Showing error 1196

User: Jiri Slaby
Error type: Double Unlock
Error type description: Some lock is unlocked twice unintentionally in a sequence
File location: fs/jffs2/gc.c
Line in file: 267
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2012-04-30 10:52:00 UTC


Source:

   1/*
   2 * JFFS2 -- Journalling Flash File System, Version 2.
   3 *
   4 * Copyright �� 2001-2007 Red Hat, Inc.
   5 *
   6 * Created by David Woodhouse <dwmw2@infradead.org>
   7 *
   8 * For licensing information, see the file 'LICENCE' in this directory.
   9 *
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/mtd/mtd.h>
  14#include <linux/slab.h>
  15#include <linux/pagemap.h>
  16#include <linux/crc32.h>
  17#include <linux/compiler.h>
  18#include <linux/stat.h>
  19#include "nodelist.h"
  20#include "compr.h"
  21
  22static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
  23                                          struct jffs2_inode_cache *ic,
  24                                          struct jffs2_raw_node_ref *raw);
  25static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  26                                        struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
  27static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  28                                        struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
  29static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  30                                        struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
  31static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  32                                      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
  33                                      uint32_t start, uint32_t end);
  34static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
  35                                       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
  36                                       uint32_t start, uint32_t end);
  37static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
  38                               struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
  39
  40/* Called with erase_completion_lock held */
  41static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
  42{
  43        struct jffs2_eraseblock *ret;
  44        struct list_head *nextlist = NULL;
  45        int n = jiffies % 128;
  46
  47        /* Pick an eraseblock to garbage collect next. This is where we'll
  48           put the clever wear-levelling algorithms. Eventually.  */
  49        /* We possibly want to favour the dirtier blocks more when the
  50           number of free blocks is low. */
  51again:
  52        if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
  53                D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
  54                nextlist = &c->bad_used_list;
  55        } else if (n < 50 && !list_empty(&c->erasable_list)) {
  56                /* Note that most of them will have gone directly to be erased.
  57                   So don't favour the erasable_list _too_ much. */
  58                D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
  59                nextlist = &c->erasable_list;
  60        } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
  61                /* Most of the time, pick one off the very_dirty list */
  62                D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
  63                nextlist = &c->very_dirty_list;
  64        } else if (n < 126 && !list_empty(&c->dirty_list)) {
  65                D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
  66                nextlist = &c->dirty_list;
  67        } else if (!list_empty(&c->clean_list)) {
  68                D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
  69                nextlist = &c->clean_list;
  70        } else if (!list_empty(&c->dirty_list)) {
  71                D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
  72
  73                nextlist = &c->dirty_list;
  74        } else if (!list_empty(&c->very_dirty_list)) {
  75                D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
  76                nextlist = &c->very_dirty_list;
  77        } else if (!list_empty(&c->erasable_list)) {
  78                D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
  79
  80                nextlist = &c->erasable_list;
  81        } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
  82                /* There are blocks are wating for the wbuf sync */
  83                D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
  84                spin_unlock(&c->erase_completion_lock);
  85                jffs2_flush_wbuf_pad(c);
  86                spin_lock(&c->erase_completion_lock);
  87                goto again;
  88        } else {
  89                /* Eep. All were empty */
  90                D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
  91                return NULL;
  92        }
  93
  94        ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
  95        list_del(&ret->list);
  96        c->gcblock = ret;
  97        ret->gc_node = ret->first_node;
  98        if (!ret->gc_node) {
  99                printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
 100                BUG();
 101        }
 102
 103        /* Have we accidentally picked a clean block with wasted space ? */
 104        if (ret->wasted_size) {
 105                D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
 106                ret->dirty_size += ret->wasted_size;
 107                c->wasted_size -= ret->wasted_size;
 108                c->dirty_size += ret->wasted_size;
 109                ret->wasted_size = 0;
 110        }
 111
 112        return ret;
 113}
 114
 115/* jffs2_garbage_collect_pass
 116 * Make a single attempt to progress GC. Move one node, and possibly
 117 * start erasing one eraseblock.
