        __u16 sum = 0;
1263        __u8 *p = buffer;
1264        while (p < end)
1265                sum += *p++;
1266        end[3] = hextable[sum & 0xF];
1267        sum >>= 4;
1268        end[2] = hextable[sum & 0xF];
1269        sum >>= 4;
1270        end[1] = hextable[sum & 0xF];
1271        sum >>= 4;
1272        end[0] = hextable[sum & 0xF];
1273        return (end + 4);
1274}
1275
1276static unsigned char *strip_make_packet(unsigned char *buffer,
1277                                        struct strip *strip_info,
1278                                        struct sk_buff *skb)
1279{
1280        __u8 *ptr = buffer;
1281        __u8 *stuffstate = NULL;
1282        STRIP_Header *header = (STRIP_Header *) skb->data;
1283        MetricomAddress haddr = header->dst_addr;
1284        int len = skb->len - sizeof(STRIP_Header);
1285        MetricomKey key;
1286
1287        /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */
1288
1289        if (header->protocol == htons(ETH_P_IP))
1290                key = SIP0Key;
1291        else if (header->protocol == htons(ETH_P_ARP))
1292                key = ARP0Key;
1293        else {
1294                printk(KERN_ERR
1295                       "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1296                       strip_info->dev->name, ntohs(header->protocol));
1297                return (NULL);
1298        }
1299
1300        if (len > strip_info->mtu) {
1301                printk(KERN_ERR
1302                       "%s: Dropping oversized transmit packet: %d bytes\n",
1303                       strip_info->dev->name, len);
1304                return (NULL);
1305        }
1306
1307        /*
1308         * If we're sending to ourselves, discard the packet.
1309         * (Metricom radios choke if they try to send a packet to their own address.)
1310         */
1311        if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) {
1312                printk(KERN_ERR "%s: Dropping packet addressed to self\n",
1313                       strip_info->dev->name);
1314                return (NULL);
1315        }
1316
1317        /*
1318         * If this is a broadcast packet, send it to our designated Metricom
1319         * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1320         */
1321        if (haddr.c[0] == 0xFF) {
1322                __be32 brd = 0;
1323                struct in_device *in_dev;
1324
1325                rcu_read_lock();
1326                in_dev = __in_dev_get_rcu(strip_info->dev);
1327                if (in_dev == NULL) {
1328                        rcu_read_unlock();
1329                        return NULL;
1330                }
1331                if (in_dev->ifa_list)
1332                        brd = in_dev->ifa_list->ifa_broadcast;
1333                rcu_read_unlock();
1334
1335                /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1336                if (!arp_query(haddr.c, brd, strip_info->dev)) {
1337                        printk(KERN_ERR
1338                               "%s: Unable to send packet (no broadcast hub configured)\n",
1339                               strip_info->dev->name);
1340                        return (NULL);
1341                }
1342                /*
1343                 * If we are the broadcast hub, don't bother sending to ourselves.
1344                 * (Metricom radios choke if they try to send a packet to their own address.)
1345                 */
1346                if (!memcmp
1347                    (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
1348                        return (NULL);
1349        }
1350
1351        *ptr++ = 0x0D;
1352        *ptr++ = '*';
1353        *ptr++ = hextable[haddr.c[2] >> 4];
1354        *ptr++ = hextable[haddr.c[2] & 0xF];
1355        *ptr++ = hextable[haddr.c[3] >> 4];
1356        *ptr++ = hextable[haddr.c[3] & 0xF];
1357        *ptr++ = '-';
1358        *ptr++ = hextable[haddr.c[4] >> 4];
1359        *ptr++ = hextable[haddr.c[4] & 0xF];
1360        *ptr++ = hextable[haddr.c[5] >> 4];
1361        *ptr++ = hextable[haddr.c[5] & 0xF];
1362        *ptr++ = '*';
1363        *ptr++ = key.c[0];
1364        *ptr++ = key.c[1];
1365        *ptr++ = key.c[2];
1366        *ptr++ = key.c[3];
1367
1368        ptr =
1369            StuffData(skb->data + sizeof(STRIP_Header), len, ptr,
1370                      &stuffstate);
1371
1372        if (strip_info->firmware_level >= ChecksummedMessages)
1373                ptr = add_checksum(buffer + 1, ptr);
1374
1375        *ptr++ = 0x0D;
1376        return (ptr);
1377}
1378
1379static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1380{
1381        MetricomAddress haddr;
1382        unsigned char *ptr = strip_info->tx_buff;
1383        int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0;
1384        int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0
1385            && !doreset;
1386        __be32 addr, brd;
1387
1388        /*
1389         * 1. If we have a packet, encapsulate it and put it in the buffer
1390         */
1391        if (skb) {
1392                char *newptr = strip_make_packet(ptr, strip_info, skb);
1393                strip_info->tx_pps_count++;
1394                if (!newptr)
1395                        strip_info->tx_dropped++;
1396                else {
1397                        ptr = newptr;
1398                        strip_info->sx_pps_count++;
1399                        strip_info->tx_packets++;        /* Count another successful packet */
1400#ifdef EXT_COUNTERS
1401                        strip_info->tx_bytes += skb->len;
1402                        strip_info->tx_rbytes += ptr - strip_info->tx_buff;
1403#endif
1404                        /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */
1405                        /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */
1406                }
1407        }
1408
1409        /*
1410         * 2. If it is time for another tickle, tack it on, after the packet
1411         */
1412        if (doprobe) {
1413                StringDescriptor ts = CommandString[strip_info->next_command];
1414#if TICKLE_TIMERS
1415                {
1416                        struct timeval tv;
1417                        do_gettimeofday(&tv);
1418                        printk(KERN_INFO "**** Sending tickle string %d      at %02d.%06d\n",
1419                               strip_info->next_command, tv.tv_sec % 100,
1420                               tv.tv_usec);
1421                }
1422#endif
1423                if (ptr == strip_info->tx_buff)
1424                        *ptr++ = 0x0D;
1425
1426                *ptr++ = '*';        /* First send "**" to provoke an error message */
1427                *ptr++ = '*';
1428
1429                /* Then add the command */
1430                memcpy(ptr, ts.string, ts.length);
1431
1432                /* Add a checksum ? */
1433                if (strip_info->firmware_level < ChecksummedMessages)
1434                        ptr += ts.length;
1435                else
1436                        ptr = add_checksum(ptr, ptr + ts.length);
1437
1438                *ptr++ = 0x0D;        /* Terminate the command with a <CR> */
1439
1440                /* Cycle to next periodic command? */
1441                if (strip_info->firmware_level >= StructuredMessages)
1442                        if (++strip_info->next_command >=
1443                            ARRAY_SIZE(CommandString))
1444                                strip_info->next_command = 0;
1445#ifdef EXT_COUNTERS
1446                strip_info->tx_ebytes += ts.length;
1447#endif
1448                strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1449                strip_info->watchdog_doreset = jiffies + 1 * HZ;
1450                /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */
1451        }
1452
1453        /*
1454         * 3. Set up the strip_info ready to send the data (if any).
