Showing error 1123

User: Jiri Slaby
Error type: Double Lock
Error type description: Some lock is locked twice unintentionally in a sequence
File location: drivers/char/ipmi/ipmi_si_intf.c
Line in file: 352
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2012-04-29 14:49:11 UTC


Source:

   1/*
   2 * ipmi_si.c
   3 *
   4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
   5 * BT).
   6 *
   7 * Author: MontaVista Software, Inc.
   8 *         Corey Minyard <minyard@mvista.com>
   9 *         source@mvista.com
  10 *
  11 * Copyright 2002 MontaVista Software Inc.
  12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13 *
  14 *  This program is free software; you can redistribute it and/or modify it
  15 *  under the terms of the GNU General Public License as published by the
  16 *  Free Software Foundation; either version 2 of the License, or (at your
  17 *  option) any later version.
  18 *
  19 *
  20 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30 *
  31 *  You should have received a copy of the GNU General Public License along
  32 *  with this program; if not, write to the Free Software Foundation, Inc.,
  33 *  675 Mass Ave, Cambridge, MA 02139, USA.
  34 */
  35
  36/*
  37 * This file holds the "policy" for the interface to the SMI state
  38 * machine.  It does the configuration, handles timers and interrupts,
  39 * and drives the real SMI state machine.
  40 */
  41
  42#include <linux/module.h>
  43#include <linux/moduleparam.h>
  44#include <asm/system.h>
  45#include <linux/sched.h>
  46#include <linux/timer.h>
  47#include <linux/errno.h>
  48#include <linux/spinlock.h>
  49#include <linux/slab.h>
  50#include <linux/delay.h>
  51#include <linux/list.h>
  52#include <linux/pci.h>
  53#include <linux/ioport.h>
  54#include <linux/notifier.h>
  55#include <linux/mutex.h>
  56#include <linux/kthread.h>
  57#include <asm/irq.h>
  58#include <linux/interrupt.h>
  59#include <linux/rcupdate.h>
  60#include <linux/ipmi_smi.h>
  61#include <asm/io.h>
  62#include "ipmi_si_sm.h"
  63#include <linux/init.h>
  64#include <linux/dmi.h>
  65#include <linux/string.h>
  66#include <linux/ctype.h>
  67
  68#ifdef CONFIG_PPC_OF
  69#include <linux/of_device.h>
  70#include <linux/of_platform.h>
  71#endif
  72
  73#define PFX "ipmi_si: "
  74
  75/* Measure times between events in the driver. */
  76#undef DEBUG_TIMING
  77
  78/* Call every 10 ms. */
  79#define SI_TIMEOUT_TIME_USEC        10000
  80#define SI_USEC_PER_JIFFY        (1000000/HZ)
  81#define SI_TIMEOUT_JIFFIES        (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  82#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
  83                                      short timeout */
  84
  85/* Bit for BMC global enables. */
  86#define IPMI_BMC_RCV_MSG_INTR     0x01
  87#define IPMI_BMC_EVT_MSG_INTR     0x02
  88#define IPMI_BMC_EVT_MSG_BUFF     0x04
  89#define IPMI_BMC_SYS_LOG          0x08
  90
  91enum si_intf_state {
  92        SI_NORMAL,
  93        SI_GETTING_FLAGS,
  94        SI_GETTING_EVENTS,
  95        SI_CLEARING_FLAGS,
  96        SI_CLEARING_FLAGS_THEN_SET_IRQ,
  97        SI_GETTING_MESSAGES,
  98        SI_ENABLE_INTERRUPTS1,
  99        SI_ENABLE_INTERRUPTS2,
 100        SI_DISABLE_INTERRUPTS1,
 101        SI_DISABLE_INTERRUPTS2
 102        /* FIXME - add watchdog stuff. */
 103};
 104
 105/* Some BT-specific defines we need here. */
 106#define IPMI_BT_INTMASK_REG                2
 107#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT        2
 108#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT        1
 109
 110enum si_type {
 111    SI_KCS, SI_SMIC, SI_BT
 112};
 113static char *si_to_str[] = { "kcs", "smic", "bt" };
 114
 115#define DEVICE_NAME "ipmi_si"
 116
 117static struct platform_driver ipmi_driver = {
 118        .driver = {
 119                .name = DEVICE_NAME,
 120                .bus = &platform_bus_type
 121        }
 122};
 123
 124
 125/*
 126 * Indexes into stats[] in smi_info below.
 127 */
 128enum si_stat_indexes {
 129        /*
 130         * Number of times the driver requested a timer while an operation
 131         * was in progress.
 132         */
 133        SI_STAT_short_timeouts = 0,
 134
 135        /*
 136         * Number of times the driver requested a timer while nothing was in
 137         * progress.
 138         */
 139        SI_STAT_long_timeouts,
 140
 141        /* Number of times the interface was idle while being polled. */
 142        SI_STAT_idles,
 143
 144        /* Number of interrupts the driver handled. */
 145        SI_STAT_interrupts,
 146
 147        /* Number of time the driver got an ATTN from the hardware. */
 148        SI_STAT_attentions,
 149
 150        /* Number of times the driver requested flags from the hardware. */
 151        SI_STAT_flag_fetches,
 152
 153        /* Number of times the hardware didn't follow the state machine. */
 154        SI_STAT_hosed_count,
 155
 156        /* Number of completed messages. */
 157        SI_STAT_complete_transactions,
 158
 159        /* Number of IPMI events received from the hardware. */
 160        SI_STAT_events,
 161
 162        /* Number of watchdog pretimeouts. */
 163        SI_STAT_watchdog_pretimeouts,
 164
 165        /* Number of asyncronous messages received. */
 166        SI_STAT_incoming_messages,
 167
 168
 169        /* This *must* remain last, add new values above this. */
 170        SI_NUM_STATS
 171};
 172
 173struct smi_info {
 174        int                    intf_num;
 175        ipmi_smi_t             intf;
 176        struct si_sm_data      *si_sm;
 177        struct si_sm_handlers  *handlers;
 178        enum si_type           si_type;
 179        spinlock_t             si_lock;
 180        spinlock_t             msg_lock;
 181        struct list_head       xmit_msgs;
 182        struct list_head       hp_xmit_msgs;
 183        struct ipmi_smi_msg    *curr_msg;
 184        enum si_intf_state     si_state;
 185
 186        /*
 187         * Used to handle the various types of I/O that can occur with
 188         * IPMI
 189         */
 190        struct si_sm_io io;
 191        int (*io_setup)(struct smi_info *info);
 192        void (*io_cleanup)(struct smi_info *info);
 193        int (*irq_setup)(struct smi_info *info);
 194        void (*irq_cleanup)(struct smi_info *info);
 195        unsigned int io_size;
 196        char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
 197        void (*addr_source_cleanup)(struct smi_info *info);
 198        void *addr_source_data;
 199
 200        /*
 201         * Per-OEM handler, called from handle_flags().  Returns 1
 202         * when handle_flags() needs to be re-run or 0 indicating it
 203         * set si_state itself.
 204         */
 205        int (*oem_data_avail_handler)(struct smi_info *smi_info);
 206
 207        /*
 208         * Flags from the last GET_MSG_FLAGS command, used when an ATTN
 209         * is set to hold the flags until we are done handling everything
 210         * from the flags.
 211         */
 212#define RECEIVE_MSG_AVAIL        0x01
 213#define EVENT_MSG_BUFFER_FULL        0x02
 214#define WDT_PRE_TIMEOUT_INT        0x08
 215#define OEM0_DATA_AVAIL     0x20
 216#define OEM1_DATA_AVAIL     0x40
 217#define OEM2_DATA_AVAIL     0x80
 218#define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
 219                             OEM1_DATA_AVAIL | \
 220                             OEM2_DATA_AVAIL)
 221        unsigned char       msg_flags;
 222
 223        /*
 224         * If set to true, this will request events the next time the
 225         * state machine is idle.
 226         */
 227        atomic_t            req_events;
 228
 229        /*
 230         * If true, run the state machine to completion on every send
 231         * call.  Generally used after a panic to make sure stuff goes
 232         * out.
 233         */
 234        int                 run_to_completion;
 235
 236        /* The I/O port of an SI interface. */
 237        int                 port;
 238
 239        /*
 240         * The space between start addresses of the two ports.  For
 241         * instance, if the first port is 0xca2 and the spacing is 4, then
 242         * the second port is 0xca6.
 243         */
 244        unsigned int        spacing;
 245
 246        /* zero if no irq; */
 247        int                 irq;
 248
 249        /* The timer for this si. */
 250        struct timer_list   si_timer;
 251
 252        /* The time (in jiffies) the last timeout occurred at. */
 253        unsigned long       last_timeout_jiffies;
 254
 255        /* Used to gracefully stop the timer without race conditions. */
 256        atomic_t            stop_operation;
 257
 258        /*
 259         * The driver will disable interrupts when it gets into a
 260         * situation where it cannot handle messages due to lack of
 261         * memory.  Once that situation clears up, it will re-enable
 262         * interrupts.
 263         */
 264        int interrupt_disabled;
 265
 266        /* From the get device id response... */
 267        struct ipmi_device_id device_id;
 268
 269        /* Driver model stuff. */
 270        struct device *dev;
 271        struct platform_device *pdev;
 272
 273        /*
 274         * True if we allocated the device, false if it came from
 275         * someplace else (like PCI).
 276         */
 277        int dev_registered;
 278
 279        /* Slave address, could be reported from DMI. */
 280        unsigned char slave_addr;
 281
 282        /* Counters and things for the proc filesystem. */
 283        atomic_t stats[SI_NUM_STATS];
 284
 285        struct task_struct *thread;
 286
 287        struct list_head link;
 288};
 289
 290#define smi_inc_stat(smi, stat) \
 291        atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
 292#define smi_get_stat(smi, stat) \
 293        ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
 294
 295#define SI_MAX_PARMS 4
 296
 297static int force_kipmid[SI_MAX_PARMS];
 298static int num_force_kipmid;
 299
 300static int unload_when_empty = 1;
 301
 302static int try_smi_init(struct smi_info *smi);
 303static void cleanup_one_si(struct smi_info *to_clean);
 304
 305static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
 306static int register_xaction_notifier(struct notifier_block *nb)
 307{
 308        return atomic_notifier_chain_register(&xaction_notifier_list, nb);
 309}
 310
 311static void deliver_recv_msg(struct smi_info *smi_info,
 312                             struct ipmi_smi_msg *msg)
 313{
 314        /* Deliver the message to the upper layer with the lock
 315           released. */
 316        spin_unlock(&(smi_info->si_lock));
 317        ipmi_smi_msg_received(smi_info->intf, msg);
 318        spin_lock(&(smi_info->si_lock));
 319}
 320
 321static void return_hosed_msg(struct smi_info *smi_info, int cCode)
 322{
 323        struct ipmi_smi_msg *msg = smi_info->curr_msg;
 324
 325        if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
 326                cCode = IPMI_ERR_UNSPECIFIED;
 327        /* else use it as is */
 328
 329        /* Make it a reponse */
 330        msg->rsp[0] = msg->data[0] | 4;
 331        msg->rsp[1] = msg->data[1];
 332        msg->rsp[2] = cCode;
 333        msg->rsp_size = 3;
 334
 335        smi_info->curr_msg = NULL;
 336        deliver_recv_msg(smi_info, msg);
 337}
 338
 339static enum si_sm_result start_next_msg(struct smi_info *smi_info)
 340{
 341        int              rv;
 342        struct list_head *entry = NULL;
 343#ifdef DEBUG_TIMING
 344        struct timeval t;
 345#endif
 346
 347        /*
 348         * No need to save flags, we aleady have interrupts off and we
 349         * already hold the SMI lock.