 118 */
 119int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
 120{
 121        struct jffs2_inode_info *f;
 122        struct jffs2_inode_cache *ic;
 123        struct jffs2_eraseblock *jeb;
 124        struct jffs2_raw_node_ref *raw;
 125        uint32_t gcblock_dirty;
 126        int ret = 0, inum, nlink;
 127        int xattr = 0;
 128
 129        if (mutex_lock_interruptible(&c->alloc_sem))
 130                return -EINTR;
 131
 132        for (;;) {
 133                spin_lock(&c->erase_completion_lock);
 134                if (!c->unchecked_size)
 135                        break;
 136
 137                /* We can't start doing GC yet. We haven't finished checking
 138                   the node CRCs etc. Do it now. */
 139
 140                /* checked_ino is protected by the alloc_sem */
 141                if (c->checked_ino > c->highest_ino && xattr) {
 142                        printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
 143                               c->unchecked_size);
 144                        jffs2_dbg_dump_block_lists_nolock(c);
 145                        spin_unlock(&c->erase_completion_lock);
 146                        mutex_unlock(&c->alloc_sem);
 147                        return -ENOSPC;
 148                }
 149
 150                spin_unlock(&c->erase_completion_lock);
 151
 152                if (!xattr)
 153                        xattr = jffs2_verify_xattr(c);
 154
 155                spin_lock(&c->inocache_lock);
 156
 157                ic = jffs2_get_ino_cache(c, c->checked_ino++);
 158
 159                if (!ic) {
 160                        spin_unlock(&c->inocache_lock);
 161                        continue;
 162                }
 163
 164                if (!ic->pino_nlink) {
 165                        D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink/pino zero\n",
 166                                  ic->ino));
 167                        spin_unlock(&c->inocache_lock);
 168                        jffs2_xattr_delete_inode(c, ic);
 169                        continue;
 170                }
 171                switch(ic->state) {
 172                case INO_STATE_CHECKEDABSENT:
 173                case INO_STATE_PRESENT:
 174                        D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
 175                        spin_unlock(&c->inocache_lock);
 176                        continue;
 177
 178                case INO_STATE_GC:
 179                case INO_STATE_CHECKING:
 180                        printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
 181                        spin_unlock(&c->inocache_lock);
 182                        BUG();
 183
 184                case INO_STATE_READING:
 185                        /* We need to wait for it to finish, lest we move on
 186                           and trigger the BUG() above while we haven't yet
 187                           finished checking all its nodes */
 188                        D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
 189                        /* We need to come back again for the _same_ inode. We've
 190                         made no progress in this case, but that should be OK */
 191                        c->checked_ino--;
 192
 193                        mutex_unlock(&c->alloc_sem);
 194                        sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
 195                        return 0;
 196
 197                default:
 198                        BUG();
 199
 200                case INO_STATE_UNCHECKED:
 201                        ;
 202                }
 203                ic->state = INO_STATE_CHECKING;
 204                spin_unlock(&c->inocache_lock);
 205
 206                D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
 207
 208                ret = jffs2_do_crccheck_inode(c, ic);
 209                if (ret)
 210                        printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
 211
 212                jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
 213                mutex_unlock(&c->alloc_sem);
 214                return ret;
 215        }
 216
 217        /* First, work out which block we're garbage-collecting */
 218        jeb = c->gcblock;
 219
 220        if (!jeb)
 221                jeb = jffs2_find_gc_block(c);
 222
 223        if (!jeb) {
 224                /* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */
 225                if (!list_empty(&c->erase_pending_list)) {
 226                        spin_unlock(&c->erase_completion_lock);
 227                        mutex_unlock(&c->alloc_sem);
 228                        return -EAGAIN;
 229                }
 230                D1(printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
 231                spin_unlock(&c->erase_completion_lock);
 232                mutex_unlock(&c->alloc_sem);
 233                return -EIO;
 234        }
 235
 236        D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
 237        D1(if (c->nextblock)
 238           printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
 239
 240        if (!jeb->used_size) {
 241                mutex_unlock(&c->alloc_sem);
 242                goto eraseit;
 243        }
 244
 245        raw = jeb->gc_node;
 246        gcblock_dirty = jeb->dirty_size;
 247
 248        while(ref_obsolete(raw)) {
 249                D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
 250                raw = ref_next(raw);
 251                if (unlikely(!raw)) {
 252                        printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
 253                        printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
 254                               jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
 255                        jeb->gc_node = raw;
 256                        spin_unlock(&c->erase_completion_lock);
 257                        mutex_unlock(&c->alloc_sem);
 258                        BUG();
 259                }
 260        }
 261        jeb->gc_node = raw;
 262
 263        D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
 264
 265        if (!raw->next_in_ino) {
 266                /* Inode-less node. Clean marker, snapshot or something like that */
 267                spin_unlock(&c->erase_completion_lock);
 268                if (ref_flags(raw) == REF_PRISTINE) {
 269                        /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
 270                        jffs2_garbage_collect_pristine(c, NULL, raw);
 271                } else {
 272                        /* Just mark it obsolete */
 273                        jffs2_mark_node_obsolete(c, raw);
 274                }
 275                mutex_unlock(&c->alloc_sem);
 276                goto eraseit_lock;
 277        }
 278
 279        ic = jffs2_raw_ref_to_ic(raw);
 280
 281#ifdef CONFIG_JFFS2_FS_XATTR
 282        /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
 283         * We can decide whether this node is inode or xattr by ic->class.     */
 284        if (ic->class == RAWNODE_CLASS_XATTR_DATUM
 285            || ic->class == RAWNODE_CLASS_XATTR_REF) {
 286                spin_unlock(&c->erase_completion_lock);
 287
 288                if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
 289                        ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
 290                } else {
 291                        ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
 292                }
 293                goto test_gcnode;
 294        }
 295#endif
 296
 297        /* We need to hold the inocache. Either the erase_completion_lock or
 298           the inocache_lock are sufficient; we trade down since the inocache_lock
 299           causes less contention. */
 300        spin_lock(&c->inocache_lock);
 301
 302        spin_unlock(&c->erase_completion_lock);
 303
 304        D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
 305
 306        /* Three possibilities:
 307           1. Inode is already in-core. We must iget it and do proper
 308              updating to its fragtree, etc.