1455         */
1456        strip_info->tx_head = strip_info->tx_buff;
1457        strip_info->tx_left = ptr - strip_info->tx_buff;
1458        strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP);
1459
1460        /*
1461         * 4. Debugging check to make sure we're not overflowing the buffer.
1462         */
1463        if (strip_info->tx_size - strip_info->tx_left < 20)
1464                printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n",
1465                       strip_info->dev->name, strip_info->tx_left,
1466                       strip_info->tx_size - strip_info->tx_left);
1467
1468        /*
1469         * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1470         * the buffer, strip_write_some_more will send it after the reset has finished
1471         */
1472        if (doreset) {
1473                ResetRadio(strip_info);
1474                return;
1475        }
1476
1477        if (1) {
1478                struct in_device *in_dev;
1479
1480                brd = addr = 0;
1481                rcu_read_lock();
1482                in_dev = __in_dev_get_rcu(strip_info->dev);
1483                if (in_dev) {
1484                        if (in_dev->ifa_list) {
1485                                brd = in_dev->ifa_list->ifa_broadcast;
1486                                addr = in_dev->ifa_list->ifa_local;
1487                        }
1488                }
1489                rcu_read_unlock();
1490        }
1491
1492
1493        /*
1494         * 6. If it is time for a periodic ARP, queue one up to be sent.
1495         * We only do this if:
1496         *  1. The radio is working
1497         *  2. It's time to send another periodic ARP
1498         *  3. We really know what our address is (and it is not manually set to zero)
1499         *  4. We have a designated broadcast address configured
1500         * If we queue up an ARP packet when we don't have a designated broadcast
1501         * address configured, then the packet will just have to be discarded in
1502         * strip_make_packet. This is not fatal, but it causes misleading information
1503         * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1504         * being sent, when in fact they are not, because they are all being dropped
1505         * in the strip_make_packet routine.
1506         */
1507        if (strip_info->working
1508            && (long) jiffies - strip_info->gratuitous_arp >= 0
1509            && memcmp(strip_info->dev->dev_addr, zero_address.c,
1510                      sizeof(zero_address))
1511            && arp_query(haddr.c, brd, strip_info->dev)) {
1512                /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1513                   strip_info->dev->name, strip_info->arp_interval / HZ); */
1514                strip_info->gratuitous_arp =
1515                    jiffies + strip_info->arp_interval;
1516                strip_info->arp_interval *= 2;
1517                if (strip_info->arp_interval > MaxARPInterval)
1518                        strip_info->arp_interval = MaxARPInterval;
1519                if (addr)
1520                        arp_send(ARPOP_REPLY, ETH_P_ARP, addr,        /* Target address of ARP packet is our address */
1521                                 strip_info->dev,        /* Device to send packet on */
1522                                 addr,        /* Source IP address this ARP packet comes from */
1523                                 NULL,        /* Destination HW address is NULL (broadcast it) */
1524                                 strip_info->dev->dev_addr,        /* Source HW address is our HW address */
1525                                 strip_info->dev->dev_addr);        /* Target HW address is our HW address (redundant) */
1526        }
1527
1528        /*
1529         * 7. All ready. Start the transmission
1530         */
1531        strip_write_some_more(strip_info->tty);
1532}
1533
1534/* Encapsulate a datagram and kick it into a TTY queue. */
1535static int strip_xmit(struct sk_buff *skb, struct net_device *dev)
1536{
1537        struct strip *strip_info = netdev_priv(dev);
1538
1539        if (!netif_running(dev)) {
1540                printk(KERN_ERR "%s: xmit call when iface is down\n",
1541                       dev->name);
1542                return (1);
1543        }
1544
1545        netif_stop_queue(dev);
1546
1547        del_timer(&strip_info->idle_timer);
1548
1549
1550        if (time_after(jiffies, strip_info->pps_timer + HZ)) {
1551                unsigned long t = jiffies - strip_info->pps_timer;
1552                unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t / 2) / t;
1553                unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t / 2) / t;
1554                unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t / 2) / t;
1555
1556                strip_info->pps_timer = jiffies;
1557                strip_info->rx_pps_count = 0;
1558                strip_info->tx_pps_count = 0;
1559                strip_info->sx_pps_count = 0;
1560
1561                strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
1562                strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
1563                strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
1564
1565                if (rx_pps_count / 8 >= 10)
1566                        printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
1567                               strip_info->dev->name, rx_pps_count / 8);
1568                if (tx_pps_count / 8 >= 10)
1569                        printk(KERN_INFO "%s: WARNING: Tx        %ld packets per second.\n",
1570                               strip_info->dev->name, tx_pps_count / 8);
1571                if (sx_pps_count / 8 >= 10)
1572                        printk(KERN_INFO "%s: WARNING: Sending   %ld packets per second.\n",
1573                               strip_info->dev->name, sx_pps_count / 8);
1574        }
1575
1576        spin_lock_bh(&strip_lock);
1577
1578        strip_send(strip_info, skb);
1579
1580        spin_unlock_bh(&strip_lock);
1581
1582        if (skb)
1583                dev_kfree_skb(skb);
1584        return 0;
1585}
1586
1587/*
1588 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1589 * to send for an extended period of time, the watchdog processing still gets
1590 * done to ensure that the radio stays in Starmode
1591 */
1592
1593static void strip_IdleTask(unsigned long parameter)
1594{
1595        strip_xmit(NULL, (struct net_device *) parameter);
1596}
1597
1598/*
1599 * Create the MAC header for an arbitrary protocol layer
1600 *
1601 * saddr!=NULL        means use this specific address (n/a for Metricom)
1602 * saddr==NULL        means use default device source address
1603 * daddr!=NULL        means use this destination address
1604 * daddr==NULL        means leave destination address alone
1605 *                 (e.g. unresolved arp -- kernel will call
1606 *                 rebuild_header later to fill in the address)
1607 */
1608
1609static int strip_header(struct sk_buff *skb, struct net_device *dev,
1610                        unsigned short type, const void *daddr,
1611                        const void *saddr, unsigned len)
1612{
1613        struct strip *strip_info = netdev_priv(dev);
1614        STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header));
1615
1616        /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1617           type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */
1618
1619        header->src_addr = strip_info->true_dev_addr;
1620        header->protocol = htons(type);
1621
1622        /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */
1623
1624        if (!daddr)
1625                return (-dev->hard_header_len);
1626
1627        header->dst_addr = *(MetricomAddress *) daddr;
1628        return (dev->hard_header_len);
1629}
1630
1631/*
1632 * Rebuild the MAC header. This is called after an ARP
1633 * (or in future other address resolution) has completed on this
1634 * sk_buff. We now let ARP fill in the other fields.