 350         */
 351        if (!smi_info->run_to_completion)
 352                spin_lock(&(smi_info->msg_lock));
 353
 354        /* Pick the high priority queue first. */
 355        if (!list_empty(&(smi_info->hp_xmit_msgs))) {
 356                entry = smi_info->hp_xmit_msgs.next;
 357        } else if (!list_empty(&(smi_info->xmit_msgs))) {
 358                entry = smi_info->xmit_msgs.next;
 359        }
 360
 361        if (!entry) {
 362                smi_info->curr_msg = NULL;
 363                rv = SI_SM_IDLE;
 364        } else {
 365                int err;
 366
 367                list_del(entry);
 368                smi_info->curr_msg = list_entry(entry,
 369                                                struct ipmi_smi_msg,
 370                                                link);
 371#ifdef DEBUG_TIMING
 372                do_gettimeofday(&t);
 373                printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 374#endif
 375                err = atomic_notifier_call_chain(&xaction_notifier_list,
 376                                0, smi_info);
 377                if (err & NOTIFY_STOP_MASK) {
 378                        rv = SI_SM_CALL_WITHOUT_DELAY;
 379                        goto out;
 380                }
 381                err = smi_info->handlers->start_transaction(
 382                        smi_info->si_sm,
 383                        smi_info->curr_msg->data,
 384                        smi_info->curr_msg->data_size);
 385                if (err)
 386                        return_hosed_msg(smi_info, err);
 387
 388                rv = SI_SM_CALL_WITHOUT_DELAY;
 389        }
 390 out:
 391        if (!smi_info->run_to_completion)
 392                spin_unlock(&(smi_info->msg_lock));
 393
 394        return rv;
 395}
 396
 397static void start_enable_irq(struct smi_info *smi_info)
 398{
 399        unsigned char msg[2];
 400
 401        /*
 402         * If we are enabling interrupts, we have to tell the
 403         * BMC to use them.
 404         */
 405        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 406        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 407
 408        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 409        smi_info->si_state = SI_ENABLE_INTERRUPTS1;
 410}
 411
 412static void start_disable_irq(struct smi_info *smi_info)
 413{
 414        unsigned char msg[2];
 415
 416        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 417        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 418
 419        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 420        smi_info->si_state = SI_DISABLE_INTERRUPTS1;
 421}
 422
 423static void start_clear_flags(struct smi_info *smi_info)
 424{
 425        unsigned char msg[3];
 426
 427        /* Make sure the watchdog pre-timeout flag is not set at startup. */
 428        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 429        msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
 430        msg[2] = WDT_PRE_TIMEOUT_INT;
 431
 432        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
 433        smi_info->si_state = SI_CLEARING_FLAGS;
 434}
 435
 436/*
 437 * When we have a situtaion where we run out of memory and cannot
 438 * allocate messages, we just leave them in the BMC and run the system
 439 * polled until we can allocate some memory.  Once we have some
 440 * memory, we will re-enable the interrupt.
 441 */
 442static inline void disable_si_irq(struct smi_info *smi_info)
 443{
 444        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
 445                start_disable_irq(smi_info);
 446                smi_info->interrupt_disabled = 1;
 447        }
 448}
 449
 450static inline void enable_si_irq(struct smi_info *smi_info)
 451{
 452        if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
 453                start_enable_irq(smi_info);
 454                smi_info->interrupt_disabled = 0;
 455        }
 456}
 457
 458static void handle_flags(struct smi_info *smi_info)
 459{
 460 retry:
 461        if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
 462                /* Watchdog pre-timeout */
 463                smi_inc_stat(smi_info, watchdog_pretimeouts);
 464
 465                start_clear_flags(smi_info);
 466                smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
 467                spin_unlock(&(smi_info->si_lock));
 468                ipmi_smi_watchdog_pretimeout(smi_info->intf);
 469                spin_lock(&(smi_info->si_lock));
 470        } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
 471                /* Messages available. */
 472                smi_info->curr_msg = ipmi_alloc_smi_msg();
 473                if (!smi_info->curr_msg) {
 474                        disable_si_irq(smi_info);
 475                        smi_info->si_state = SI_NORMAL;
 476                        return;
 477                }
 478                enable_si_irq(smi_info);
 479
 480                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 481                smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
 482                smi_info->curr_msg->data_size = 2;
 483
 484                smi_info->handlers->start_transaction(
 485                        smi_info->si_sm,
 486                        smi_info->curr_msg->data,
 487                        smi_info->curr_msg->data_size);
 488                smi_info->si_state = SI_GETTING_MESSAGES;
 489        } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
 490                /* Events available. */
 491                smi_info->curr_msg = ipmi_alloc_smi_msg();
 492                if (!smi_info->curr_msg) {
 493                        disable_si_irq(smi_info);
 494                        smi_info->si_state = SI_NORMAL;
 495                        return;
 496                }
 497                enable_si_irq(smi_info);
 498
 499                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 500                smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 501                smi_info->curr_msg->data_size = 2;
 502
 503                smi_info->handlers->start_transaction(
 504                        smi_info->si_sm,
 505                        smi_info->curr_msg->data,
 506                        smi_info->curr_msg->data_size);
 507                smi_info->si_state = SI_GETTING_EVENTS;
 508        } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
 509                   smi_info->oem_data_avail_handler) {
 510                if (smi_info->oem_data_avail_handler(smi_info))
 511                        goto retry;
 512        } else
 513                smi_info->si_state = SI_NORMAL;
 514}
 515
 516static void handle_transaction_done(struct smi_info *smi_info)
 517{
 518        struct ipmi_smi_msg *msg;
 519#ifdef DEBUG_TIMING
 520        struct timeval t;
 521
 522        do_gettimeofday(&t);
 523        printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 524#endif
 525        switch (smi_info->si_state) {
 526        case SI_NORMAL:
 527                if (!smi_info->curr_msg)
 528                        break;
 529
 530                smi_info->curr_msg->rsp_size
 531                        = smi_info->handlers->get_result(
 532                                smi_info->si_sm,
 533                                smi_info->curr_msg->rsp,
 534                                IPMI_MAX_MSG_LENGTH);
 535
 536                /*
 537                 * Do this here becase deliver_recv_msg() releases the
 538                 * lock, and a new message can be put in during the
 539                 * time the lock is released.
 540                 */
 541                msg = smi_info->curr_msg;
 542                smi_info->curr_msg = NULL;
 543                deliver_recv_msg(smi_info, msg);
 544                break;
 545
 546        case SI_GETTING_FLAGS:
 547        {
 548                unsigned char msg[4];
 549                unsigned int  len;
 550
 551                /* We got the flags from the SMI, now handle them. */
 552                len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 553                if (msg[2] != 0) {
 554                        /* Error fetching flags, just give up for now. */
 555                        smi_info->si_state = SI_NORMAL;
 556                } else if (len < 4) {
 557                        /*
 558                         * Hmm, no flags.  That's technically illegal, but
 559                         * don't use uninitialized data.
 560                         */
 561                        smi_info->si_state = SI_NORMAL;
 562                } else {
 563                        smi_info->msg_flags = msg[3];
 564                        handle_flags(smi_info);
 565                }
 566                break;
 567        }
 568
 569        case SI_CLEARING_FLAGS:
 570        case SI_CLEARING_FLAGS_THEN_SET_IRQ:
 571        {
 572                unsigned char msg[3];
 573
 574                /* We cleared the flags. */
 575                smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
 576                if (msg[2] != 0) {
 577                        /* Error clearing flags */
 578                        printk(KERN_WARNING
 579                               "ipmi_si: Error clearing flags: %2.2x\n",
 580                               msg[2]);
 581                }
 582                if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
 583                        start_enable_irq(smi_info);
 584                else
 585                        smi_info->si_state = SI_NORMAL;
 586                break;
 587        }
 588
 589        case SI_GETTING_EVENTS:
 590        {
 591                smi_info->curr_msg->rsp_size
 592                        = smi_info->handlers->get_result(
 593                                smi_info->si_sm,
 594                                smi_info->curr_msg->rsp,
 595                                IPMI_MAX_MSG_LENGTH);
 596
 597                /*
 598                 * Do this here becase deliver_recv_msg() releases the
 599                 * lock, and a new message can be put in during the
 600                 * time the lock is released.
 601                 */
 602                msg = smi_info->curr_msg;
 603                smi_info->curr_msg = NULL;
 604                if (msg->rsp[2] != 0) {
 605                        /* Error getting event, probably done. */
 606                        msg->done(msg);
 607
 608                        /* Take off the event flag. */
 609                        smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
 610                        handle_flags(smi_info);
 611                } else {
 612                        smi_inc_stat(smi_info, events);
 613
 614                        /*
 615                         * Do this before we deliver the message
 616                         * because delivering the message releases the
 617                         * lock and something else can mess with the
 618                         * state.
 619                         */
 620                        handle_flags(smi_info);
 621
 622                        deliver_recv_msg(smi_info, msg);
 623                }
 624                break;
 625        }
 626
 627        case SI_GETTING_MESSAGES:
 628        {
 629                smi_info->curr_msg->rsp_size
 630                        = smi_info->handlers->get_result(
 631                                smi_info->si_sm,
 632                                smi_info->curr_msg->rsp,
 633                                IPMI_MAX_MSG_LENGTH);
 634
 635                /*
 636                 * Do this here becase deliver_recv_msg() releases the
 637                 * lock, and a new message can be put in during the
 638                 * time the lock is released.
 639                 */
 640                msg = smi_info->curr_msg;
 641                smi_info->curr_msg = NULL;
 642                if (msg->rsp[2] != 0) {
 643                        /* Error getting event, probably done. */
 644                        msg->done(msg);
 645
 646                        /* Take off the msg flag. */
 647                        smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
 648                        handle_flags(smi_info);
 649                } else {
 650                        smi_inc_stat(smi_info, incoming_messages);
 651
 652                        /*
 653                         * Do this before we deliver the message
 654                         * because delivering the message releases the
 655                         * lock and something else can mess with the
 656                         * state.
 657                         */
 658                        handle_flags(smi_info);
 659
 660                        deliver_recv_msg(smi_info, msg);
 661                }
 662                break;
 663        }
 664
 665        case SI_ENABLE_INTERRUPTS1:
 666        {
 667                unsigned char msg[4];
 668
 669                /* We got the flags from the SMI, now handle them. */
 670                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 671                if (msg[2] != 0) {
 672                        printk(KERN_WARNING
 673                               "ipmi_si: Could not enable interrupts"
 674                               ", failed get, using polled mode.\n");
 675                        smi_info->si_state = SI_NORMAL;
 676                } else {
 677                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 678                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 679                        msg[2] = (msg[3] |
 680                                  IPMI_BMC_RCV_MSG_INTR |
 681                                  IPMI_BMC_EVT_MSG_INTR);
 682                        smi_info->handlers->start_transaction(
 683                                smi_info->si_sm, msg, 3);
 684                        smi_info->si_state = SI_ENABLE_INTERRUPTS2;
 685                }
 686                break;
 687        }
 688
 689        case SI_ENABLE_INTERRUPTS2:
 690        {
 691                unsigned char msg[4];
 692
 693                /* We got the flags from the SMI, now handle them. */
 694                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 695                if (msg[2] != 0) {
 696                        printk(KERN_WARNING
 697                               "ipmi_si: Could not enable interrupts"
 698                               ", failed set, using polled mode.\n");
 699                }
 700                smi_info->si_state = SI_NORMAL;
 701                break;
 702        }
 703
 704        case SI_DISABLE_INTERRUPTS1:
 705        {
 706                unsigned char msg[4];
 707
 708                /* We got the flags from the SMI, now handle them. */
 709                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 710                if (msg[2] != 0) {
 711                        printk(KERN_WARNING
 712                               "ipmi_si: Could not disable interrupts"
 713                               ", failed get.\n");
 714                        smi_info->si_state = SI_NORMAL;
 715                } else {
 716                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 717                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 718                        msg[2] = (msg[3] &
 719                                  ~(IPMI_BMC_RCV_MSG_INTR |
 720                                    IPMI_BMC_EVT_MSG_INTR));
 721                        smi_info->handlers->start_transaction(
 722                                smi_info->si_sm, msg, 3);
 723                        smi_info->si_state = SI_DISABLE_INTERRUPTS2;
 724                }
 725                break;
 726        }
 727
 728        case SI_DISABLE_INTERRUPTS2:
 729        {
 730                unsigned char msg[4];
 731
 732                /* We got the flags from the SMI, now handle them. */
 733                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 734                if (msg[2] != 0) {
 735                        printk(KERN_WARNING
 736                               "ipmi_si: Could not disable interrupts"
 737                               ", failed set.\n");
 738                }
 739                smi_info->si_state = SI_NORMAL;
 740                break;
 741        }
 742        }
 743}
 744
 745/*
 746 * Called on timeouts and events.  Timeouts should pass the elapsed
 747 * time, interrupts should pass in zero.  Must be called with
 748 * si_lock held and interrupts disabled.