 309           2. Inode is not in-core, node is REF_PRISTINE. We lock the
 310              inocache to prevent a read_inode(), copy the node intact.
 311           3. Inode is not in-core, node is not pristine. We must iget()
 312              and take the slow path.
 313        */
 314
 315        switch(ic->state) {
 316        case INO_STATE_CHECKEDABSENT:
 317                /* It's been checked, but it's not currently in-core.
 318                   We can just copy any pristine nodes, but have
 319                   to prevent anyone else from doing read_inode() while
 320                   we're at it, so we set the state accordingly */
 321                if (ref_flags(raw) == REF_PRISTINE)
 322                        ic->state = INO_STATE_GC;
 323                else {
 324                        D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
 325                                  ic->ino));
 326                }
 327                break;
 328
 329        case INO_STATE_PRESENT:
 330                /* It's in-core. GC must iget() it. */
 331                break;
 332
 333        case INO_STATE_UNCHECKED:
 334        case INO_STATE_CHECKING:
 335        case INO_STATE_GC:
 336                /* Should never happen. We should have finished checking
 337                   by the time we actually start doing any GC, and since
 338                   we're holding the alloc_sem, no other garbage collection
 339                   can happen.
 340                */
 341                printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
 342                       ic->ino, ic->state);
 343                mutex_unlock(&c->alloc_sem);
 344                spin_unlock(&c->inocache_lock);
 345                BUG();
 346
 347        case INO_STATE_READING:
 348                /* Someone's currently trying to read it. We must wait for
 349                   them to finish and then go through the full iget() route
 350                   to do the GC. However, sometimes read_inode() needs to get
 351                   the alloc_sem() (for marking nodes invalid) so we must
 352                   drop the alloc_sem before sleeping. */
 353
 354                mutex_unlock(&c->alloc_sem);
 355                D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
 356                          ic->ino, ic->state));
 357                sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
 358                /* And because we dropped the alloc_sem we must start again from the
 359                   beginning. Ponder chance of livelock here -- we're returning success
 360                   without actually making any progress.
 361
 362                   Q: What are the chances that the inode is back in INO_STATE_READING
 363                   again by the time we next enter this function? And that this happens
 364                   enough times to cause a real delay?
 365
 366                   A: Small enough that I don't care :)
 367                */
 368                return 0;
 369        }
 370
 371        /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
 372           node intact, and we don't have to muck about with the fragtree etc.
 373           because we know it's not in-core. If it _was_ in-core, we go through
 374           all the iget() crap anyway */
 375
 376        if (ic->state == INO_STATE_GC) {
 377                spin_unlock(&c->inocache_lock);
 378
 379                ret = jffs2_garbage_collect_pristine(c, ic, raw);
 380
 381                spin_lock(&c->inocache_lock);
 382                ic->state = INO_STATE_CHECKEDABSENT;
 383                wake_up(&c->inocache_wq);
 384
 385                if (ret != -EBADFD) {
 386                        spin_unlock(&c->inocache_lock);
 387                        goto test_gcnode;
 388                }
 389
 390                /* Fall through if it wanted us to, with inocache_lock held */
 391        }
 392
 393        /* Prevent the fairly unlikely race where the gcblock is
 394           entirely obsoleted by the final close of a file which had
 395           the only valid nodes in the block, followed by erasure,
 396           followed by freeing of the ic because the erased block(s)
 397           held _all_ the nodes of that inode.... never been seen but
 398           it's vaguely possible. */
 399
 400        inum = ic->ino;
 401        nlink = ic->pino_nlink;
 402        spin_unlock(&c->inocache_lock);
 403
 404        f = jffs2_gc_fetch_inode(c, inum, !nlink);
 405        if (IS_ERR(f)) {
 406                ret = PTR_ERR(f);
 407                goto release_sem;
 408        }
 409        if (!f) {
 410                ret = 0;
 411                goto release_sem;
 412        }
 413
 414        ret = jffs2_garbage_collect_live(c, jeb, raw, f);
 415
 416        jffs2_gc_release_inode(c, f);
 417
 418 test_gcnode:
 419        if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
 420                /* Eep. This really should never happen. GC is broken */
 421                printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node));
 422                ret = -ENOSPC;
 423        }
 424 release_sem:
 425        mutex_unlock(&c->alloc_sem);
 426
 427 eraseit_lock:
 428        /* If we've finished this block, start it erasing */
 429        spin_lock(&c->erase_completion_lock);
 430
 431 eraseit:
 432        if (c->gcblock && !c->gcblock->used_size) {
 433                D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
 434                /* We're GC'ing an empty block? */
 435                list_add_tail(&c->gcblock->list, &c->erase_pending_list);
 436                c->gcblock = NULL;
 437                c->nr_erasing_blocks++;
 438                jffs2_erase_pending_trigger(c);
 439        }
 440        spin_unlock(&c->erase_completion_lock);
 441
 442        return ret;
 443}
 444
 445static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
 446                                      struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
 447{
 448        struct jffs2_node_frag *frag;
 449        struct jffs2_full_dnode *fn = NULL;
 450        struct jffs2_full_dirent *fd;
 451        uint32_t start = 0, end = 0, nrfrags = 0;
 452        int ret = 0;
 453
 454        mutex_lock(&f->sem);
 455
 456        /* Now we have the lock for this inode. Check that it's still the one at the head
 457           of the list. */
 458
 459        spin_lock(&c->erase_completion_lock);
 460
 461        if (c->gcblock != jeb) {
 462                spin_unlock(&c->erase_completion_lock);
 463                D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
 464                goto upnout;
 465        }
 466        if (ref_obsolete(raw)) {
 467                spin_unlock(&c->erase_completion_lock);
 468                D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
 469                /* They'll call again */
 470                goto upnout;
 471        }
 472        spin_unlock(&c->erase_completion_lock);
 473
 474        /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
 475        if (f->metadata && f->metadata->raw == raw) {
 476                fn = f->metadata;
 477                ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
 478                goto upnout;
 479        }
 480
 481        /* FIXME. Read node and do lookup? */
 482        for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
 483                if (frag->node && frag->node->raw == raw) {
 484                        fn = frag->node;
 485                        end = frag->ofs + frag->size;
 486                        if (!nrfrags++)