1635 * I think this should return zero if packet is ready to send,
1636 * or non-zero if it needs more time to do an address lookup
1637 */
1638
1639static int strip_rebuild_header(struct sk_buff *skb)
1640{
1641#ifdef CONFIG_INET
1642        STRIP_Header *header = (STRIP_Header *) skb->data;
1643
1644        /* Arp find returns zero if if knows the address, */
1645        /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1646        return arp_find(header->dst_addr.c, skb) ? 1 : 0;
1647#else
1648        return 0;
1649#endif
1650}
1651
1652
1653/************************************************************************/
1654/* Receiving routines                                                        */
1655
1656/*
1657 * This function parses the response to the ATS300? command,
1658 * extracting the radio version and serial number.
1659 */
1660static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end)
1661{
1662        __u8 *p, *value_begin, *value_end;
1663        int len;
1664
1665        /* Determine the beginning of the second line of the payload */
1666        p = ptr;
1667        while (p < end && *p != 10)
1668                p++;
1669        if (p >= end)
1670                return;
1671        p++;
1672        value_begin = p;
1673
1674        /* Determine the end of line */
1675        while (p < end && *p != 10)
1676                p++;
1677        if (p >= end)
1678                return;
1679        value_end = p;
1680        p++;
1681
1682        len = value_end - value_begin;
1683        len = min_t(int, len, sizeof(FirmwareVersion) - 1);
1684        if (strip_info->firmware_version.c[0] == 0)
1685                printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
1686                       strip_info->dev->name, len, value_begin);
1687        sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
1688
1689        /* Look for the first colon */
1690        while (p < end && *p != ':')
1691                p++;
1692        if (p >= end)
1693                return;
1694        /* Skip over the space */
1695        p += 2;
1696        len = sizeof(SerialNumber) - 1;
1697        if (p + len <= end) {
1698                sprintf(strip_info->serial_number.c, "%.*s", len, p);
1699        } else {
1700                printk(KERN_DEBUG
1701                       "STRIP: radio serial number shorter (%zd) than expected (%d)\n",
1702                       end - p, len);
1703        }
1704}
1705
1706/*
1707 * This function parses the response to the ATS325? command,
1708 * extracting the radio battery voltage.
1709 */
1710static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end)
1711{
1712        int len;
1713
1714        len = sizeof(BatteryVoltage) - 1;
1715        if (ptr + len <= end) {
1716                sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
1717        } else {
1718                printk(KERN_DEBUG
1719                       "STRIP: radio voltage string shorter (%zd) than expected (%d)\n",
1720                       end - ptr, len);
1721        }
1722}
1723
1724/*
1725 * This function parses the responses to the AT~LA and ATS311 commands,
1726 * which list the radio's neighbours.
1727 */
1728static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end)
1729{
1730        table->num_nodes = 0;
1731        while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) {
1732                MetricomNode *node = &table->node[table->num_nodes++];
1733                char *dst = node->c, *limit = dst + sizeof(*node) - 1;
1734                while (ptr < end && *ptr <= 32)
1735                        ptr++;
1736                while (ptr < end && dst < limit && *ptr != 10)
1737                        *dst++ = *ptr++;
1738                *dst++ = 0;
1739                while (ptr < end && ptr[-1] != 10)
1740                        ptr++;
1741        }
1742        do_gettimeofday(&table->timestamp);
1743}
1744
1745static int get_radio_address(struct strip *strip_info, __u8 * p)
1746{
1747        MetricomAddress addr;
1748
1749        if (string_to_radio_address(&addr, p))
1750                return (1);
1751
1752        /* See if our radio address has changed */
1753        if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) {
1754                MetricomAddressString addr_string;
1755                radio_address_to_string(&addr, &addr_string);
1756                printk(KERN_INFO "%s: Radio address = %s\n",
1757                       strip_info->dev->name, addr_string.c);
1758                strip_info->true_dev_addr = addr;
1759                if (!strip_info->manual_dev_addr)
1760                        *(MetricomAddress *) strip_info->dev->dev_addr =
1761                            addr;
1762                /* Give the radio a few seconds to get its head straight, then send an arp */
1763                strip_info->gratuitous_arp = jiffies + 15 * HZ;
1764                strip_info->arp_interval = 1 * HZ;
1765        }
1766        return (0);
1767}
1768
1769static int verify_checksum(struct strip *strip_info)
1770{
1771        __u8 *p = strip_info->sx_buff;
1772        __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
1773        u_short sum =
1774            (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
1775            (READHEX16(end[2]) << 4) | (READHEX16(end[3]));
1776        while (p < end)
1777                sum -= *p++;
1778        if (sum == 0 && strip_info->firmware_level == StructuredMessages) {
1779                strip_info->firmware_level = ChecksummedMessages;
1780                printk(KERN_INFO "%s: Radio provides message checksums\n",
1781                       strip_info->dev->name);
1782        }
1783        return (sum == 0);
1784}
1785
1786static void RecvErr(char *msg, struct strip *strip_info)
1787{
1788        __u8 *ptr = strip_info->sx_buff;
1789        __u8 *end = strip_info->sx_buff + strip_info->sx_count;
1790        DumpData(msg, strip_info, ptr, end);
1791        strip_info->rx_errors++;
1792}
1793
1794static void RecvErr_Message(struct strip *strip_info, __u8 * sendername,
1795                            const __u8 * msg, u_long len)
1796{
1797        if (has_prefix(msg, len, "001")) {        /* Not in StarMode! */
1798                RecvErr("Error Msg:", strip_info);
1799                printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
1800                       strip_info->dev->name, sendername);
1801        }
1802
1803        else if (has_prefix(msg, len, "002")) {        /* Remap handle */
1804                /* We ignore "Remap handle" messages for now */
1805        }
1806
1807        else if (has_prefix(msg, len, "003")) {        /* Can't resolve name */
1808                RecvErr("Error Msg:", strip_info);
1809                printk(KERN_INFO "%s: Destination radio name is unknown\n",
1810                       strip_info->dev->name);
1811        }
1812
1813        else if (has_prefix(msg, len, "004")) {        /* Name too small or missing */
1814                strip_info->watchdog_doreset = jiffies + LongTime;
1815#if TICKLE_TIMERS
1816                {
1817                        struct timeval tv;
1818                        do_gettimeofday(&tv);
1819                        printk(KERN_INFO
1820                               "**** Got ERR_004 response         at %02d.%06d\n",
1821                               tv.tv_sec % 100, tv.tv_usec);
1822                }
1823#endif
1824                if (!strip_info->working) {
1825                        strip_info->working = TRUE;
1826                        printk(KERN_INFO "%s: Radio now in starmode\n",
1827                               strip_info->dev->name);
1828                        /*
1829                         * If the radio has just entered a working state, we should do our first
1830                         * probe ASAP, so that we find out our radio address etc. without delay.