 749 */
 750static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
 751                                           int time)
 752{
 753        enum si_sm_result si_sm_result;
 754
 755 restart:
 756        /*
 757         * There used to be a loop here that waited a little while
 758         * (around 25us) before giving up.  That turned out to be
 759         * pointless, the minimum delays I was seeing were in the 300us
 760         * range, which is far too long to wait in an interrupt.  So
 761         * we just run until the state machine tells us something
 762         * happened or it needs a delay.
 763         */
 764        si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
 765        time = 0;
 766        while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
 767                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 768
 769        if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
 770                smi_inc_stat(smi_info, complete_transactions);
 771
 772                handle_transaction_done(smi_info);
 773                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 774        } else if (si_sm_result == SI_SM_HOSED) {
 775                smi_inc_stat(smi_info, hosed_count);
 776
 777                /*
 778                 * Do the before return_hosed_msg, because that
 779                 * releases the lock.
 780                 */
 781                smi_info->si_state = SI_NORMAL;
 782                if (smi_info->curr_msg != NULL) {
 783                        /*
 784                         * If we were handling a user message, format
 785                         * a response to send to the upper layer to
 786                         * tell it about the error.
 787                         */
 788                        return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
 789                }
 790                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 791        }
 792
 793        /*
 794         * We prefer handling attn over new messages.  But don't do
 795         * this if there is not yet an upper layer to handle anything.
 796         */
 797        if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
 798                unsigned char msg[2];
 799
 800                smi_inc_stat(smi_info, attentions);
 801
 802                /*
 803                 * Got a attn, send down a get message flags to see
 804                 * what's causing it.  It would be better to handle
 805                 * this in the upper layer, but due to the way
 806                 * interrupts work with the SMI, that's not really
 807                 * possible.
 808                 */
 809                msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 810                msg[1] = IPMI_GET_MSG_FLAGS_CMD;
 811
 812                smi_info->handlers->start_transaction(
 813                        smi_info->si_sm, msg, 2);
 814                smi_info->si_state = SI_GETTING_FLAGS;
 815                goto restart;
 816        }
 817
 818        /* If we are currently idle, try to start the next message. */
 819        if (si_sm_result == SI_SM_IDLE) {
 820                smi_inc_stat(smi_info, idles);
 821
 822                si_sm_result = start_next_msg(smi_info);
 823                if (si_sm_result != SI_SM_IDLE)
 824                        goto restart;
 825        }
 826
 827        if ((si_sm_result == SI_SM_IDLE)
 828            && (atomic_read(&smi_info->req_events))) {
 829                /*
 830                 * We are idle and the upper layer requested that I fetch
 831                 * events, so do so.
 832                 */
 833                atomic_set(&smi_info->req_events, 0);
 834
 835                smi_info->curr_msg = ipmi_alloc_smi_msg();
 836                if (!smi_info->curr_msg)
 837                        goto out;
 838
 839                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 840                smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 841                smi_info->curr_msg->data_size = 2;
 842
 843                smi_info->handlers->start_transaction(
 844                        smi_info->si_sm,
 845                        smi_info->curr_msg->data,
 846                        smi_info->curr_msg->data_size);
 847                smi_info->si_state = SI_GETTING_EVENTS;
 848                goto restart;
 849        }
 850 out:
 851        return si_sm_result;
 852}
 853
 854static void sender(void                *send_info,
 855                   struct ipmi_smi_msg *msg,
 856                   int                 priority)
 857{
 858        struct smi_info   *smi_info = send_info;
 859        enum si_sm_result result;
 860        unsigned long     flags;
 861#ifdef DEBUG_TIMING
 862        struct timeval    t;
 863#endif
 864
 865        if (atomic_read(&smi_info->stop_operation)) {
 866                msg->rsp[0] = msg->data[0] | 4;
 867                msg->rsp[1] = msg->data[1];
 868                msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
 869                msg->rsp_size = 3;
 870                deliver_recv_msg(smi_info, msg);
 871                return;
 872        }
 873
 874#ifdef DEBUG_TIMING
 875        do_gettimeofday(&t);
 876        printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 877#endif
 878
 879        if (smi_info->run_to_completion) {
 880                /*
 881                 * If we are running to completion, then throw it in
 882                 * the list and run transactions until everything is
 883                 * clear.  Priority doesn't matter here.
 884                 */
 885
 886                /*
 887                 * Run to completion means we are single-threaded, no
 888                 * need for locks.
 889                 */
 890                list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
 891
 892                result = smi_event_handler(smi_info, 0);
 893                while (result != SI_SM_IDLE) {
 894                        udelay(SI_SHORT_TIMEOUT_USEC);
 895                        result = smi_event_handler(smi_info,
 896                                                   SI_SHORT_TIMEOUT_USEC);
 897                }
 898                return;
 899        }
 900
 901        spin_lock_irqsave(&smi_info->msg_lock, flags);
 902        if (priority > 0)
 903                list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
 904        else
 905                list_add_tail(&msg->link, &smi_info->xmit_msgs);
 906        spin_unlock_irqrestore(&smi_info->msg_lock, flags);
 907
 908        spin_lock_irqsave(&smi_info->si_lock, flags);
 909        if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
 910                start_next_msg(smi_info);
 911        spin_unlock_irqrestore(&smi_info->si_lock, flags);
 912}
 913
 914static void set_run_to_completion(void *send_info, int i_run_to_completion)
 915{
 916        struct smi_info   *smi_info = send_info;
 917        enum si_sm_result result;
 918
 919        smi_info->run_to_completion = i_run_to_completion;
 920        if (i_run_to_completion) {
 921                result = smi_event_handler(smi_info, 0);
 922                while (result != SI_SM_IDLE) {
 923                        udelay(SI_SHORT_TIMEOUT_USEC);
 924                        result = smi_event_handler(smi_info,
 925                                                   SI_SHORT_TIMEOUT_USEC);
 926                }
 927        }
 928}
 929
 930static int ipmi_thread(void *data)
 931{
 932        struct smi_info *smi_info = data;
 933        unsigned long flags;
 934        enum si_sm_result smi_result;
 935
 936        set_user_nice(current, 19);
 937        while (!kthread_should_stop()) {
 938                spin_lock_irqsave(&(smi_info->si_lock), flags);
 939                smi_result = smi_event_handler(smi_info, 0);
 940                spin_unlock_irqrestore(&(smi_info->si_lock), flags);
 941                if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
 942                        ; /* do nothing */
 943                else if (smi_result == SI_SM_CALL_WITH_DELAY)
 944                        schedule();
 945                else
 946                        schedule_timeout_interruptible(1);
 947        }
 948        return 0;
 949}
 950
 951
 952static void poll(void *send_info)
 953{
 954        struct smi_info *smi_info = send_info;
 955        unsigned long flags;
 956
 957        /*
 958         * Make sure there is some delay in the poll loop so we can
 959         * drive time forward and timeout things.
 960         */
 961        udelay(10);
 962        spin_lock_irqsave(&smi_info->si_lock, flags);
 963        smi_event_handler(smi_info, 10);
 964        spin_unlock_irqrestore(&smi_info->si_lock, flags);
 965}
 966
 967static void request_events(void *send_info)
 968{
 969        struct smi_info *smi_info = send_info;
 970
 971        if (atomic_read(&smi_info->stop_operation))
 972                return;
 973
 974        atomic_set(&smi_info->req_events, 1);
 975}
 976
 977static int initialized;
 978
 979static void smi_timeout(unsigned long data)
 980{
 981        struct smi_info   *smi_info = (struct smi_info *) data;
 982        enum si_sm_result smi_result;
 983        unsigned long     flags;
 984        unsigned long     jiffies_now;
 985        long              time_diff;
 986#ifdef DEBUG_TIMING
 987        struct timeval    t;
 988#endif
 989
 990        spin_lock_irqsave(&(smi_info->si_lock), flags);
 991#ifdef DEBUG_TIMING
 992        do_gettimeofday(&t);
 993        printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 994#endif
 995        jiffies_now = jiffies;
 996        time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
 997                     * SI_USEC_PER_JIFFY);
 998        smi_result = smi_event_handler(smi_info, time_diff);
 999
1000        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1001
1002        smi_info->last_timeout_jiffies = jiffies_now;
1003
1004        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1005                /* Running with interrupts, only do long timeouts. */
1006                smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1007                smi_inc_stat(smi_info, long_timeouts);
1008                goto do_add_timer;
1009        }
1010
1011        /*
1012         * If the state machine asks for a short delay, then shorten
1013         * the timer timeout.
1014         */
1015        if (smi_result == SI_SM_CALL_WITH_DELAY) {
1016                smi_inc_stat(smi_info, short_timeouts);
1017                smi_info->si_timer.expires = jiffies + 1;
1018        } else {
1019                smi_inc_stat(smi_info, long_timeouts);
1020                smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1021        }
1022
1023 do_add_timer:
1024        add_timer(&(smi_info->si_timer));
1025}
1026
1027static irqreturn_t si_irq_handler(int irq, void *data)
1028{
1029        struct smi_info *smi_info = data;
1030        unsigned long   flags;
1031#ifdef DEBUG_TIMING
1032        struct timeval  t;
1033#endif
1034
1035        spin_lock_irqsave(&(smi_info->si_lock), flags);
1036
1037        smi_inc_stat(smi_info, interrupts);
1038
1039#ifdef DEBUG_TIMING
1040        do_gettimeofday(&t);
1041        printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1042#endif
1043        smi_event_handler(smi_info, 0);
1044        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1045        return IRQ_HANDLED;
1046}
1047
1048static irqreturn_t si_bt_irq_handler(int irq, void *data)
1049{
1050        struct smi_info *smi_info = data;
1051        /* We need to clear the IRQ flag for the BT interface. */
1052        smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1053                             IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1054                             | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1055        return si_irq_handler(irq, data);
1056}
1057
1058static int smi_start_processing(void       *send_info,
1059                                ipmi_smi_t intf)
1060{
1061        struct smi_info *new_smi = send_info;
1062        int             enable = 0;
1063
1064        new_smi->intf = intf;
1065
1066        /* Try to claim any interrupts. */
1067        if (new_smi->irq_setup)
1068                new_smi->irq_setup(new_smi);
1069
1070        /* Set up the timer that drives the interface. */
1071        setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1072        new_smi->last_timeout_jiffies = jiffies;
1073        mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1074
1075        /*
1076         * Check if the user forcefully enabled the daemon.
1077         */
1078        if (new_smi->intf_num < num_force_kipmid)
1079                enable = force_kipmid[new_smi->intf_num];
1080        /*
1081         * The BT interface is efficient enough to not need a thread,
1082         * and there is no need for a thread if we have interrupts.