 487                                start = frag->ofs;
 488                        if (nrfrags == frag->node->frags)
 489                                break; /* We've found them all */
 490                }
 491        }
 492        if (fn) {
 493                if (ref_flags(raw) == REF_PRISTINE) {
 494                        ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
 495                        if (!ret) {
 496                                /* Urgh. Return it sensibly. */
 497                                frag->node->raw = f->inocache->nodes;
 498                        }
 499                        if (ret != -EBADFD)
 500                                goto upnout;
 501                }
 502                /* We found a datanode. Do the GC */
 503                if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
 504                        /* It crosses a page boundary. Therefore, it must be a hole. */
 505                        ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
 506                } else {
 507                        /* It could still be a hole. But we GC the page this way anyway */
 508                        ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
 509                }
 510                goto upnout;
 511        }
 512
 513        /* Wasn't a dnode. Try dirent */
 514        for (fd = f->dents; fd; fd=fd->next) {
 515                if (fd->raw == raw)
 516                        break;
 517        }
 518
 519        if (fd && fd->ino) {
 520                ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
 521        } else if (fd) {
 522                ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
 523        } else {
 524                printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
 525                       ref_offset(raw), f->inocache->ino);
 526                if (ref_obsolete(raw)) {
 527                        printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
 528                } else {
 529                        jffs2_dbg_dump_node(c, ref_offset(raw));
 530                        BUG();
 531                }
 532        }
 533 upnout:
 534        mutex_unlock(&f->sem);
 535
 536        return ret;
 537}
 538
 539static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
 540                                          struct jffs2_inode_cache *ic,
 541                                          struct jffs2_raw_node_ref *raw)
 542{
 543        union jffs2_node_union *node;
 544        size_t retlen;
 545        int ret;
 546        uint32_t phys_ofs, alloclen;
 547        uint32_t crc, rawlen;
 548        int retried = 0;
 549
 550        D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
 551
 552        alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
 553
 554        /* Ask for a small amount of space (or the totlen if smaller) because we
 555           don't want to force wastage of the end of a block if splitting would
 556           work. */
 557        if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
 558                alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
 559
 560        ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
 561        /* 'rawlen' is not the exact summary size; it is only an upper estimation */
 562
 563        if (ret)
 564                return ret;
 565
 566        if (alloclen < rawlen) {
 567                /* Doesn't fit untouched. We'll go the old route and split it */
 568                return -EBADFD;
 569        }
 570
 571        node = kmalloc(rawlen, GFP_KERNEL);
 572        if (!node)
 573                return -ENOMEM;
 574
 575        ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
 576        if (!ret && retlen != rawlen)
 577                ret = -EIO;
 578        if (ret)
 579                goto out_node;
 580
 581        crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
 582        if (je32_to_cpu(node->u.hdr_crc) != crc) {
 583                printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 584                       ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
 585                goto bail;
 586        }
 587
 588        switch(je16_to_cpu(node->u.nodetype)) {
 589        case JFFS2_NODETYPE_INODE:
 590                crc = crc32(0, node, sizeof(node->i)-8);
 591                if (je32_to_cpu(node->i.node_crc) != crc) {
 592                        printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 593                               ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
 594                        goto bail;
 595                }
 596
 597                if (je32_to_cpu(node->i.dsize)) {
 598                        crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
 599                        if (je32_to_cpu(node->i.data_crc) != crc) {
 600                                printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 601                                       ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
 602                                goto bail;
 603                        }
 604                }
 605                break;
 606
 607        case JFFS2_NODETYPE_DIRENT:
 608                crc = crc32(0, node, sizeof(node->d)-8);
 609                if (je32_to_cpu(node->d.node_crc) != crc) {
 610                        printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 611                               ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
 612                        goto bail;
 613                }
 614
 615                if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
 616                        printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw));
 617                        goto bail;
 618                }
 619
 620                if (node->d.nsize) {
 621                        crc = crc32(0, node->d.name, node->d.nsize);
 622                        if (je32_to_cpu(node->d.name_crc) != crc) {
 623                                printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
 624                                       ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
 625                                goto bail;
 626                        }
 627                }
 628                break;
 629        default:
 630                /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
 631                if (ic) {
 632                        printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
 633                               ref_offset(raw), je16_to_cpu(node->u.nodetype));
 634                        goto bail;
 635                }
 636        }
 637
 638        /* OK, all the CRCs are good; this node can just be copied as-is. */
 639 retry:
 640        phys_ofs = write_ofs(c);
 641
 642        ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
 643
 644        if (ret || (retlen != rawlen)) {
 645                printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
 646                       rawlen, phys_ofs, ret, retlen);
 647                if (retlen) {
 648                        jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
 649                } else {
 650                        printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
 651                }
 652                if (!retried) {
 653                        /* Try to reallocate space and retry */
 654                        uint32_t dummy;
 655                        struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
 656
 657                        retried = 1;