1831                         */
1832                        strip_info->watchdog_doprobe = jiffies;
1833                }
1834                if (strip_info->firmware_level == NoStructure && sendername) {
1835                        strip_info->firmware_level = StructuredMessages;
1836                        strip_info->next_command = 0;        /* Try to enable checksums ASAP */
1837                        printk(KERN_INFO
1838                               "%s: Radio provides structured messages\n",
1839                               strip_info->dev->name);
1840                }
1841                if (strip_info->firmware_level >= StructuredMessages) {
1842                        /*
1843                         * If this message has a valid checksum on the end, then the call to verify_checksum
1844                         * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1845                         * code from verify_checksum is ignored here.)
1846                         */
1847                        verify_checksum(strip_info);
1848                        /*
1849                         * If the radio has structured messages but we don't yet have all our information about it,
1850                         * we should do probes without delay, until we have gathered all the information
1851                         */
1852                        if (!GOT_ALL_RADIO_INFO(strip_info))
1853                                strip_info->watchdog_doprobe = jiffies;
1854                }
1855        }
1856
1857        else if (has_prefix(msg, len, "005"))        /* Bad count specification */
1858                RecvErr("Error Msg:", strip_info);
1859
1860        else if (has_prefix(msg, len, "006"))        /* Header too big */
1861                RecvErr("Error Msg:", strip_info);
1862
1863        else if (has_prefix(msg, len, "007")) {        /* Body too big */
1864                RecvErr("Error Msg:", strip_info);
1865                printk(KERN_ERR
1866                       "%s: Error! Packet size too big for radio.\n",
1867                       strip_info->dev->name);
1868        }
1869
1870        else if (has_prefix(msg, len, "008")) {        /* Bad character in name */
1871                RecvErr("Error Msg:", strip_info);
1872                printk(KERN_ERR
1873                       "%s: Radio name contains illegal character\n",
1874                       strip_info->dev->name);
1875        }
1876
1877        else if (has_prefix(msg, len, "009"))        /* No count or line terminator */
1878                RecvErr("Error Msg:", strip_info);
1879
1880        else if (has_prefix(msg, len, "010"))        /* Invalid checksum */
1881                RecvErr("Error Msg:", strip_info);
1882
1883        else if (has_prefix(msg, len, "011"))        /* Checksum didn't match */
1884                RecvErr("Error Msg:", strip_info);
1885
1886        else if (has_prefix(msg, len, "012"))        /* Failed to transmit packet */
1887                RecvErr("Error Msg:", strip_info);
1888
1889        else
1890                RecvErr("Error Msg:", strip_info);
1891}
1892
1893static void process_AT_response(struct strip *strip_info, __u8 * ptr,
1894                                __u8 * end)
1895{
1896        u_long len;
1897        __u8 *p = ptr;
1898        while (p < end && p[-1] != 10)
1899                p++;                /* Skip past first newline character */
1900        /* Now ptr points to the AT command, and p points to the text of the response. */
1901        len = p - ptr;
1902
1903#if TICKLE_TIMERS
1904        {
1905                struct timeval tv;
1906                do_gettimeofday(&tv);
1907                printk(KERN_INFO "**** Got AT response %.7s      at %02d.%06d\n",
1908                       ptr, tv.tv_sec % 100, tv.tv_usec);
1909        }
1910#endif
1911
1912        if (has_prefix(ptr, len, "ATS300?"))
1913                get_radio_version(strip_info, p, end);
1914        else if (has_prefix(ptr, len, "ATS305?"))
1915                get_radio_address(strip_info, p);
1916        else if (has_prefix(ptr, len, "ATS311?"))
1917                get_radio_neighbours(&strip_info->poletops, p, end);
1918        else if (has_prefix(ptr, len, "ATS319=7"))
1919                verify_checksum(strip_info);
1920        else if (has_prefix(ptr, len, "ATS325?"))
1921                get_radio_voltage(strip_info, p, end);
1922        else if (has_prefix(ptr, len, "AT~LA"))
1923                get_radio_neighbours(&strip_info->portables, p, end);
1924        else
1925                RecvErr("Unknown AT Response:", strip_info);
1926}
1927
1928static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end)
1929{
1930        /* Currently we don't do anything with ACKs from the radio */
1931}
1932
1933static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end)
1934{
1935        if (ptr + 16 > end)
1936                RecvErr("Bad Info Msg:", strip_info);
1937}
1938
1939static struct net_device *get_strip_dev(struct strip *strip_info)
1940{
1941        /* If our hardware address is *manually set* to zero, and we know our */
1942        /* real radio hardware address, try to find another strip device that has been */
1943        /* manually set to that address that we can 'transfer ownership' of this packet to  */
1944        if (strip_info->manual_dev_addr &&
1945            !memcmp(strip_info->dev->dev_addr, zero_address.c,
1946                    sizeof(zero_address))
1947            && memcmp(&strip_info->true_dev_addr, zero_address.c,
1948                      sizeof(zero_address))) {
1949                struct net_device *dev;
1950                read_lock_bh(&dev_base_lock);
1951                for_each_netdev(&init_net, dev) {
1952                        if (dev->type == strip_info->dev->type &&
1953                            !memcmp(dev->dev_addr,
1954                                    &strip_info->true_dev_addr,
1955                                    sizeof(MetricomAddress))) {
1956                                printk(KERN_INFO
1957                                       "%s: Transferred packet ownership to %s.\n",
1958                                       strip_info->dev->name, dev->name);
1959                                read_unlock_bh(&dev_base_lock);
1960                                return (dev);
1961                        }
1962                }
1963                read_unlock_bh(&dev_base_lock);
1964        }
1965        return (strip_info->dev);
1966}
1967
1968/*
1969 * Send one completely decapsulated datagram to the next layer.