1083         */
1084        else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1085                enable = 1;
1086
1087        if (enable) {
1088                new_smi->thread = kthread_run(ipmi_thread, new_smi,
1089                                              "kipmi%d", new_smi->intf_num);
1090                if (IS_ERR(new_smi->thread)) {
1091                        printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1092                               " kernel thread due to error %ld, only using"
1093                               " timers to drive the interface\n",
1094                               PTR_ERR(new_smi->thread));
1095                        new_smi->thread = NULL;
1096                }
1097        }
1098
1099        return 0;
1100}
1101
1102static void set_maintenance_mode(void *send_info, int enable)
1103{
1104        struct smi_info   *smi_info = send_info;
1105
1106        if (!enable)
1107                atomic_set(&smi_info->req_events, 0);
1108}
1109
1110static struct ipmi_smi_handlers handlers = {
1111        .owner                  = THIS_MODULE,
1112        .start_processing       = smi_start_processing,
1113        .sender                        = sender,
1114        .request_events                = request_events,
1115        .set_maintenance_mode   = set_maintenance_mode,
1116        .set_run_to_completion  = set_run_to_completion,
1117        .poll                        = poll,
1118};
1119
1120/*
1121 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1122 * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1123 */
1124
1125static LIST_HEAD(smi_infos);
1126static DEFINE_MUTEX(smi_infos_lock);
1127static int smi_num; /* Used to sequence the SMIs */
1128
1129#define DEFAULT_REGSPACING        1
1130#define DEFAULT_REGSIZE                1
1131
1132static int           si_trydefaults = 1;
1133static char          *si_type[SI_MAX_PARMS];
1134#define MAX_SI_TYPE_STR 30
1135static char          si_type_str[MAX_SI_TYPE_STR];
1136static unsigned long addrs[SI_MAX_PARMS];
1137static unsigned int num_addrs;
1138static unsigned int  ports[SI_MAX_PARMS];
1139static unsigned int num_ports;
1140static int           irqs[SI_MAX_PARMS];
1141static unsigned int num_irqs;
1142static int           regspacings[SI_MAX_PARMS];
1143static unsigned int num_regspacings;
1144static int           regsizes[SI_MAX_PARMS];
1145static unsigned int num_regsizes;
1146static int           regshifts[SI_MAX_PARMS];
1147static unsigned int num_regshifts;
1148static int slave_addrs[SI_MAX_PARMS];
1149static unsigned int num_slave_addrs;
1150
1151#define IPMI_IO_ADDR_SPACE  0
1152#define IPMI_MEM_ADDR_SPACE 1
1153static char *addr_space_to_str[] = { "i/o", "mem" };
1154
1155static int hotmod_handler(const char *val, struct kernel_param *kp);
1156
1157module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1158MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1159                 " Documentation/IPMI.txt in the kernel sources for the"
1160                 " gory details.");
1161
1162module_param_named(trydefaults, si_trydefaults, bool, 0);
1163MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1164                 " default scan of the KCS and SMIC interface at the standard"
1165                 " address");
1166module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1167MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1168                 " interface separated by commas.  The types are 'kcs',"
1169                 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1170                 " the first interface to kcs and the second to bt");
1171module_param_array(addrs, ulong, &num_addrs, 0);
1172MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1173                 " addresses separated by commas.  Only use if an interface"
1174                 " is in memory.  Otherwise, set it to zero or leave"
1175                 " it blank.");
1176module_param_array(ports, uint, &num_ports, 0);
1177MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1178                 " addresses separated by commas.  Only use if an interface"
1179                 " is a port.  Otherwise, set it to zero or leave"
1180                 " it blank.");
1181module_param_array(irqs, int, &num_irqs, 0);
1182MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1183                 " addresses separated by commas.  Only use if an interface"
1184                 " has an interrupt.  Otherwise, set it to zero or leave"
1185                 " it blank.");
1186module_param_array(regspacings, int, &num_regspacings, 0);
1187MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1188                 " and each successive register used by the interface.  For"
1189                 " instance, if the start address is 0xca2 and the spacing"
1190                 " is 2, then the second address is at 0xca4.  Defaults"
1191                 " to 1.");
1192module_param_array(regsizes, int, &num_regsizes, 0);
1193MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1194                 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1195                 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1196                 " the 8-bit IPMI register has to be read from a larger"
1197                 " register.");
1198module_param_array(regshifts, int, &num_regshifts, 0);
1199MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1200                 " IPMI register, in bits.  For instance, if the data"
1201                 " is read from a 32-bit word and the IPMI data is in"
1202                 " bit 8-15, then the shift would be 8");
1203module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1204MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1205                 " the controller.  Normally this is 0x20, but can be"
1206                 " overridden by this parm.  This is an array indexed"
1207                 " by interface number.");
1208module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1209MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1210                 " disabled(0).  Normally the IPMI driver auto-detects"
1211                 " this, but the value may be overridden by this parm.");
1212module_param(unload_when_empty, int, 0);
1213MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1214                 " specified or found, default is 1.  Setting to 0"
1215                 " is useful for hot add of devices using hotmod.");
1216
1217
1218static void std_irq_cleanup(struct smi_info *info)
1219{
1220        if (info->si_type == SI_BT)
1221                /* Disable the interrupt in the BT interface. */
1222                info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1223        free_irq(info->irq, info);
1224}
1225
1226static int std_irq_setup(struct smi_info *info)
1227{
1228        int rv;
1229
1230        if (!info->irq)
1231                return 0;
1232
1233        if (info->si_type == SI_BT) {
1234                rv = request_irq(info->irq,
1235                                 si_bt_irq_handler,
1236                                 IRQF_SHARED | IRQF_DISABLED,
1237                                 DEVICE_NAME,
1238                                 info);
1239                if (!rv)
1240                        /* Enable the interrupt in the BT interface. */
1241                        info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1242                                         IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1243        } else
1244                rv = request_irq(info->irq,
1245                                 si_irq_handler,
1246                                 IRQF_SHARED | IRQF_DISABLED,
1247                                 DEVICE_NAME,
1248                                 info);
1249        if (rv) {
1250                printk(KERN_WARNING
1251                       "ipmi_si: %s unable to claim interrupt %d,"
1252                       " running polled\n",
1253                       DEVICE_NAME, info->irq);
1254                info->irq = 0;
1255        } else {
1256                info->irq_cleanup = std_irq_cleanup;
1257                printk("  Using irq %d\n", info->irq);
1258        }
1259
1260        return rv;
1261}
1262
1263static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1264{
1265        unsigned int addr = io->addr_data;
1266
1267        return inb(addr + (offset * io->regspacing));
1268}
1269
1270static void port_outb(struct si_sm_io *io, unsigned int offset,
1271                      unsigned char b)
1272{
1273        unsigned int addr = io->addr_data;
1274
1275        outb(b, addr + (offset * io->regspacing));
1276}
1277
1278static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1279{
1280        unsigned int addr = io->addr_data;
1281
1282        return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1283}
1284
1285static void port_outw(struct si_sm_io *io, unsigned int offset,
1286                      unsigned char b)
1287{
1288        unsigned int addr = io->addr_data;
1289
1290        outw(b << io->regshift, addr + (offset * io->regspacing));
1291}
1292
1293static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1294{
1295        unsigned int addr = io->addr_data;
1296
1297        return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1298}
1299
1300static void port_outl(struct si_sm_io *io, unsigned int offset,
1301                      unsigned char b)
1302{
1303        unsigned int addr = io->addr_data;
1304
1305        outl(b << io->regshift, addr+(offset * io->regspacing));
1306}
1307
1308static void port_cleanup(struct smi_info *info)
1309{
1310        unsigned int addr = info->io.addr_data;
1311        int          idx;
1312
1313        if (addr) {
1314                for (idx = 0; idx < info->io_size; idx++)
1315                        release_region(addr + idx * info->io.regspacing,
1316                                       info->io.regsize);
1317        }
1318}
1319
1320static int port_setup(struct smi_info *info)
1321{
1322        unsigned int addr = info->io.addr_data;
1323        int          idx;
1324
1325        if (!addr)
1326                return -ENODEV;
1327
1328        info->io_cleanup = port_cleanup;
1329
1330        /*
1331         * Figure out the actual inb/inw/inl/etc routine to use based
1332         * upon the register size.
1333         */
1334        switch (info->io.regsize) {
1335        case 1:
1336                info->io.inputb = port_inb;
1337                info->io.outputb = port_outb;
1338                break;
1339        case 2:
1340                info->io.inputb = port_inw;
1341                info->io.outputb = port_outw;
1342                break;
1343        case 4:
1344                info->io.inputb = port_inl;
1345                info->io.outputb = port_outl;
1346                break;
1347        default:
1348                printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1349                       info->io.regsize);
1350                return -EINVAL;
1351        }
1352
1353        /*
1354         * Some BIOSes reserve disjoint I/O regions in their ACPI
1355         * tables.  This causes problems when trying to register the
1356         * entire I/O region.  Therefore we must register each I/O
1357         * port separately.
1358         */
1359        for (idx = 0; idx < info->io_size; idx++) {
1360                if (request_region(addr + idx * info->io.regspacing,
1361                                   info->io.regsize, DEVICE_NAME) == NULL) {
1362                        /* Undo allocations */
1363                        while (idx--) {
1364                                release_region(addr + idx * info->io.regspacing,
1365                                               info->io.regsize);
1366                        }
1367                        return -EIO;
1368                }
1369        }
1370        return 0;
1371}
1372
1373static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1374{
1375        return readb((io->addr)+(offset * io->regspacing));
1376}
1377
1378static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1379                     unsigned char b)
1380{
1381        writeb(b, (io->addr)+(offset * io->regspacing));
1382}
1383
1384static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1385{
1386        return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1387                & 0xff;
1388}
1389
1390static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1391                     unsigned char b)
1392{
1393        writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1394}
1395
1396static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1397{
1398        return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1399                & 0xff;
1400}
1401
1402static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1403                     unsigned char b)
1404{
1405        writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1406}
1407
1408#ifdef readq
1409static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1410{
1411        return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1412                & 0xff;
1413}
1414
1415static void mem_outq(struct si_sm_io *io, unsigned int offset,
1416                     unsigned char b)
1417{
1418        writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1419}
1420#endif
1421
1422static void mem_cleanup(struct smi_info *info)
1423{
1424        unsigned long addr = info->io.addr_data;
1425        int           mapsize;
1426
1427        if (info->io.addr) {
1428                iounmap(info->io.addr);
1429
1430                mapsize = ((info->io_size * info->io.regspacing)
1431                           - (info->io.regspacing - info->io.regsize));
1432
1433                release_mem_region(addr, mapsize);
1434        }
1435}
1436
1437static int mem_setup(struct smi_info *info)
1438{
1439        unsigned long addr = info->io.addr_data;
1440        int           mapsize;
1441
1442        if (!addr)
1443                return -ENODEV;
1444
1445        info->io_cleanup = mem_cleanup;
1446
1447        /*
1448         * Figure out the actual readb/readw/readl/etc routine to use based
1449         * upon the register size.
1450         */
1451        switch (info->io.regsize) {
1452        case 1:
1453                info->io.inputb = intf_mem_inb;
1454                info->io.outputb = intf_mem_outb;
1455                break;
1456        case 2:
1457                info->io.inputb = intf_mem_inw;
1458                info->io.outputb = intf_mem_outw;
1459                break;
1460        case 4:
1461                info->io.inputb = intf_mem_inl;
1462                info->io.outputb = intf_mem_outl;
1463                break;
1464#ifdef readq
1465        case 8:
1466                info->io.inputb = mem_inq;
1467                info->io.outputb = mem_outq;
1468                break;
1469#endif
1470        default:
1471                printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1472                       info->io.regsize);
1473                return -EINVAL;
1474        }
1475
1476        /*
1477         * Calculate the total amount of memory to claim.  This is an
1478         * unusual looking calculation, but it avoids claiming any
1479         * more memory than it has to.  It will claim everything
1480         * between the first address to the end of the last full
1481         * register.