 658
 659                        D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
 660
 661                        jffs2_dbg_acct_sanity_check(c,jeb);
 662                        jffs2_dbg_acct_paranoia_check(c, jeb);
 663
 664                        ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
 665                                                /* this is not the exact summary size of it,
 666                                                        it is only an upper estimation */
 667
 668                        if (!ret) {
 669                                D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
 670
 671                                jffs2_dbg_acct_sanity_check(c,jeb);
 672                                jffs2_dbg_acct_paranoia_check(c, jeb);
 673
 674                                goto retry;
 675                        }
 676                        D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
 677                }
 678
 679                if (!ret)
 680                        ret = -EIO;
 681                goto out_node;
 682        }
 683        jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
 684
 685        jffs2_mark_node_obsolete(c, raw);
 686        D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
 687
 688 out_node:
 689        kfree(node);
 690        return ret;
 691 bail:
 692        ret = -EBADFD;
 693        goto out_node;
 694}
 695
 696static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 697                                        struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
 698{
 699        struct jffs2_full_dnode *new_fn;
 700        struct jffs2_raw_inode ri;
 701        struct jffs2_node_frag *last_frag;
 702        union jffs2_device_node dev;
 703        char *mdata = NULL, mdatalen = 0;
 704        uint32_t alloclen, ilen;
 705        int ret;
 706
 707        if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
 708            S_ISCHR(JFFS2_F_I_MODE(f)) ) {
 709                /* For these, we don't actually need to read the old node */
 710                mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
 711                mdata = (char *)&dev;
 712                D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
 713        } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
 714                mdatalen = fn->size;
 715                mdata = kmalloc(fn->size, GFP_KERNEL);
 716                if (!mdata) {
 717                        printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
 718                        return -ENOMEM;
 719                }
 720                ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
 721                if (ret) {
 722                        printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
 723                        kfree(mdata);
 724                        return ret;
 725                }
 726                D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
 727
 728        }
 729
 730        ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
 731                                JFFS2_SUMMARY_INODE_SIZE);
 732        if (ret) {
 733                printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
 734                       sizeof(ri)+ mdatalen, ret);
 735                goto out;
 736        }
 737
 738        last_frag = frag_last(&f->fragtree);
 739        if (last_frag)
 740                /* Fetch the inode length from the fragtree rather then
 741                 * from i_size since i_size may have not been updated yet */
 742                ilen = last_frag->ofs + last_frag->size;
 743        else
 744                ilen = JFFS2_F_I_SIZE(f);
 745
 746        memset(&ri, 0, sizeof(ri));
 747        ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 748        ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
 749        ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
 750        ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
 751
 752        ri.ino = cpu_to_je32(f->inocache->ino);
 753        ri.version = cpu_to_je32(++f->highest_version);
 754        ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
 755        ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
 756        ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
 757        ri.isize = cpu_to_je32(ilen);
 758        ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
 759        ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
 760        ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 761        ri.offset = cpu_to_je32(0);
 762        ri.csize = cpu_to_je32(mdatalen);
 763        ri.dsize = cpu_to_je32(mdatalen);
 764        ri.compr = JFFS2_COMPR_NONE;
 765        ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
 766        ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
 767
 768        new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
 769
 770        if (IS_ERR(new_fn)) {
 771                printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
 772                ret = PTR_ERR(new_fn);
 773                goto out;
 774        }
 775        jffs2_mark_node_obsolete(c, fn->raw);
 776        jffs2_free_full_dnode(fn);
 777        f->metadata = new_fn;
 778 out:
 779        if (S_ISLNK(JFFS2_F_I_MODE(f)))
 780                kfree(mdata);
 781        return ret;
 782}
 783
 784static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 785                                        struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
 786{
 787        struct jffs2_full_dirent *new_fd;
 788        struct jffs2_raw_dirent rd;
 789        uint32_t alloclen;
 790        int ret;
 791
 792        rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 793        rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
 794        rd.nsize = strlen(fd->name);
 795        rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
 796        rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
 797
 798        rd.pino = cpu_to_je32(f->inocache->ino);
 799        rd.version = cpu_to_je32(++f->highest_version);
 800        rd.ino = cpu_to_je32(fd->ino);
 801        /* If the times on this inode were set by explicit utime() they can be different,
 802           so refrain from splatting them. */
 803        if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
 804                rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
 805        else
 806                rd.mctime = cpu_to_je32(0);
 807        rd.type = fd->type;
 808        rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
 809        rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
 810
 811        ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
 812                                JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
 813        if (ret) {
 814                printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
 815                       sizeof(rd)+rd.nsize, ret);
 816                return ret;
 817        }
 818        new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
 819
 820        if (IS_ERR(new_fd)) {
 821                printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
 822                return PTR_ERR(new_fd);
 823        }
 824        jffs2_add_fd_to_list(c, new_fd, &f->dents);
 825        return 0;
 826}
 827
 828static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 829                                        struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
 830{
 831        struct jffs2_full_dirent **fdp = &f->dents;