1970 */
1971
1972static void deliver_packet(struct strip *strip_info, STRIP_Header * header,
1973                           __u16 packetlen)
1974{
1975        struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
1976        if (!skb) {
1977                printk(KERN_ERR "%s: memory squeeze, dropping packet.\n",
1978                       strip_info->dev->name);
1979                strip_info->rx_dropped++;
1980        } else {
1981                memcpy(skb_put(skb, sizeof(STRIP_Header)), header,
1982                       sizeof(STRIP_Header));
1983                memcpy(skb_put(skb, packetlen), strip_info->rx_buff,
1984                       packetlen);
1985                skb->dev = get_strip_dev(strip_info);
1986                skb->protocol = header->protocol;
1987                skb_reset_mac_header(skb);
1988
1989                /* Having put a fake header on the front of the sk_buff for the */
1990                /* benefit of tools like tcpdump, skb_pull now 'consumes' that  */
1991                /* fake header before we hand the packet up to the next layer.  */
1992                skb_pull(skb, sizeof(STRIP_Header));
1993
1994                /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
1995                strip_info->rx_packets++;
1996                strip_info->rx_pps_count++;
1997#ifdef EXT_COUNTERS
1998                strip_info->rx_bytes += packetlen;
1999#endif
2000                skb->dev->last_rx = jiffies;
2001                netif_rx(skb);
2002        }
2003}
2004
2005static void process_IP_packet(struct strip *strip_info,
2006                              STRIP_Header * header, __u8 * ptr,
2007                              __u8 * end)
2008{
2009        __u16 packetlen;
2010
2011        /* Decode start of the IP packet header */
2012        ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
2013        if (!ptr) {
2014                RecvErr("IP Packet too short", strip_info);
2015                return;
2016        }
2017
2018        packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
2019
2020        if (packetlen > MAX_RECV_MTU) {
2021                printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
2022                       strip_info->dev->name, packetlen);
2023                strip_info->rx_dropped++;
2024                return;
2025        }
2026
2027        /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */
2028
2029        /* Decode remainder of the IP packet */
2030        ptr =
2031            UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4);
2032        if (!ptr) {
2033                RecvErr("IP Packet too short", strip_info);
2034                return;
2035        }
2036
2037        if (ptr < end) {
2038                RecvErr("IP Packet too long", strip_info);
2039                return;
2040        }
2041
2042        header->protocol = htons(ETH_P_IP);
2043
2044        deliver_packet(strip_info, header, packetlen);
2045}
2046
2047static void process_ARP_packet(struct strip *strip_info,
2048                               STRIP_Header * header, __u8 * ptr,
2049                               __u8 * end)
2050{
2051        __u16 packetlen;
2052        struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff;
2053
2054        /* Decode start of the ARP packet */
2055        ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
2056        if (!ptr) {
2057                RecvErr("ARP Packet too short", strip_info);
2058                return;
2059        }
2060
2061        packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
2062
2063        if (packetlen > MAX_RECV_MTU) {
2064                printk(KERN_INFO
2065                       "%s: Dropping oversized received ARP packet: %d bytes\n",
2066                       strip_info->dev->name, packetlen);
2067                strip_info->rx_dropped++;
2068                return;
2069        }
2070
2071        /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2072           strip_info->dev->name, packetlen,
2073           ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */
2074
2075        /* Decode remainder of the ARP packet */
2076        ptr =
2077            UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8);
2078        if (!ptr) {
2079                RecvErr("ARP Packet too short", strip_info);
2080                return;
2081        }
2082
2083        if (ptr < end) {
2084                RecvErr("ARP Packet too long", strip_info);
2085                return;
2086        }
2087
2088        header->protocol = htons(ETH_P_ARP);
2089
2090        deliver_packet(strip_info, header, packetlen);
2091}
2092
2093/*
2094 * process_text_message processes a <CR>-terminated block of data received
2095 * from the radio that doesn't begin with a '*' character. All normal
2096 * Starmode communication messages with the radio begin with a '*',
2097 * so any text that does not indicates a serial port error, a radio that
2098 * is in Hayes command mode instead of Starmode, or a radio with really
2099 * old firmware that doesn't frame its Starmode responses properly.
2100 */
2101static void process_text_message(struct strip *strip_info)
2102{
2103        __u8 *msg = strip_info->sx_buff;
2104        int len = strip_info->sx_count;
2105
2106        /* Check for anything that looks like it might be our radio name */
2107        /* (This is here for backwards compatibility with old firmware)  */
2108        if (len == 9 && get_radio_address(strip_info, msg) == 0)
2109                return;
2110
2111        if (text_equal(msg, len, "OK"))
2112                return;                /* Ignore 'OK' responses from prior commands */
2113        if (text_equal(msg, len, "ERROR"))
2114                return;                /* Ignore 'ERROR' messages */
2115        if (has_prefix(msg, len, "ate0q1"))
2116                return;                /* Ignore character echo back from the radio */
2117
2118        /* Catch other error messages */
2119        /* (This is here for backwards compatibility with old firmware) */
2120        if (has_prefix(msg, len, "ERR_")) {
2121                RecvErr_Message(strip_info, NULL, &msg[4], len - 4);
2122                return;
2123        }
2124
2125        RecvErr("No initial *", strip_info);
2126}
2127
2128/*
2129 * process_message processes a <CR>-terminated block of data received
2130 * from the radio. If the radio is not in Starmode or has old firmware,
2131 * it may be a line of text in response to an AT command. Ideally, with
2132 * a current radio that's properly in Starmode, all data received should
2133 * be properly framed and checksummed radio message blocks, containing
2134 * either a starmode packet, or a other communication from the radio
2135 * firmware, like "INF_" Info messages and &COMMAND responses.
2136 */
2137static void process_message(struct strip *strip_info)
2138{
2139        STRIP_Header header = { zero_address, zero_address, 0 };
2140        __u8 *ptr = strip_info->sx_buff;
2141        __u8 *end = strip_info->sx_buff + strip_info->sx_count;
2142        __u8 sendername[32], *sptr = sendername;
2143        MetricomKey key;
2144
2145        /*HexDump("Receiving", strip_info, ptr, end); */
2146
2147        /* Check for start of address marker, and then skip over it */
2148        if (*ptr == '*')
2149                ptr++;
2150        else {
2151                process_text_message(strip_info);
2152                return;
2153        }
2154
2155        /* Copy out the return address */
2156        while (ptr < end && *ptr != '*'
2157               && sptr < ARRAY_END(sendername) - 1)
2158                *sptr++ = *ptr++;
2159        *sptr = 0;                /* Null terminate the sender name */
2160
2161        /* Check for end of address marker, and skip over it */
2162        if (ptr >= end || *ptr != '*') {
2163                RecvErr("No second *", strip_info);
2164                return;
2165        }
2166        ptr++;                        /* Skip the second '*' */
2167
2168        /* If the sender name is "&COMMAND", ignore this 'packet'       */
2169        /* (This is here for backwards compatibility with old firmware) */
2170        if (!strcmp(sendername, "&COMMAND")) {
2171                strip_info->firmware_level = NoStructure;
2172                strip_info->next_command = CompatibilityCommand;
2173                return;
2174        }
2175
2176        if (ptr + 4 > end) {
2177                RecvErr("No proto key", strip_info);
2178                return;
2179        }
2180
2181        /* Get the protocol key out of the buffer */
2182        key.c[0] = *ptr++;
2183        key.c[1] = *ptr++;
2184        key.c[2] = *ptr++;
2185        key.c[3] = *ptr++;
2186
2187        /* If we're using checksums, verify the checksum at the end of the packet */
2188        if (strip_info->firmware_level >= ChecksummedMessages) {
2189                end -= 4;        /* Chop the last four bytes off the packet (they're the checksum) */
2190                if (ptr > end) {
2191                        RecvErr("Missing Checksum", strip_info);
2192                        return;
2193                }
2194                if (!verify_checksum(strip_info)) {
2195                        RecvErr("Bad Checksum", strip_info);
2196                        return;
2197                }
2198        }
2199
2200        /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */
2201
2202        /*
2203         * Fill in (pseudo) source and destination addresses in the packet.