1482         */
1483        mapsize = ((info->io_size * info->io.regspacing)
1484                   - (info->io.regspacing - info->io.regsize));
1485
1486        if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1487                return -EIO;
1488
1489        info->io.addr = ioremap(addr, mapsize);
1490        if (info->io.addr == NULL) {
1491                release_mem_region(addr, mapsize);
1492                return -EIO;
1493        }
1494        return 0;
1495}
1496
1497/*
1498 * Parms come in as <op1>[:op2[:op3...]].  ops are:
1499 *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1500 * Options are:
1501 *   rsp=<regspacing>
1502 *   rsi=<regsize>
1503 *   rsh=<regshift>
1504 *   irq=<irq>
1505 *   ipmb=<ipmb addr>
1506 */
1507enum hotmod_op { HM_ADD, HM_REMOVE };
1508struct hotmod_vals {
1509        char *name;
1510        int  val;
1511};
1512static struct hotmod_vals hotmod_ops[] = {
1513        { "add",        HM_ADD },
1514        { "remove",        HM_REMOVE },
1515        { NULL }
1516};
1517static struct hotmod_vals hotmod_si[] = {
1518        { "kcs",        SI_KCS },
1519        { "smic",        SI_SMIC },
1520        { "bt",                SI_BT },
1521        { NULL }
1522};
1523static struct hotmod_vals hotmod_as[] = {
1524        { "mem",        IPMI_MEM_ADDR_SPACE },
1525        { "i/o",        IPMI_IO_ADDR_SPACE },
1526        { NULL }
1527};
1528
1529static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1530{
1531        char *s;
1532        int  i;
1533
1534        s = strchr(*curr, ',');
1535        if (!s) {
1536                printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1537                return -EINVAL;
1538        }
1539        *s = '\0';
1540        s++;
1541        for (i = 0; hotmod_ops[i].name; i++) {
1542                if (strcmp(*curr, v[i].name) == 0) {
1543                        *val = v[i].val;
1544                        *curr = s;
1545                        return 0;
1546                }
1547        }
1548
1549        printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1550        return -EINVAL;
1551}
1552
1553static int check_hotmod_int_op(const char *curr, const char *option,
1554                               const char *name, int *val)
1555{
1556        char *n;
1557
1558        if (strcmp(curr, name) == 0) {
1559                if (!option) {
1560                        printk(KERN_WARNING PFX
1561                               "No option given for '%s'\n",
1562                               curr);
1563                        return -EINVAL;
1564                }
1565                *val = simple_strtoul(option, &n, 0);
1566                if ((*n != '\0') || (*option == '\0')) {
1567                        printk(KERN_WARNING PFX
1568                               "Bad option given for '%s'\n",
1569                               curr);
1570                        return -EINVAL;
1571                }
1572                return 1;
1573        }
1574        return 0;
1575}
1576
1577static int hotmod_handler(const char *val, struct kernel_param *kp)
1578{
1579        char *str = kstrdup(val, GFP_KERNEL);
1580        int  rv;
1581        char *next, *curr, *s, *n, *o;
1582        enum hotmod_op op;
1583        enum si_type si_type;
1584        int  addr_space;
1585        unsigned long addr;
1586        int regspacing;
1587        int regsize;
1588        int regshift;
1589        int irq;
1590        int ipmb;
1591        int ival;
1592        int len;
1593        struct smi_info *info;
1594
1595        if (!str)
1596                return -ENOMEM;
1597
1598        /* Kill any trailing spaces, as we can get a "\n" from echo. */
1599        len = strlen(str);
1600        ival = len - 1;
1601        while ((ival >= 0) && isspace(str[ival])) {
1602                str[ival] = '\0';
1603                ival--;
1604        }
1605
1606        for (curr = str; curr; curr = next) {
1607                regspacing = 1;
1608                regsize = 1;
1609                regshift = 0;
1610                irq = 0;
1611                ipmb = 0x20;
1612
1613                next = strchr(curr, ':');
1614                if (next) {
1615                        *next = '\0';
1616                        next++;
1617                }
1618
1619                rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1620                if (rv)
1621                        break;
1622                op = ival;
1623
1624                rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1625                if (rv)
1626                        break;
1627                si_type = ival;
1628
1629                rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1630                if (rv)
1631                        break;
1632
1633                s = strchr(curr, ',');
1634                if (s) {
1635                        *s = '\0';
1636                        s++;
1637                }
1638                addr = simple_strtoul(curr, &n, 0);
1639                if ((*n != '\0') || (*curr == '\0')) {
1640                        printk(KERN_WARNING PFX "Invalid hotmod address"
1641                               " '%s'\n", curr);
1642                        break;
1643                }
1644
1645                while (s) {
1646                        curr = s;
1647                        s = strchr(curr, ',');
1648                        if (s) {
1649                                *s = '\0';
1650                                s++;
1651                        }
1652                        o = strchr(curr, '=');
1653                        if (o) {
1654                                *o = '\0';
1655                                o++;
1656                        }
1657                        rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1658                        if (rv < 0)
1659                                goto out;
1660                        else if (rv)
1661                                continue;
1662                        rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1663                        if (rv < 0)
1664                                goto out;
1665                        else if (rv)
1666                                continue;
1667                        rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1668                        if (rv < 0)
1669                                goto out;
1670                        else if (rv)
1671                                continue;
1672                        rv = check_hotmod_int_op(curr, o, "irq", &irq);
1673                        if (rv < 0)
1674                                goto out;
1675                        else if (rv)
1676                                continue;
1677                        rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1678                        if (rv < 0)
1679                                goto out;
1680                        else if (rv)
1681                                continue;
1682
1683                        rv = -EINVAL;
1684                        printk(KERN_WARNING PFX
1685                               "Invalid hotmod option '%s'\n",
1686                               curr);
1687                        goto out;
1688                }
1689
1690                if (op == HM_ADD) {
1691                        info = kzalloc(sizeof(*info), GFP_KERNEL);
1692                        if (!info) {
1693                                rv = -ENOMEM;
1694                                goto out;
1695                        }
1696
1697                        info->addr_source = "hotmod";
1698                        info->si_type = si_type;
1699                        info->io.addr_data = addr;
1700                        info->io.addr_type = addr_space;
1701                        if (addr_space == IPMI_MEM_ADDR_SPACE)
1702                                info->io_setup = mem_setup;
1703                        else
1704                                info->io_setup = port_setup;
1705
1706                        info->io.addr = NULL;
1707                        info->io.regspacing = regspacing;
1708                        if (!info->io.regspacing)
1709                                info->io.regspacing = DEFAULT_REGSPACING;
1710                        info->io.regsize = regsize;
1711                        if (!info->io.regsize)
1712                                info->io.regsize = DEFAULT_REGSPACING;
1713                        info->io.regshift = regshift;
1714                        info->irq = irq;
1715                        if (info->irq)
1716                                info->irq_setup = std_irq_setup;
1717                        info->slave_addr = ipmb;
1718
1719                        try_smi_init(info);
1720                } else {
1721                        /* remove */
1722                        struct smi_info *e, *tmp_e;
1723
1724                        mutex_lock(&smi_infos_lock);
1725                        list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1726                                if (e->io.addr_type != addr_space)
1727                                        continue;
1728                                if (e->si_type != si_type)
1729                                        continue;
1730                                if (e->io.addr_data == addr)
1731                                        cleanup_one_si(e);
1732                        }
1733                        mutex_unlock(&smi_infos_lock);
1734                }
1735        }
1736        rv = len;
1737 out:
1738        kfree(str);
1739        return rv;
1740}
1741
1742static __devinit void hardcode_find_bmc(void)
1743{
1744        int             i;
1745        struct smi_info *info;
1746
1747        for (i = 0; i < SI_MAX_PARMS; i++) {
1748                if (!ports[i] && !addrs[i])
1749                        continue;
1750
1751                info = kzalloc(sizeof(*info), GFP_KERNEL);
1752                if (!info)
1753                        return;
1754
1755                info->addr_source = "hardcoded";
1756
1757                if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1758                        info->si_type = SI_KCS;
1759                } else if (strcmp(si_type[i], "smic") == 0) {
1760                        info->si_type = SI_SMIC;
1761                } else if (strcmp(si_type[i], "bt") == 0) {
1762                        info->si_type = SI_BT;
1763                } else {
1764                        printk(KERN_WARNING
1765                               "ipmi_si: Interface type specified "
1766                               "for interface %d, was invalid: %s\n",
1767                               i, si_type[i]);
1768                        kfree(info);
1769                        continue;
1770                }
1771
1772                if (ports[i]) {
1773                        /* An I/O port */
1774                        info->io_setup = port_setup;
1775                        info->io.addr_data = ports[i];
1776                        info->io.addr_type = IPMI_IO_ADDR_SPACE;
1777                } else if (addrs[i]) {
1778                        /* A memory port */
1779                        info->io_setup = mem_setup;
1780                        info->io.addr_data = addrs[i];
1781                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1782                } else {
1783                        printk(KERN_WARNING
1784                               "ipmi_si: Interface type specified "
1785                               "for interface %d, "
1786                               "but port and address were not set or "
1787                               "set to zero.\n", i);
1788                        kfree(info);
1789                        continue;
1790                }
1791
1792                info->io.addr = NULL;
1793                info->io.regspacing = regspacings[i];
1794                if (!info->io.regspacing)
1795                        info->io.regspacing = DEFAULT_REGSPACING;
1796                info->io.regsize = regsizes[i];
1797                if (!info->io.regsize)
1798                        info->io.regsize = DEFAULT_REGSPACING;
1799                info->io.regshift = regshifts[i];
1800                info->irq = irqs[i];
1801                if (info->irq)
1802                        info->irq_setup = std_irq_setup;
1803
1804                try_smi_init(info);
1805        }
1806}
1807
1808#ifdef CONFIG_ACPI
1809
1810#include <linux/acpi.h>
1811
1812/*
1813 * Once we get an ACPI failure, we don't try any more, because we go
1814 * through the tables sequentially.  Once we don't find a table, there
1815 * are no more.
1816 */
1817static int acpi_failure;
1818
1819/* For GPE-type interrupts. */
1820static u32 ipmi_acpi_gpe(void *context)
1821{
1822        struct smi_info *smi_info = context;
1823        unsigned long   flags;
1824#ifdef DEBUG_TIMING
1825        struct timeval t;
1826#endif
1827
1828        spin_lock_irqsave(&(smi_info->si_lock), flags);
1829
1830        smi_inc_stat(smi_info, interrupts);
1831
1832#ifdef DEBUG_TIMING
1833        do_gettimeofday(&t);
1834        printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1835#endif
1836        smi_event_handler(smi_info, 0);
1837        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1838
1839        return ACPI_INTERRUPT_HANDLED;
1840}
1841
1842static void acpi_gpe_irq_cleanup(struct smi_info *info)
1843{
1844        if (!info->irq)
1845                return;
1846
1847        acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1848}
1849
1850static int acpi_gpe_irq_setup(struct smi_info *info)
1851{
1852        acpi_status status;
1853
1854        if (!info->irq)
1855                return 0;
1856
1857        /* FIXME - is level triggered right? */
1858        status = acpi_install_gpe_handler(NULL,
1859                                          info->irq,
1860                                          ACPI_GPE_LEVEL_TRIGGERED,
1861                                          &ipmi_acpi_gpe,
1862                                          info);
1863        if (status != AE_OK) {
1864                printk(KERN_WARNING
1865                       "ipmi_si: %s unable to claim ACPI GPE %d,"
1866                       " running polled\n",
1867                       DEVICE_NAME, info->irq);
1868                info->irq = 0;
1869                return -EINVAL;
1870        } else {
1871                info->irq_cleanup = acpi_gpe_irq_cleanup;
1872                printk("  Using ACPI GPE %d\n", info->irq);
1873                return 0;
1874        }
1875}
1876
1877/*
1878 * Defined at
1879 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1880 * Docs/TechPapers/IA64/hpspmi.pdf
1881 */
1882struct SPMITable {
1883        s8        Signature[4];
1884        u32        Length;
1885        u8        Revision;
1886        u8        Checksum;
1887        s8        OEMID[6];
1888        s8        OEMTableID[8];
1889        s8        OEMRevision[4];
1890        s8        CreatorID[4];
1891        s8        CreatorRevision[4];
1892        u8        InterfaceType;
1893        u8        IPMIlegacy;
1894        s16        SpecificationRevision;
1895
1896        /*
1897         * Bit 0 - SCI interrupt supported
1898         * Bit 1 - I/O APIC/SAPIC
1899         */
1900        u8        InterruptType;
1901
1902        /*
1903         * If bit 0 of InterruptType is set, then this is the SCI
1904         * interrupt in the GPEx_STS register.