 832        int found = 0;
 833
 834        /* On a medium where we can't actually mark nodes obsolete
 835           pernamently, such as NAND flash, we need to work out
 836           whether this deletion dirent is still needed to actively
 837           delete a 'real' dirent with the same name that's still
 838           somewhere else on the flash. */
 839        if (!jffs2_can_mark_obsolete(c)) {
 840                struct jffs2_raw_dirent *rd;
 841                struct jffs2_raw_node_ref *raw;
 842                int ret;
 843                size_t retlen;
 844                int name_len = strlen(fd->name);
 845                uint32_t name_crc = crc32(0, fd->name, name_len);
 846                uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
 847
 848                rd = kmalloc(rawlen, GFP_KERNEL);
 849                if (!rd)
 850                        return -ENOMEM;
 851
 852                /* Prevent the erase code from nicking the obsolete node refs while
 853                   we're looking at them. I really don't like this extra lock but
 854                   can't see any alternative. Suggestions on a postcard to... */
 855                mutex_lock(&c->erase_free_sem);
 856
 857                for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
 858
 859                        cond_resched();
 860
 861                        /* We only care about obsolete ones */
 862                        if (!(ref_obsolete(raw)))
 863                                continue;
 864
 865                        /* Any dirent with the same name is going to have the same length... */
 866                        if (ref_totlen(c, NULL, raw) != rawlen)
 867                                continue;
 868
 869                        /* Doesn't matter if there's one in the same erase block. We're going to
 870                           delete it too at the same time. */
 871                        if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
 872                                continue;
 873
 874                        D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
 875
 876                        /* This is an obsolete node belonging to the same directory, and it's of the right
 877                           length. We need to take a closer look...*/
 878                        ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
 879                        if (ret) {
 880                                printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
 881                                /* If we can't read it, we don't need to continue to obsolete it. Continue */
 882                                continue;
 883                        }
 884                        if (retlen != rawlen) {
 885                                printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
 886                                       retlen, rawlen, ref_offset(raw));
 887                                continue;
 888                        }
 889
 890                        if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
 891                                continue;
 892
 893                        /* If the name CRC doesn't match, skip */
 894                        if (je32_to_cpu(rd->name_crc) != name_crc)
 895                                continue;
 896
 897                        /* If the name length doesn't match, or it's another deletion dirent, skip */
 898                        if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
 899                                continue;
 900
 901                        /* OK, check the actual name now */
 902                        if (memcmp(rd->name, fd->name, name_len))
 903                                continue;
 904
 905                        /* OK. The name really does match. There really is still an older node on
 906                           the flash which our deletion dirent obsoletes. So we have to write out
 907                           a new deletion dirent to replace it */
 908                        mutex_unlock(&c->erase_free_sem);
 909
 910                        D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
 911                                  ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
 912                        kfree(rd);
 913
 914                        return jffs2_garbage_collect_dirent(c, jeb, f, fd);
 915                }
 916
 917                mutex_unlock(&c->erase_free_sem);
 918                kfree(rd);
 919        }
 920
 921        /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
 922           we should update the metadata node with those times accordingly */
 923
 924        /* No need for it any more. Just mark it obsolete and remove it from the list */
 925        while (*fdp) {
 926                if ((*fdp) == fd) {
 927                        found = 1;
 928                        *fdp = fd->next;
 929                        break;
 930                }
 931                fdp = &(*fdp)->next;
 932        }
 933        if (!found) {
 934                printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
 935        }
 936        jffs2_mark_node_obsolete(c, fd->raw);
 937        jffs2_free_full_dirent(fd);
 938        return 0;
 939}
 940
 941static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
 942                                      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
 943                                      uint32_t start, uint32_t end)
 944{
 945        struct jffs2_raw_inode ri;
 946        struct jffs2_node_frag *frag;
 947        struct jffs2_full_dnode *new_fn;
 948        uint32_t alloclen, ilen;
 949        int ret;
 950
 951        D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
 952                  f->inocache->ino, start, end));
 953
 954        memset(&ri, 0, sizeof(ri));
 955
 956        if(fn->frags > 1) {
 957                size_t readlen;
 958                uint32_t crc;
 959                /* It's partially obsoleted by a later write. So we have to
 960                   write it out again with the _same_ version as before */
 961                ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
 962                if (readlen != sizeof(ri) || ret) {
 963                        printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
 964                        goto fill;
 965                }
 966                if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
 967                        printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
 968                               ref_offset(fn->raw),
 969                               je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
 970                        return -EIO;
 971                }
 972                if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
 973                        printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
 974                               ref_offset(fn->raw),
 975                               je32_to_cpu(ri.totlen), sizeof(ri));
 976                        return -EIO;
 977                }
 978                crc = crc32(0, &ri, sizeof(ri)-8);
 979                if (crc != je32_to_cpu(ri.node_crc)) {
 980                        printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
 981                               ref_offset(fn->raw),
 982                               je32_to_cpu(ri.node_crc), crc);
 983                        /* FIXME: We could possibly deal with this by writing new holes for each frag */