2204         * We assume that the destination address was our address (the radio does not
2205         * tell us this). If the radio supplies a source address, then we use it.
2206         */
2207        header.dst_addr = strip_info->true_dev_addr;
2208        string_to_radio_address(&header.src_addr, sendername);
2209
2210#ifdef EXT_COUNTERS
2211        if (key.l == SIP0Key.l) {
2212                strip_info->rx_rbytes += (end - ptr);
2213                process_IP_packet(strip_info, &header, ptr, end);
2214        } else if (key.l == ARP0Key.l) {
2215                strip_info->rx_rbytes += (end - ptr);
2216                process_ARP_packet(strip_info, &header, ptr, end);
2217        } else if (key.l == ATR_Key.l) {
2218                strip_info->rx_ebytes += (end - ptr);
2219                process_AT_response(strip_info, ptr, end);
2220        } else if (key.l == ACK_Key.l) {
2221                strip_info->rx_ebytes += (end - ptr);
2222                process_ACK(strip_info, ptr, end);
2223        } else if (key.l == INF_Key.l) {
2224                strip_info->rx_ebytes += (end - ptr);
2225                process_Info(strip_info, ptr, end);
2226        } else if (key.l == ERR_Key.l) {
2227                strip_info->rx_ebytes += (end - ptr);
2228                RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2229        } else
2230                RecvErr("Unrecognized protocol key", strip_info);
2231#else
2232        if (key.l == SIP0Key.l)
2233                process_IP_packet(strip_info, &header, ptr, end);
2234        else if (key.l == ARP0Key.l)
2235                process_ARP_packet(strip_info, &header, ptr, end);
2236        else if (key.l == ATR_Key.l)
2237                process_AT_response(strip_info, ptr, end);
2238        else if (key.l == ACK_Key.l)
2239                process_ACK(strip_info, ptr, end);
2240        else if (key.l == INF_Key.l)
2241                process_Info(strip_info, ptr, end);
2242        else if (key.l == ERR_Key.l)
2243                RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2244        else
2245                RecvErr("Unrecognized protocol key", strip_info);
2246#endif
2247}
2248
2249#define TTYERROR(X) ((X) == TTY_BREAK   ? "Break"            : \
2250                     (X) == TTY_FRAME   ? "Framing Error"    : \
2251                     (X) == TTY_PARITY  ? "Parity Error"     : \
2252                     (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2253
2254/*
2255 * Handle the 'receiver data ready' interrupt.
2256 * This function is called by the 'tty_io' module in the kernel when
2257 * a block of STRIP data has been received, which can now be decapsulated
2258 * and sent on to some IP layer for further processing.
2259 */
2260
2261static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp,
2262                  char *fp, int count)
2263{
2264        struct strip *strip_info = (struct strip *) tty->disc_data;
2265        const unsigned char *end = cp + count;
2266
2267        if (!strip_info || strip_info->magic != STRIP_MAGIC
2268            || !netif_running(strip_info->dev))
2269                return;
2270
2271        spin_lock_bh(&strip_lock);
2272#if 0
2273        {
2274                struct timeval tv;
2275                do_gettimeofday(&tv);
2276                printk(KERN_INFO
2277                       "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2278                       count, tv.tv_sec % 100, tv.tv_usec);
2279        }
2280#endif
2281
2282#ifdef EXT_COUNTERS
2283        strip_info->rx_sbytes += count;
2284#endif
2285
2286        /* Read the characters out of the buffer */
2287        while (cp < end) {
2288                if (fp && *fp)
2289                        printk(KERN_INFO "%s: %s on serial port\n",
2290                               strip_info->dev->name, TTYERROR(*fp));
2291                if (fp && *fp++ && !strip_info->discard) {        /* If there's a serial error, record it */
2292                        /* If we have some characters in the buffer, discard them */
2293                        strip_info->discard = strip_info->sx_count;
2294                        strip_info->rx_errors++;
2295                }
2296
2297                /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2298                if (strip_info->sx_count > 0 || *cp >= ' ') {
2299                        if (*cp == 0x0D) {        /* If end of packet, decide what to do with it */
2300                                if (strip_info->sx_count > 3000)
2301                                        printk(KERN_INFO
2302                                               "%s: Cut a %d byte packet (%zd bytes remaining)%s\n",
2303                                               strip_info->dev->name,
2304                                               strip_info->sx_count,
2305                                               end - cp - 1,
2306                                               strip_info->
2307                                               discard ? " (discarded)" :
2308                                               "");
2309                                if (strip_info->sx_count >
2310                                    strip_info->sx_size) {
2311                                        strip_info->rx_over_errors++;
2312                                        printk(KERN_INFO
2313                                               "%s: sx_buff overflow (%d bytes total)\n",
2314                                               strip_info->dev->name,
2315                                               strip_info->sx_count);
2316                                } else if (strip_info->discard)
2317                                        printk(KERN_INFO
2318                                               "%s: Discarding bad packet (%d/%d)\n",
2319                                               strip_info->dev->name,
2320                                               strip_info->discard,
2321                                               strip_info->sx_count);
2322                                else
2323                                        process_message(strip_info);
2324                                strip_info->discard = 0;
2325                                strip_info->sx_count = 0;
2326                        } else {
2327                                /* Make sure we have space in the buffer */
2328                                if (strip_info->sx_count <
2329                                    strip_info->sx_size)
2330                                        strip_info->sx_buff[strip_info->
2331                                                            sx_count] =
2332                                            *cp;
2333                                strip_info->sx_count++;
2334                        }
2335                }
2336                cp++;
2337        }
2338        spin_unlock_bh(&strip_lock);
2339}
2340
2341
2342/************************************************************************/
2343/* General control routines                                                */
2344
2345static int set_mac_address(struct strip *strip_info,
2346                           MetricomAddress * addr)
2347{
2348        /*
2349         * We're using a manually specified address if the address is set
2350         * to anything other than all ones. Setting the address to all ones
2351         * disables manual mode and goes back to automatic address determination
2352         * (tracking the true address that the radio has).