1905         */
1906        u8        GPE;
1907
1908        s16        Reserved;
1909
1910        /*
1911         * If bit 1 of InterruptType is set, then this is the I/O
1912         * APIC/SAPIC interrupt.
1913         */
1914        u32        GlobalSystemInterrupt;
1915
1916        /* The actual register address. */
1917        struct acpi_generic_address addr;
1918
1919        u8        UID[4];
1920
1921        s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1922};
1923
1924static __devinit int try_init_acpi(struct SPMITable *spmi)
1925{
1926        struct smi_info  *info;
1927        u8                  addr_space;
1928
1929        if (spmi->IPMIlegacy != 1) {
1930            printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1931            return -ENODEV;
1932        }
1933
1934        if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1935                addr_space = IPMI_MEM_ADDR_SPACE;
1936        else
1937                addr_space = IPMI_IO_ADDR_SPACE;
1938
1939        info = kzalloc(sizeof(*info), GFP_KERNEL);
1940        if (!info) {
1941                printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1942                return -ENOMEM;
1943        }
1944
1945        info->addr_source = "ACPI";
1946
1947        /* Figure out the interface type. */
1948        switch (spmi->InterfaceType) {
1949        case 1:        /* KCS */
1950                info->si_type = SI_KCS;
1951                break;
1952        case 2:        /* SMIC */
1953                info->si_type = SI_SMIC;
1954                break;
1955        case 3:        /* BT */
1956                info->si_type = SI_BT;
1957                break;
1958        default:
1959                printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1960                        spmi->InterfaceType);
1961                kfree(info);
1962                return -EIO;
1963        }
1964
1965        if (spmi->InterruptType & 1) {
1966                /* We've got a GPE interrupt. */
1967                info->irq = spmi->GPE;
1968                info->irq_setup = acpi_gpe_irq_setup;
1969        } else if (spmi->InterruptType & 2) {
1970                /* We've got an APIC/SAPIC interrupt. */
1971                info->irq = spmi->GlobalSystemInterrupt;
1972                info->irq_setup = std_irq_setup;
1973        } else {
1974                /* Use the default interrupt setting. */
1975                info->irq = 0;
1976                info->irq_setup = NULL;
1977        }
1978
1979        if (spmi->addr.bit_width) {
1980                /* A (hopefully) properly formed register bit width. */
1981                info->io.regspacing = spmi->addr.bit_width / 8;
1982        } else {
1983                info->io.regspacing = DEFAULT_REGSPACING;
1984        }
1985        info->io.regsize = info->io.regspacing;
1986        info->io.regshift = spmi->addr.bit_offset;
1987
1988        if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1989                info->io_setup = mem_setup;
1990                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1991        } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1992                info->io_setup = port_setup;
1993                info->io.addr_type = IPMI_IO_ADDR_SPACE;
1994        } else {
1995                kfree(info);
1996                printk(KERN_WARNING
1997                       "ipmi_si: Unknown ACPI I/O Address type\n");
1998                return -EIO;
1999        }
2000        info->io.addr_data = spmi->addr.address;
2001
2002        try_smi_init(info);
2003
2004        return 0;
2005}
2006
2007static __devinit void acpi_find_bmc(void)
2008{
2009        acpi_status      status;
2010        struct SPMITable *spmi;
2011        int              i;
2012
2013        if (acpi_disabled)
2014                return;
2015
2016        if (acpi_failure)
2017                return;
2018
2019        for (i = 0; ; i++) {
2020                status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2021                                        (struct acpi_table_header **)&spmi);
2022                if (status != AE_OK)
2023                        return;
2024
2025                try_init_acpi(spmi);
2026        }
2027}
2028#endif
2029
2030#ifdef CONFIG_DMI
2031struct dmi_ipmi_data {
2032        u8                   type;
2033        u8                   addr_space;
2034        unsigned long        base_addr;
2035        u8                   irq;
2036        u8              offset;
2037        u8              slave_addr;
2038};
2039
2040static int __devinit decode_dmi(const struct dmi_header *dm,
2041                                struct dmi_ipmi_data *dmi)
2042{
2043        const u8        *data = (const u8 *)dm;
2044        unsigned long          base_addr;
2045        u8                reg_spacing;
2046        u8              len = dm->length;
2047
2048        dmi->type = data[4];
2049
2050        memcpy(&base_addr, data+8, sizeof(unsigned long));
2051        if (len >= 0x11) {
2052                if (base_addr & 1) {
2053                        /* I/O */
2054                        base_addr &= 0xFFFE;
2055                        dmi->addr_space = IPMI_IO_ADDR_SPACE;
2056                } else
2057                        /* Memory */
2058                        dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2059
2060                /* If bit 4 of byte 0x10 is set, then the lsb for the address
2061                   is odd. */
2062                dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2063
2064                dmi->irq = data[0x11];
2065
2066                /* The top two bits of byte 0x10 hold the register spacing. */
2067                reg_spacing = (data[0x10] & 0xC0) >> 6;
2068                switch (reg_spacing) {
2069                case 0x00: /* Byte boundaries */
2070                    dmi->offset = 1;
2071                    break;
2072                case 0x01: /* 32-bit boundaries */
2073                    dmi->offset = 4;
2074                    break;
2075                case 0x02: /* 16-byte boundaries */
2076                    dmi->offset = 16;
2077                    break;
2078                default:
2079                    /* Some other interface, just ignore it. */
2080                    return -EIO;
2081                }
2082        } else {
2083                /* Old DMI spec. */
2084                /*
2085                 * Note that technically, the lower bit of the base
2086                 * address should be 1 if the address is I/O and 0 if
2087                 * the address is in memory.  So many systems get that
2088                 * wrong (and all that I have seen are I/O) so we just
2089                 * ignore that bit and assume I/O.  Systems that use
2090                 * memory should use the newer spec, anyway.
2091                 */
2092                dmi->base_addr = base_addr & 0xfffe;
2093                dmi->addr_space = IPMI_IO_ADDR_SPACE;
2094                dmi->offset = 1;
2095        }
2096
2097        dmi->slave_addr = data[6];
2098
2099        return 0;
2100}
2101
2102static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2103{
2104        struct smi_info *info;
2105
2106        info = kzalloc(sizeof(*info), GFP_KERNEL);
2107        if (!info) {
2108                printk(KERN_ERR
2109                       "ipmi_si: Could not allocate SI data\n");
2110                return;
2111        }
2112
2113        info->addr_source = "SMBIOS";
2114
2115        switch (ipmi_data->type) {
2116        case 0x01: /* KCS */
2117                info->si_type = SI_KCS;
2118                break;
2119        case 0x02: /* SMIC */
2120                info->si_type = SI_SMIC;
2121                break;
2122        case 0x03: /* BT */
2123                info->si_type = SI_BT;
2124                break;
2125        default:
2126                kfree(info);
2127                return;
2128        }
2129
2130        switch (ipmi_data->addr_space) {
2131        case IPMI_MEM_ADDR_SPACE:
2132                info->io_setup = mem_setup;
2133                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2134                break;
2135
2136        case IPMI_IO_ADDR_SPACE:
2137                info->io_setup = port_setup;
2138                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2139                break;
2140
2141        default:
2142                kfree(info);
2143                printk(KERN_WARNING
2144                       "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2145                       ipmi_data->addr_space);
2146                return;
2147        }
2148        info->io.addr_data = ipmi_data->base_addr;
2149
2150        info->io.regspacing = ipmi_data->offset;
2151        if (!info->io.regspacing)
2152                info->io.regspacing = DEFAULT_REGSPACING;
2153        info->io.regsize = DEFAULT_REGSPACING;
2154        info->io.regshift = 0;
2155
2156        info->slave_addr = ipmi_data->slave_addr;
2157
2158        info->irq = ipmi_data->irq;
2159        if (info->irq)
2160                info->irq_setup = std_irq_setup;
2161
2162        try_smi_init(info);
2163}
2164
2165static void __devinit dmi_find_bmc(void)
2166{
2167        const struct dmi_device *dev = NULL;
2168        struct dmi_ipmi_data data;
2169        int                  rv;
2170
2171        while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2172                memset(&data, 0, sizeof(data));
2173                rv = decode_dmi((const struct dmi_header *) dev->device_data,
2174                                &data);
2175                if (!rv)
2176                        try_init_dmi(&data);
2177        }
2178}
2179#endif /* CONFIG_DMI */
2180
2181#ifdef CONFIG_PCI
2182
2183#define PCI_ERMC_CLASSCODE                0x0C0700
2184#define PCI_ERMC_CLASSCODE_MASK                0xffffff00
2185#define PCI_ERMC_CLASSCODE_TYPE_MASK        0xff
2186#define PCI_ERMC_CLASSCODE_TYPE_SMIC        0x00
2187#define PCI_ERMC_CLASSCODE_TYPE_KCS        0x01
2188#define PCI_ERMC_CLASSCODE_TYPE_BT        0x02
2189
2190#define PCI_HP_VENDOR_ID    0x103C
2191#define PCI_MMC_DEVICE_ID   0x121A
2192#define PCI_MMC_ADDR_CW     0x10
2193
2194static void ipmi_pci_cleanup(struct smi_info *info)
2195{
2196        struct pci_dev *pdev = info->addr_source_data;
2197
2198        pci_disable_device(pdev);
2199}
2200
2201static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2202                                    const struct pci_device_id *ent)
2203{
2204        int rv;
2205        int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2206        struct smi_info *info;
2207        int first_reg_offset = 0;
2208
2209        info = kzalloc(sizeof(*info), GFP_KERNEL);
2210        if (!info)
2211                return -ENOMEM;
2212
2213        info->addr_source = "PCI";
2214
2215        switch (class_type) {
2216        case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2217                info->si_type = SI_SMIC;
2218                break;
2219
2220        case PCI_ERMC_CLASSCODE_TYPE_KCS:
2221                info->si_type = SI_KCS;
2222                break;
2223
2224        case PCI_ERMC_CLASSCODE_TYPE_BT:
2225                info->si_type = SI_BT;
2226                break;
2227
2228        default:
2229                kfree(info);
2230                printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2231                       pci_name(pdev), class_type);
2232                return -ENOMEM;
2233        }
2234
2235        rv = pci_enable_device(pdev);
2236        if (rv) {
2237                printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2238                       pci_name(pdev));
2239                kfree(info);
2240                return rv;
2241        }
2242
2243        info->addr_source_cleanup = ipmi_pci_cleanup;
2244        info->addr_source_data = pdev;
2245
2246        if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2247                first_reg_offset = 1;
2248
2249        if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2250                info->io_setup = port_setup;
2251                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2252        } else {
2253                info->io_setup = mem_setup;
2254                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2255        }
2256        info->io.addr_data = pci_resource_start(pdev, 0);
2257
2258        info->io.regspacing = DEFAULT_REGSPACING;
2259        info->io.regsize = DEFAULT_REGSPACING;
2260        info->io.regshift = 0;
2261
2262        info->irq = pdev->irq;
2263        if (info->irq)
2264                info->irq_setup = std_irq_setup;
2265
2266        info->dev = &pdev->dev;
2267        pci_set_drvdata(pdev, info);
2268
2269        return try_smi_init(info);
2270}
2271
2272static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2273{
2274        struct smi_info *info = pci_get_drvdata(pdev);
2275        cleanup_one_si(info);
2276}
2277
2278#ifdef CONFIG_PM
2279static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2280{
2281        return 0;
2282}
2283
2284static int ipmi_pci_resume(struct pci_dev *pdev)
2285{
2286        return 0;
2287}
2288#endif
2289
2290static struct pci_device_id ipmi_pci_devices[] = {
2291        { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2292        { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2293        { 0, }
2294};
2295MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2296
2297static struct pci_driver ipmi_pci_driver = {
2298        .name =         DEVICE_NAME,
2299        .id_table =     ipmi_pci_devices,
2300        .probe =        ipmi_pci_probe,