 984                        printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
 985                               start, end, f->inocache->ino);
 986                        goto fill;
 987                }
 988                if (ri.compr != JFFS2_COMPR_ZERO) {
 989                        printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
 990                        printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
 991                               start, end, f->inocache->ino);
 992                        goto fill;
 993                }
 994        } else {
 995        fill:
 996                ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
 997                ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
 998                ri.totlen = cpu_to_je32(sizeof(ri));
 999                ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1000
1001                ri.ino = cpu_to_je32(f->inocache->ino);
1002                ri.version = cpu_to_je32(++f->highest_version);
1003                ri.offset = cpu_to_je32(start);
1004                ri.dsize = cpu_to_je32(end - start);
1005                ri.csize = cpu_to_je32(0);
1006                ri.compr = JFFS2_COMPR_ZERO;
1007        }
1008
1009        frag = frag_last(&f->fragtree);
1010        if (frag)
1011                /* Fetch the inode length from the fragtree rather then
1012                 * from i_size since i_size may have not been updated yet */
1013                ilen = frag->ofs + frag->size;
1014        else
1015                ilen = JFFS2_F_I_SIZE(f);
1016
1017        ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1018        ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1019        ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1020        ri.isize = cpu_to_je32(ilen);
1021        ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1022        ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1023        ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1024        ri.data_crc = cpu_to_je32(0);
1025        ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1026
1027        ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1028                                     JFFS2_SUMMARY_INODE_SIZE);
1029        if (ret) {
1030                printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1031                       sizeof(ri), ret);
1032                return ret;
1033        }
1034        new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1035
1036        if (IS_ERR(new_fn)) {
1037                printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1038                return PTR_ERR(new_fn);
1039        }
1040        if (je32_to_cpu(ri.version) == f->highest_version) {
1041                jffs2_add_full_dnode_to_inode(c, f, new_fn);
1042                if (f->metadata) {
1043                        jffs2_mark_node_obsolete(c, f->metadata->raw);
1044                        jffs2_free_full_dnode(f->metadata);
1045                        f->metadata = NULL;
1046                }
1047                return 0;
1048        }
1049
1050        /*
1051         * We should only get here in the case where the node we are
1052         * replacing had more than one frag, so we kept the same version
1053         * number as before. (Except in case of error -- see 'goto fill;'
1054         * above.)
1055         */
1056        D1(if(unlikely(fn->frags <= 1)) {
1057                printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1058                       fn->frags, je32_to_cpu(ri.version), f->highest_version,
1059                       je32_to_cpu(ri.ino));
1060        });
1061
1062        /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1063        mark_ref_normal(new_fn->raw);
1064
1065        for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1066             frag; frag = frag_next(frag)) {
1067                if (frag->ofs > fn->size + fn->ofs)
1068                        break;
1069                if (frag->node == fn) {
1070                        frag->node = new_fn;
1071                        new_fn->frags++;
1072                        fn->frags--;
1073                }
1074        }
1075        if (fn->frags) {
1076                printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1077                BUG();
1078        }
1079        if (!new_fn->frags) {
1080                printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1081                BUG();
1082        }
1083
1084        jffs2_mark_node_obsolete(c, fn->raw);
1085        jffs2_free_full_dnode(fn);
1086
1087        return 0;
1088}
1089
1090static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb,
1091                                       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1092                                       uint32_t start, uint32_t end)
1093{
1094        struct jffs2_full_dnode *new_fn;
1095        struct jffs2_raw_inode ri;
1096        uint32_t alloclen, offset, orig_end, orig_start;
1097        int ret = 0;
1098        unsigned char *comprbuf = NULL, *writebuf;
1099        unsigned long pg;
1100        unsigned char *pg_ptr;
1101
1102        memset(&ri, 0, sizeof(ri));
1103
1104        D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1105                  f->inocache->ino, start, end));
1106
1107        orig_end = end;
1108        orig_start = start;
1109
1110        if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1111                /* Attempt to do some merging. But only expand to cover logically
1112                   adjacent frags if the block containing them is already considered
1113                   to be dirty. Otherwise we end up with GC just going round in
1114                   circles dirtying the nodes it already wrote out, especially
1115                   on NAND where we have small eraseblocks and hence a much higher
1116                   chance of nodes having to be split to cross boundaries. */
1117
1118                struct jffs2_node_frag *frag;
1119                uint32_t min, max;
1120
1121                min = start & ~(PAGE_CACHE_SIZE-1);
1122                max = min + PAGE_CACHE_SIZE;
1123
1124                frag = jffs2_lookup_node_frag(&f->fragtree, start);
1125
1126                /* BUG_ON(!frag) but that'll happen anyway... */
1127
1128                BUG_ON(frag->ofs != start);
1129
1130                /* First grow down... */
1131                while((frag = frag_prev(frag)) && frag->ofs >= min) {
1132
1133                        /* If the previous frag doesn't even reach the beginning, there's
1134                           excessive fragmentation. Just merge. */
1135                        if (frag->ofs > min) {
1136                                D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1137                                          frag->ofs, frag->ofs+frag->size));
1138                                start = frag->ofs;
1139                                continue;
1140                        }
1141                        /* OK. This frag holds the first byte of the page. */
1142                        if (!frag->node || !frag->node->raw) {
1143                                D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1144                                          frag->ofs, frag->ofs+frag->size));
1145                                break;
1146                        } else {
1147
1148                                /* OK, it's a frag which extends to the beginning of the page. Does it live
1149                                   in a block which is still considered clean? If so, don't obsolete it.