2353         */
2354        strip_info->manual_dev_addr =
2355            memcmp(addr->c, broadcast_address.c,
2356                   sizeof(broadcast_address));
2357        if (strip_info->manual_dev_addr)
2358                *(MetricomAddress *) strip_info->dev->dev_addr = *addr;
2359        else
2360                *(MetricomAddress *) strip_info->dev->dev_addr =
2361                    strip_info->true_dev_addr;
2362        return 0;
2363}
2364
2365static int strip_set_mac_address(struct net_device *dev, void *addr)
2366{
2367        struct strip *strip_info = netdev_priv(dev);
2368        struct sockaddr *sa = addr;
2369        printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
2370        set_mac_address(strip_info, (MetricomAddress *) sa->sa_data);
2371        return 0;
2372}
2373
2374static struct net_device_stats *strip_get_stats(struct net_device *dev)
2375{
2376        struct strip *strip_info = netdev_priv(dev);
2377        static struct net_device_stats stats;
2378
2379        memset(&stats, 0, sizeof(struct net_device_stats));
2380
2381        stats.rx_packets = strip_info->rx_packets;
2382        stats.tx_packets = strip_info->tx_packets;
2383        stats.rx_dropped = strip_info->rx_dropped;
2384        stats.tx_dropped = strip_info->tx_dropped;
2385        stats.tx_errors = strip_info->tx_errors;
2386        stats.rx_errors = strip_info->rx_errors;
2387        stats.rx_over_errors = strip_info->rx_over_errors;
2388        return (&stats);
2389}
2390
2391
2392/************************************************************************/
2393/* Opening and closing                                                        */
2394
2395/*
2396 * Here's the order things happen:
2397 * When the user runs "slattach -p strip ..."
2398 *  1. The TTY module calls strip_open;;
2399 *  2. strip_open calls strip_alloc
2400 *  3.                  strip_alloc calls register_netdev
2401 *  4.                  register_netdev calls strip_dev_init
2402 *  5. then strip_open finishes setting up the strip_info
2403 *
2404 * When the user runs "ifconfig st<x> up address netmask ..."
2405 *  6. strip_open_low gets called
2406 *
2407 * When the user runs "ifconfig st<x> down"
2408 *  7. strip_close_low gets called
2409 *
2410 * When the user kills the slattach process
2411 *  8. strip_close gets called
2412 *  9. strip_close calls dev_close
2413 * 10. if the device is still up, then dev_close calls strip_close_low
2414 * 11. strip_close calls strip_free
2415 */
2416
2417/* Open the low-level part of the STRIP channel. Easy! */
2418
2419static int strip_open_low(struct net_device *dev)
2420{
2421        struct strip *strip_info = netdev_priv(dev);
2422
2423        if (strip_info->tty == NULL)
2424                return (-ENODEV);
2425
2426        if (!allocate_buffers(strip_info, dev->mtu))
2427                return (-ENOMEM);
2428
2429        strip_info->sx_count = 0;
2430        strip_info->tx_left = 0;
2431
2432        strip_info->discard = 0;
2433        strip_info->working = FALSE;
2434        strip_info->firmware_level = NoStructure;
2435        strip_info->next_command = CompatibilityCommand;
2436        strip_info->user_baud = tty_get_baud_rate(strip_info->tty);
2437
2438        printk(KERN_INFO "%s: Initializing Radio.\n",
2439               strip_info->dev->name);
2440        ResetRadio(strip_info);
2441        strip_info->idle_timer.expires = jiffies + 1 * HZ;
2442        add_timer(&strip_info->idle_timer);
2443        netif_wake_queue(dev);
2444        return (0);
2445}
2446
2447
2448/*
2449 * Close the low-level part of the STRIP channel. Easy!
2450 */
2451
2452static int strip_close_low(struct net_device *dev)
2453{
2454        struct strip *strip_info = netdev_priv(dev);
2455
2456        if (strip_info->tty == NULL)
2457                return -EBUSY;
2458        strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
2459
2460        netif_stop_queue(dev);
2461
2462        /*
2463         * Free all STRIP frame buffers.
2464         */
2465        kfree(strip_info->rx_buff);
2466        strip_info->rx_buff = NULL;
2467        kfree(strip_info->sx_buff);
2468        strip_info->sx_buff = NULL;
2469        kfree(strip_info->tx_buff);
2470        strip_info->tx_buff = NULL;
2471
2472        del_timer(&strip_info->idle_timer);
2473        return 0;
2474}
2475
2476static const struct header_ops strip_header_ops = {
2477        .create = strip_header,
2478        .rebuild = strip_rebuild_header,
2479};
2480
2481/*
2482 * This routine is called by DDI when the
2483 * (dynamically assigned) device is registered
2484 */
2485
2486static void strip_dev_setup(struct net_device *dev)
2487{
2488        /*
2489         * Finish setting up the DEVICE info.
2490         */
2491
2492        dev->trans_start = 0;
2493        dev->last_rx = 0;
2494        dev->tx_queue_len = 30;        /* Drop after 30 frames queued */
2495
2496        dev->flags = 0;
2497        dev->mtu = DEFAULT_STRIP_MTU;
2498        dev->type = ARPHRD_METRICOM;        /* dtang */
2499        dev->hard_header_len = sizeof(STRIP_Header);
2500        /*
2501         *  dev->priv             Already holds a pointer to our struct strip
2502         */
2503
2504        *(MetricomAddress *) & dev->broadcast = broadcast_address;
2505        dev->dev_addr[0] = 0;
2506        dev->addr_len = sizeof(MetricomAddress);
2507
2508        /*
2509         * Pointers to interface service routines.
2510         */
2511
2512        dev->open = strip_open_low;
2513        dev->stop = strip_close_low;
2514        dev->hard_start_xmit = strip_xmit;
2515        dev->header_ops = &strip_header_ops;
2516
2517        dev->set_mac_address = strip_set_mac_address;
2518        dev->get_stats = strip_get_stats;
2519        dev->change_mtu = strip_change_mtu;
2520}
2521
2522/*
2523 * Free a STRIP channel.
2524 */
2525
2526static void strip_free(struct strip *strip_info)
2527{
2528        spin_lock_bh(&strip_lock);
2529        list_del_rcu(&strip_info->list);
2530        spin_unlock_bh(&strip_lock);
2531
2532        strip_info->magic = 0;
2533
2534        free_netdev(strip_info->dev);
2535}
2536
2537
2538/*
2539 * Allocate a new free STRIP channel
2540 */
2541static struct strip *strip_alloc(void)
2542{
2543        struct list_head *n;
2544        struct net_device *dev;
2545        struct strip *strip_info;
2546
2547        dev = alloc_netdev(sizeof(struct strip), "st%d",
2548                           strip_dev_setup);
2549
2550        if (!dev)
2551                return NULL;        /* If no more memory, return */
2552
2553
2554        strip_info = netdev_priv(dev);
2555        strip_info->dev = dev;
2556
2557        strip_info->magic = STRIP_MAGIC;
2558        strip_info->tty = NULL;
2559
2560        strip_info->gratuitous_arp = jiffies + LongTime;
2561        strip_info->arp_interval = 0;
2562        init_timer(&strip_info->idle_timer);
2563        strip_info->idle_timer.data = (long) dev;
2564        strip_info->idle_timer.function = strip_IdleTask;
2565
2566
2567        spin_lock_bh(&strip_lock);
2568 rescan:
2569        /*
2570         * Search the list to find where to put our new entry
2571         * (and in the process decide what channel number it is
2572         * going to be)
2573         */
2574        list_for_each(n, &strip_list) {
2575                struct strip *s = hlist_entry(n, struct strip, list);
2576
2577                if (s->dev->base_addr == dev->base_addr) {
2578                        ++dev->base_addr;
2579                        goto rescan;
2580                }
2581        }
2582
2583        sprintf(dev->name, "st%ld", dev->base_addr);
2584
2585        list_add_tail_rcu(&strip_info->list, &strip_list);
2586        spin_unlock_bh(&strip_lock);
2587
2588        return strip_info;
2589}
2590
2591/*
2592 * Open the high-level part of the STRIP channel.