2301        .remove =       __devexit_p(ipmi_pci_remove),
2302#ifdef CONFIG_PM
2303        .suspend =      ipmi_pci_suspend,
2304        .resume =       ipmi_pci_resume,
2305#endif
2306};
2307#endif /* CONFIG_PCI */
2308
2309
2310#ifdef CONFIG_PPC_OF
2311static int __devinit ipmi_of_probe(struct of_device *dev,
2312                         const struct of_device_id *match)
2313{
2314        struct smi_info *info;
2315        struct resource resource;
2316        const int *regsize, *regspacing, *regshift;
2317        struct device_node *np = dev->node;
2318        int ret;
2319        int proplen;
2320
2321        dev_info(&dev->dev, PFX "probing via device tree\n");
2322
2323        ret = of_address_to_resource(np, 0, &resource);
2324        if (ret) {
2325                dev_warn(&dev->dev, PFX "invalid address from OF\n");
2326                return ret;
2327        }
2328
2329        regsize = of_get_property(np, "reg-size", &proplen);
2330        if (regsize && proplen != 4) {
2331                dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2332                return -EINVAL;
2333        }
2334
2335        regspacing = of_get_property(np, "reg-spacing", &proplen);
2336        if (regspacing && proplen != 4) {
2337                dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2338                return -EINVAL;
2339        }
2340
2341        regshift = of_get_property(np, "reg-shift", &proplen);
2342        if (regshift && proplen != 4) {
2343                dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2344                return -EINVAL;
2345        }
2346
2347        info = kzalloc(sizeof(*info), GFP_KERNEL);
2348
2349        if (!info) {
2350                dev_err(&dev->dev,
2351                        PFX "could not allocate memory for OF probe\n");
2352                return -ENOMEM;
2353        }
2354
2355        info->si_type                = (enum si_type) match->data;
2356        info->addr_source        = "device-tree";
2357        info->irq_setup                = std_irq_setup;
2358
2359        if (resource.flags & IORESOURCE_IO) {
2360                info->io_setup                = port_setup;
2361                info->io.addr_type        = IPMI_IO_ADDR_SPACE;
2362        } else {
2363                info->io_setup                = mem_setup;
2364                info->io.addr_type        = IPMI_MEM_ADDR_SPACE;
2365        }
2366
2367        info->io.addr_data        = resource.start;
2368
2369        info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2370        info->io.regspacing        = regspacing ? *regspacing : DEFAULT_REGSPACING;
2371        info->io.regshift        = regshift ? *regshift : 0;
2372
2373        info->irq                = irq_of_parse_and_map(dev->node, 0);
2374        info->dev                = &dev->dev;
2375
2376        dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2377                info->io.addr_data, info->io.regsize, info->io.regspacing,
2378                info->irq);
2379
2380        dev->dev.driver_data = (void *) info;
2381
2382        return try_smi_init(info);
2383}
2384
2385static int __devexit ipmi_of_remove(struct of_device *dev)
2386{
2387        cleanup_one_si(dev->dev.driver_data);
2388        return 0;
2389}
2390
2391static struct of_device_id ipmi_match[] =
2392{
2393        { .type = "ipmi", .compatible = "ipmi-kcs",
2394          .data = (void *)(unsigned long) SI_KCS },
2395        { .type = "ipmi", .compatible = "ipmi-smic",
2396          .data = (void *)(unsigned long) SI_SMIC },
2397        { .type = "ipmi", .compatible = "ipmi-bt",
2398          .data = (void *)(unsigned long) SI_BT },
2399        {},
2400};
2401
2402static struct of_platform_driver ipmi_of_platform_driver = {
2403        .name                = "ipmi",
2404        .match_table        = ipmi_match,
2405        .probe                = ipmi_of_probe,
2406        .remove                = __devexit_p(ipmi_of_remove),
2407};
2408#endif /* CONFIG_PPC_OF */
2409
2410
2411static int try_get_dev_id(struct smi_info *smi_info)
2412{
2413        unsigned char         msg[2];
2414        unsigned char         *resp;
2415        unsigned long         resp_len;
2416        enum si_sm_result     smi_result;
2417        int                   rv = 0;
2418
2419        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2420        if (!resp)
2421                return -ENOMEM;
2422
2423        /*
2424         * Do a Get Device ID command, since it comes back with some
2425         * useful info.
2426         */
2427        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2428        msg[1] = IPMI_GET_DEVICE_ID_CMD;
2429        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2430
2431        smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2432        for (;;) {
2433                if (smi_result == SI_SM_CALL_WITH_DELAY ||
2434                    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2435                        schedule_timeout_uninterruptible(1);
2436                        smi_result = smi_info->handlers->event(
2437                                smi_info->si_sm, 100);
2438                } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2439                        smi_result = smi_info->handlers->event(
2440                                smi_info->si_sm, 0);
2441                } else
2442                        break;
2443        }
2444        if (smi_result == SI_SM_HOSED) {
2445                /*
2446                 * We couldn't get the state machine to run, so whatever's at
2447                 * the port is probably not an IPMI SMI interface.
2448                 */
2449                rv = -ENODEV;
2450                goto out;
2451        }
2452
2453        /* Otherwise, we got some data. */
2454        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2455                                                  resp, IPMI_MAX_MSG_LENGTH);
2456
2457        /* Check and record info from the get device id, in case we need it. */
2458        rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2459
2460 out:
2461        kfree(resp);
2462        return rv;
2463}
2464
2465static int type_file_read_proc(char *page, char **start, off_t off,
2466                               int count, int *eof, void *data)
2467{
2468        struct smi_info *smi = data;
2469
2470        return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2471}
2472
2473static int stat_file_read_proc(char *page, char **start, off_t off,
2474                               int count, int *eof, void *data)
2475{
2476        char            *out = (char *) page;
2477        struct smi_info *smi = data;
2478
2479        out += sprintf(out, "interrupts_enabled:    %d\n",
2480                       smi->irq && !smi->interrupt_disabled);
2481        out += sprintf(out, "short_timeouts:        %u\n",
2482                       smi_get_stat(smi, short_timeouts));
2483        out += sprintf(out, "long_timeouts:         %u\n",
2484                       smi_get_stat(smi, long_timeouts));
2485        out += sprintf(out, "idles:                 %u\n",
2486                       smi_get_stat(smi, idles));
2487        out += sprintf(out, "interrupts:            %u\n",
2488                       smi_get_stat(smi, interrupts));
2489        out += sprintf(out, "attentions:            %u\n",
2490                       smi_get_stat(smi, attentions));
2491        out += sprintf(out, "flag_fetches:          %u\n",
2492                       smi_get_stat(smi, flag_fetches));
2493        out += sprintf(out, "hosed_count:           %u\n",
2494                       smi_get_stat(smi, hosed_count));
2495        out += sprintf(out, "complete_transactions: %u\n",
2496                       smi_get_stat(smi, complete_transactions));
2497        out += sprintf(out, "events:                %u\n",
2498                       smi_get_stat(smi, events));
2499        out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2500                       smi_get_stat(smi, watchdog_pretimeouts));
2501        out += sprintf(out, "incoming_messages:     %u\n",
2502                       smi_get_stat(smi, incoming_messages));
2503
2504        return out - page;
2505}
2506
2507static int param_read_proc(char *page, char **start, off_t off,
2508                           int count, int *eof, void *data)
2509{
2510        struct smi_info *smi = data;
2511
2512        return sprintf(page,
2513                       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2514                       si_to_str[smi->si_type],
2515                       addr_space_to_str[smi->io.addr_type],
2516                       smi->io.addr_data,
2517                       smi->io.regspacing,
2518                       smi->io.regsize,
2519                       smi->io.regshift,
2520                       smi->irq,
2521                       smi->slave_addr);
2522}
2523
2524/*
2525 * oem_data_avail_to_receive_msg_avail
2526 * @info - smi_info structure with msg_flags set
2527 *
2528 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2529 * Returns 1 indicating need to re-run handle_flags().
2530 */
2531static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2532{
2533        smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2534                               RECEIVE_MSG_AVAIL);
2535        return 1;
2536}
2537
2538/*
2539 * setup_dell_poweredge_oem_data_handler
2540 * @info - smi_info.device_id must be populated
2541 *
2542 * Systems that match, but have firmware version < 1.40 may assert
2543 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2544 * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2545 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2546 * as RECEIVE_MSG_AVAIL instead.
2547 *
2548 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2549 * assert the OEM[012] bits, and if it did, the driver would have to
2550 * change to handle that properly, we don't actually check for the
2551 * firmware version.
2552 * Device ID = 0x20                BMC on PowerEdge 8G servers
2553 * Device Revision = 0x80
2554 * Firmware Revision1 = 0x01       BMC version 1.40
2555 * Firmware Revision2 = 0x40       BCD encoded
2556 * IPMI Version = 0x51             IPMI 1.5
2557 * Manufacturer ID = A2 02 00      Dell IANA
2558 *
2559 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2560 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2561 *
2562 */
2563#define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2564#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2565#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2566#define DELL_IANA_MFR_ID 0x0002a2
2567static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2568{
2569        struct ipmi_device_id *id = &smi_info->device_id;
2570        if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2571                if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2572                    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2573                    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2574                        smi_info->oem_data_avail_handler =
2575                                oem_data_avail_to_receive_msg_avail;
2576                } else if (ipmi_version_major(id) < 1 ||
2577                           (ipmi_version_major(id) == 1 &&
2578                            ipmi_version_minor(id) < 5)) {
2579                        smi_info->oem_data_avail_handler =
2580                                oem_data_avail_to_receive_msg_avail;
2581                }
2582        }
2583}
2584
2585#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2586static void return_hosed_msg_badsize(struct smi_info *smi_info)
2587{
2588        struct ipmi_smi_msg *msg = smi_info->curr_msg;
2589
2590        /* Make it a reponse */
2591        msg->rsp[0] = msg->data[0] | 4;
2592        msg->rsp[1] = msg->data[1];
2593        msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2594        msg->rsp_size = 3;
2595        smi_info->curr_msg = NULL;
2596        deliver_recv_msg(smi_info, msg);
2597}
2598
2599/*
2600 * dell_poweredge_bt_xaction_handler
2601 * @info - smi_info.device_id must be populated
2602 *
2603 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2604 * not respond to a Get SDR command if the length of the data
2605 * requested is exactly 0x3A, which leads to command timeouts and no
2606 * data returned.  This intercepts such commands, and causes userspace
2607 * callers to try again with a different-sized buffer, which succeeds.
2608 */
2609
2610#define STORAGE_NETFN 0x0A
2611#define STORAGE_CMD_GET_SDR 0x23
2612static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2613                                             unsigned long unused,
2614                                             void *in)
2615{
2616        struct smi_info *smi_info = in;
2617        unsigned char *data = smi_info->curr_msg->data;
2618        unsigned int size   = smi_info->curr_msg->data_size;
2619        if (size >= 8 &&
2620            (data[0]>>2) == STORAGE_NETFN &&
2621            data[1] == STORAGE_CMD_GET_SDR &&
2622            data[7] == 0x3A) {
2623                return_hosed_msg_badsize(smi_info);
2624                return NOTIFY_STOP;
2625        }
2626        return NOTIFY_DONE;
2627}
2628
2629static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2630        .notifier_call        = dell_poweredge_bt_xaction_handler,
2631};
2632
2633/*
2634 * setup_dell_poweredge_bt_xaction_handler
2635 * @info - smi_info.device_id must be filled in already
2636 *
2637 * Fills in smi_info.device_id.start_transaction_pre_hook
2638 * when we know what function to use there.