1150                                   If not, cover it anyway. */
1151
1152                                struct jffs2_raw_node_ref *raw = frag->node->raw;
1153                                struct jffs2_eraseblock *jeb;
1154
1155                                jeb = &c->blocks[raw->flash_offset / c->sector_size];
1156
1157                                if (jeb == c->gcblock) {
1158                                        D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1159                                                  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1160                                        start = frag->ofs;
1161                                        break;
1162                                }
1163                                if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1164                                        D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1165                                                  frag->ofs, frag->ofs+frag->size, jeb->offset));
1166                                        break;
1167                                }
1168
1169                                D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1170                                                  frag->ofs, frag->ofs+frag->size, jeb->offset));
1171                                start = frag->ofs;
1172                                break;
1173                        }
1174                }
1175
1176                /* ... then up */
1177
1178                /* Find last frag which is actually part of the node we're to GC. */
1179                frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1180
1181                while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1182
1183                        /* If the previous frag doesn't even reach the beginning, there's lots
1184                           of fragmentation. Just merge. */
1185                        if (frag->ofs+frag->size < max) {
1186                                D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1187                                          frag->ofs, frag->ofs+frag->size));
1188                                end = frag->ofs + frag->size;
1189                                continue;
1190                        }
1191
1192                        if (!frag->node || !frag->node->raw) {
1193                                D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1194                                          frag->ofs, frag->ofs+frag->size));
1195                                break;
1196                        } else {
1197
1198                                /* OK, it's a frag which extends to the beginning of the page. Does it live
1199                                   in a block which is still considered clean? If so, don't obsolete it.
1200                                   If not, cover it anyway. */
1201
1202                                struct jffs2_raw_node_ref *raw = frag->node->raw;
1203                                struct jffs2_eraseblock *jeb;
1204
1205                                jeb = &c->blocks[raw->flash_offset / c->sector_size];
1206
1207                                if (jeb == c->gcblock) {
1208                                        D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1209                                                  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1210                                        end = frag->ofs + frag->size;
1211                                        break;
1212                                }
1213                                if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1214                                        D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1215                                                  frag->ofs, frag->ofs+frag->size, jeb->offset));
1216                                        break;
1217                                }
1218
1219                                D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1220                                                  frag->ofs, frag->ofs+frag->size, jeb->offset));
1221                                end = frag->ofs + frag->size;
1222                                break;
1223                        }
1224                }
1225                D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1226                          orig_start, orig_end, start, end));
1227
1228                D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1229                BUG_ON(end < orig_end);
1230                BUG_ON(start > orig_start);
1231        }
1232
1233        /* First, use readpage() to read the appropriate page into the page cache */
1234        /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1235         *    triggered garbage collection in the first place?
1236         * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1237         *    page OK. We'll actually write it out again in commit_write, which is a little
1238         *    suboptimal, but at least we're correct.
1239         */
1240        pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1241
1242        if (IS_ERR(pg_ptr)) {
1243                printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1244                return PTR_ERR(pg_ptr);
1245        }
1246
1247        offset = start;
1248        while(offset < orig_end) {
1249                uint32_t datalen;
1250                uint32_t cdatalen;
1251                uint16_t comprtype = JFFS2_COMPR_NONE;
1252
1253                ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1254                                        &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1255
1256                if (ret) {
1257                        printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1258                               sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1259                        break;
1260                }
1261                cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1262                datalen = end - offset;
1263
1264                writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1265
1266                comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1267
1268                ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1269                ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1270                ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1271                ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1272
1273                ri.ino = cpu_to_je32(f->inocache->ino);
1274                ri.version = cpu_to_je32(++f->highest_version);
1275                ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1276                ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1277                ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1278                ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1279                ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1280                ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1281                ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1282                ri.offset = cpu_to_je32(offset);
1283                ri.csize = cpu_to_je32(cdatalen);
1284                ri.dsize = cpu_to_je32(datalen);
1285                ri.compr = comprtype & 0xff;
1286                ri.usercompr = (comprtype >> 8) & 0xff;
1287                ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1288                ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1289
1290                new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1291
1292                jffs2_free_comprbuf(comprbuf, writebuf);
1293
1294                if (IS_ERR(new_fn)) {
1295                        printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1296                        ret = PTR_ERR(new_fn);
1297                        break;
1298                }
1299                ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1300                offset += datalen;
1301                if (f->metadata) {
1302                        jffs2_mark_node_obsolete(c, f->metadata->raw);
1303                        jffs2_free_full_dnode(f->metadata);
1304                        f->metadata = NULL;
1305                }
1306        }
1307
1308        jffs2_gc_release_page(c, pg_ptr, &pg);
1309        return ret;
1310}