2593 * This function is called by the TTY module when the
2594 * STRIP line discipline is called for.  Because we are
2595 * sure the tty line exists, we only have to link it to
2596 * a free STRIP channel...
2597 */
2598
2599static int strip_open(struct tty_struct *tty)
2600{
2601        struct strip *strip_info = (struct strip *) tty->disc_data;
2602
2603        /*
2604         * First make sure we're not already connected.
2605         */
2606
2607        if (strip_info && strip_info->magic == STRIP_MAGIC)
2608                return -EEXIST;
2609
2610        /*
2611         * We need a write method.
2612         */
2613
2614        if (tty->ops->write == NULL || tty->ops->set_termios == NULL)
2615                return -EOPNOTSUPP;
2616
2617        /*
2618         * OK.  Find a free STRIP channel to use.
2619         */
2620        if ((strip_info = strip_alloc()) == NULL)
2621                return -ENFILE;
2622
2623        /*
2624         * Register our newly created device so it can be ifconfig'd
2625         * strip_dev_init() will be called as a side-effect
2626         */
2627
2628        if (register_netdev(strip_info->dev) != 0) {
2629                printk(KERN_ERR "strip: register_netdev() failed.\n");
2630                strip_free(strip_info);
2631                return -ENFILE;
2632        }
2633
2634        strip_info->tty = tty;
2635        tty->disc_data = strip_info;
2636        tty->receive_room = 65536;
2637
2638        tty_driver_flush_buffer(tty);
2639
2640        /*
2641         * Restore default settings
2642         */
2643
2644        strip_info->dev->type = ARPHRD_METRICOM;        /* dtang */
2645
2646        /*
2647         * Set tty options
2648         */
2649
2650        tty->termios->c_iflag |= IGNBRK | IGNPAR;        /* Ignore breaks and parity errors. */
2651        tty->termios->c_cflag |= CLOCAL;        /* Ignore modem control signals. */
2652        tty->termios->c_cflag &= ~HUPCL;        /* Don't close on hup */
2653
2654        printk(KERN_INFO "STRIP: device \"%s\" activated\n",
2655               strip_info->dev->name);
2656
2657        /*
2658         * Done.  We have linked the TTY line to a channel.
2659         */
2660        return (strip_info->dev->base_addr);
2661}
2662
2663/*
2664 * Close down a STRIP channel.
2665 * This means flushing out any pending queues, and then restoring the
2666 * TTY line discipline to what it was before it got hooked to STRIP
2667 * (which usually is TTY again).
2668 */
2669
2670static void strip_close(struct tty_struct *tty)
2671{
2672        struct strip *strip_info = (struct strip *) tty->disc_data;
2673
2674        /*
2675         * First make sure we're connected.
2676         */
2677
2678        if (!strip_info || strip_info->magic != STRIP_MAGIC)
2679                return;
2680
2681        unregister_netdev(strip_info->dev);
2682
2683        tty->disc_data = NULL;
2684        strip_info->tty = NULL;
2685        printk(KERN_INFO "STRIP: device \"%s\" closed down\n",
2686               strip_info->dev->name);
2687        strip_free(strip_info);
2688        tty->disc_data = NULL;
2689}
2690
2691
2692/************************************************************************/
2693/* Perform I/O control calls on an active STRIP channel.                */
2694
2695static int strip_ioctl(struct tty_struct *tty, struct file *file,
2696                       unsigned int cmd, unsigned long arg)
2697{
2698        struct strip *strip_info = (struct strip *) tty->disc_data;
2699
2700        /*
2701         * First make sure we're connected.
2702         */
2703
2704        if (!strip_info || strip_info->magic != STRIP_MAGIC)
2705                return -EINVAL;
2706
2707        switch (cmd) {
2708        case SIOCGIFNAME:
2709                if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1))
2710                        return -EFAULT;
2711                break;
2712        case SIOCSIFHWADDR:
2713        {
2714                MetricomAddress addr;
2715                //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name);
2716                if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress)))
2717                        return -EFAULT;
2718                return set_mac_address(strip_info, &addr);
2719        }
2720        default:
2721                return tty_mode_ioctl(tty, file, cmd, arg);
2722                break;
2723        }
2724        return 0;
2725}
2726
2727
2728/************************************************************************/
2729/* Initialization                                                        */
2730
2731static struct tty_ldisc_ops strip_ldisc = {
2732        .magic = TTY_LDISC_MAGIC,
2733        .name = "strip",
2734        .owner = THIS_MODULE,
2735        .open = strip_open,
2736        .close = strip_close,
2737        .ioctl = strip_ioctl,
2738        .receive_buf = strip_receive_buf,
2739        .write_wakeup = strip_write_some_more,
2740};
2741
2742/*
2743 * Initialize the STRIP driver.
2744 * This routine is called at boot time, to bootstrap the multi-channel
2745 * STRIP driver
2746 */
2747
2748static char signon[] __initdata =
2749    KERN_INFO "STRIP: Version %s (unlimited channels)\n";
2750
2751static int __init strip_init_driver(void)
2752{
2753        int status;
2754
2755        printk(signon, StripVersion);
2756
2757        
2758        /*
2759         * Fill in our line protocol discipline, and register it
2760         */
2761        if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
2762                printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n",
2763                       status);
2764
2765        /*
2766         * Register the status file with /proc
2767         */
2768        proc_net_fops_create(&init_net, "strip", S_IFREG | S_IRUGO, &strip_seq_fops);
2769
2770        return status;
2771}
2772
2773module_init(strip_init_driver);
2774
2775static const char signoff[] __exitdata =
2776    KERN_INFO "STRIP: Module Unloaded\n";
2777
2778static void __exit strip_exit_driver(void)
2779{
2780        int i;
2781        struct list_head *p,*n;
2782
2783        /* module ref count rules assure that all entries are unregistered */
2784        list_for_each_safe(p, n, &strip_list) {
2785                struct strip *s = list_entry(p, struct strip, list);
2786                strip_free(s);
2787        }
2788
2789        /* Unregister with the /proc/net file here. */
2790        proc_net_remove(&init_net, "strip");
2791
2792        if ((i = tty_unregister_ldisc(N_STRIP)))
2793                printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
2794
2795        printk(signoff);
2796}
2797
2798module_exit(strip_exit_driver);
2799
2800MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2801MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2802MODULE_LICENSE("Dual BSD/GPL");
2803
2804MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");