2639 */
2640static void
2641setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2642{
2643        struct ipmi_device_id *id = &smi_info->device_id;
2644        if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2645            smi_info->si_type == SI_BT)
2646                register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2647}
2648
2649/*
2650 * setup_oem_data_handler
2651 * @info - smi_info.device_id must be filled in already
2652 *
2653 * Fills in smi_info.device_id.oem_data_available_handler
2654 * when we know what function to use there.
2655 */
2656
2657static void setup_oem_data_handler(struct smi_info *smi_info)
2658{
2659        setup_dell_poweredge_oem_data_handler(smi_info);
2660}
2661
2662static void setup_xaction_handlers(struct smi_info *smi_info)
2663{
2664        setup_dell_poweredge_bt_xaction_handler(smi_info);
2665}
2666
2667static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2668{
2669        if (smi_info->intf) {
2670                /*
2671                 * The timer and thread are only running if the
2672                 * interface has been started up and registered.
2673                 */
2674                if (smi_info->thread != NULL)
2675                        kthread_stop(smi_info->thread);
2676                del_timer_sync(&smi_info->si_timer);
2677        }
2678}
2679
2680static __devinitdata struct ipmi_default_vals
2681{
2682        int type;
2683        int port;
2684} ipmi_defaults[] =
2685{
2686        { .type = SI_KCS, .port = 0xca2 },
2687        { .type = SI_SMIC, .port = 0xca9 },
2688        { .type = SI_BT, .port = 0xe4 },
2689        { .port = 0 }
2690};
2691
2692static __devinit void default_find_bmc(void)
2693{
2694        struct smi_info *info;
2695        int             i;
2696
2697        for (i = 0; ; i++) {
2698                if (!ipmi_defaults[i].port)
2699                        break;
2700#ifdef CONFIG_PPC
2701                if (check_legacy_ioport(ipmi_defaults[i].port))
2702                        continue;
2703#endif
2704                info = kzalloc(sizeof(*info), GFP_KERNEL);
2705                if (!info)
2706                        return;
2707
2708                info->addr_source = NULL;
2709
2710                info->si_type = ipmi_defaults[i].type;
2711                info->io_setup = port_setup;
2712                info->io.addr_data = ipmi_defaults[i].port;
2713                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2714
2715                info->io.addr = NULL;
2716                info->io.regspacing = DEFAULT_REGSPACING;
2717                info->io.regsize = DEFAULT_REGSPACING;
2718                info->io.regshift = 0;
2719
2720                if (try_smi_init(info) == 0) {
2721                        /* Found one... */
2722                        printk(KERN_INFO "ipmi_si: Found default %s state"
2723                               " machine at %s address 0x%lx\n",
2724                               si_to_str[info->si_type],
2725                               addr_space_to_str[info->io.addr_type],
2726                               info->io.addr_data);
2727                        return;
2728                }
2729        }
2730}
2731
2732static int is_new_interface(struct smi_info *info)
2733{
2734        struct smi_info *e;
2735
2736        list_for_each_entry(e, &smi_infos, link) {
2737                if (e->io.addr_type != info->io.addr_type)
2738                        continue;
2739                if (e->io.addr_data == info->io.addr_data)
2740                        return 0;
2741        }
2742
2743        return 1;
2744}
2745
2746static int try_smi_init(struct smi_info *new_smi)
2747{
2748        int rv;
2749        int i;
2750
2751        if (new_smi->addr_source) {
2752                printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2753                       " machine at %s address 0x%lx, slave address 0x%x,"
2754                       " irq %d\n",
2755                       new_smi->addr_source,
2756                       si_to_str[new_smi->si_type],
2757                       addr_space_to_str[new_smi->io.addr_type],
2758                       new_smi->io.addr_data,
2759                       new_smi->slave_addr, new_smi->irq);
2760        }
2761
2762        mutex_lock(&smi_infos_lock);
2763        if (!is_new_interface(new_smi)) {
2764                printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2765                rv = -EBUSY;
2766                goto out_err;
2767        }
2768
2769        /* So we know not to free it unless we have allocated one. */
2770        new_smi->intf = NULL;
2771        new_smi->si_sm = NULL;
2772        new_smi->handlers = NULL;
2773
2774        switch (new_smi->si_type) {
2775        case SI_KCS:
2776                new_smi->handlers = &kcs_smi_handlers;
2777                break;
2778
2779        case SI_SMIC:
2780                new_smi->handlers = &smic_smi_handlers;
2781                break;
2782
2783        case SI_BT:
2784                new_smi->handlers = &bt_smi_handlers;
2785                break;
2786
2787        default:
2788                /* No support for anything else yet. */
2789                rv = -EIO;
2790                goto out_err;
2791        }
2792
2793        /* Allocate the state machine's data and initialize it. */
2794        new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2795        if (!new_smi->si_sm) {
2796                printk(KERN_ERR "Could not allocate state machine memory\n");
2797                rv = -ENOMEM;
2798                goto out_err;
2799        }
2800        new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2801                                                        &new_smi->io);
2802
2803        /* Now that we know the I/O size, we can set up the I/O. */
2804        rv = new_smi->io_setup(new_smi);
2805        if (rv) {
2806                printk(KERN_ERR "Could not set up I/O space\n");
2807                goto out_err;
2808        }
2809
2810        spin_lock_init(&(new_smi->si_lock));
2811        spin_lock_init(&(new_smi->msg_lock));
2812
2813        /* Do low-level detection first. */
2814        if (new_smi->handlers->detect(new_smi->si_sm)) {
2815                if (new_smi->addr_source)
2816                        printk(KERN_INFO "ipmi_si: Interface detection"
2817                               " failed\n");
2818                rv = -ENODEV;
2819                goto out_err;
2820        }
2821
2822        /*
2823         * Attempt a get device id command.  If it fails, we probably
2824         * don't have a BMC here.
2825         */
2826        rv = try_get_dev_id(new_smi);
2827        if (rv) {
2828                if (new_smi->addr_source)
2829                        printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2830                               " at this location\n");
2831                goto out_err;
2832        }
2833
2834        setup_oem_data_handler(new_smi);
2835        setup_xaction_handlers(new_smi);
2836
2837        INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2838        INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2839        new_smi->curr_msg = NULL;
2840        atomic_set(&new_smi->req_events, 0);
2841        new_smi->run_to_completion = 0;
2842        for (i = 0; i < SI_NUM_STATS; i++)
2843                atomic_set(&new_smi->stats[i], 0);
2844
2845        new_smi->interrupt_disabled = 0;
2846        atomic_set(&new_smi->stop_operation, 0);
2847        new_smi->intf_num = smi_num;
2848        smi_num++;
2849
2850        /*
2851         * Start clearing the flags before we enable interrupts or the
2852         * timer to avoid racing with the timer.
2853         */
2854        start_clear_flags(new_smi);
2855        /* IRQ is defined to be set when non-zero. */
2856        if (new_smi->irq)
2857                new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2858
2859        if (!new_smi->dev) {
2860                /*
2861                 * If we don't already have a device from something
2862                 * else (like PCI), then register a new one.
2863                 */
2864                new_smi->pdev = platform_device_alloc("ipmi_si",
2865                                                      new_smi->intf_num);
2866                if (rv) {
2867                        printk(KERN_ERR
2868                               "ipmi_si_intf:"
2869                               " Unable to allocate platform device\n");
2870                        goto out_err;
2871                }
2872                new_smi->dev = &new_smi->pdev->dev;
2873                new_smi->dev->driver = &ipmi_driver.driver;
2874
2875                rv = platform_device_add(new_smi->pdev);
2876                if (rv) {
2877                        printk(KERN_ERR
2878                               "ipmi_si_intf:"
2879                               " Unable to register system interface device:"
2880                               " %d\n",
2881                               rv);
2882                        goto out_err;
2883                }
2884                new_smi->dev_registered = 1;
2885        }
2886
2887        rv = ipmi_register_smi(&handlers,
2888                               new_smi,
2889                               &new_smi->device_id,
2890                               new_smi->dev,
2891                               "bmc",
2892                               new_smi->slave_addr);
2893        if (rv) {
2894                printk(KERN_ERR
2895                       "ipmi_si: Unable to register device: error %d\n",
2896                       rv);
2897                goto out_err_stop_timer;
2898        }
2899
2900        rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2901                                     type_file_read_proc,
2902                                     new_smi, THIS_MODULE);
2903        if (rv) {
2904                printk(KERN_ERR
2905                       "ipmi_si: Unable to create proc entry: %d\n",
2906                       rv);
2907                goto out_err_stop_timer;
2908        }
2909
2910        rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2911                                     stat_file_read_proc,
2912                                     new_smi, THIS_MODULE);
2913        if (rv) {
2914                printk(KERN_ERR
2915                       "ipmi_si: Unable to create proc entry: %d\n",
2916                       rv);
2917                goto out_err_stop_timer;
2918        }
2919
2920        rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2921                                     param_read_proc,
2922                                     new_smi, THIS_MODULE);
2923        if (rv) {
2924                printk(KERN_ERR
2925                       "ipmi_si: Unable to create proc entry: %d\n",
2926                       rv);
2927                goto out_err_stop_timer;
2928        }
2929
2930        list_add_tail(&new_smi->link, &smi_infos);
2931
2932        mutex_unlock(&smi_infos_lock);
2933
2934        printk(KERN_INFO "IPMI %s interface initialized\n",
2935               si_to_str[new_smi->si_type]);
2936
2937        return 0;
2938
2939 out_err_stop_timer:
2940        atomic_inc(&new_smi->stop_operation);
2941        wait_for_timer_and_thread(new_smi);
2942
2943 out_err:
2944        if (new_smi->intf)
2945                ipmi_unregister_smi(new_smi->intf);
2946
2947        if (new_smi->irq_cleanup)
2948                new_smi->irq_cleanup(new_smi);
2949
2950        /*
2951         * Wait until we know that we are out of any interrupt
2952         * handlers might have been running before we freed the
2953         * interrupt.
2954         */
2955        synchronize_sched();
2956
2957        if (new_smi->si_sm) {
2958                if (new_smi->handlers)
2959                        new_smi->handlers->cleanup(new_smi->si_sm);
2960                kfree(new_smi->si_sm);
2961        }
2962        if (new_smi->addr_source_cleanup)
2963                new_smi->addr_source_cleanup(new_smi);
2964        if (new_smi->io_cleanup)
2965                new_smi->io_cleanup(new_smi);
2966
2967        if (new_smi->dev_registered)
2968                platform_device_unregister(new_smi->pdev);
2969
2970        kfree(new_smi);
2971
2972        mutex_unlock(&smi_infos_lock);
2973
2974        return rv;
2975}
2976
2977static __devinit int init_ipmi_si(void)
2978{
2979        int  i;
2980        char *str;
2981        int  rv;
2982
2983        if (initialized)
2984                return 0;
2985        initialized = 1;
2986
2987        /* Register the device drivers. */
2988        rv = driver_register(&ipmi_driver.driver);
2989        if (rv) {
2990                printk(KERN_ERR
2991                       "init_ipmi_si: Unable to register driver: %d\n",
2992                       rv);
2993                return rv;
2994        }
2995
2996
2997        /* Parse out the si_type string into its components. */
2998        str = si_type_str;
2999        if (*str != '\0') {
3000                for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3001                        si_type[i] = str;
3002                        str = strchr(str, ',');
3003                        if (str) {
3004                                *str = '\0';
3005                                str++;
3006                        } else {
3007                                break;
3008                        }
3009                }
3010        }
3011
3012        printk(KERN_INFO "IPMI System Interface driver.\n");
3013
3014        hardcode_find_bmc();
3015
3016#ifdef CONFIG_DMI
3017        dmi_find_bmc();
3018#endif
3019
3020#ifdef CONFIG_ACPI
3021        acpi_find_bmc();
3022#endif
3023
3024#ifdef CONFIG_PCI
3025        rv = pci_register_driver(&ipmi_pci_driver);
3026        if (rv)
3027                printk(KERN_ERR
3028                       "init_ipmi_si: Unable to register PCI driver: %d\n",
3029                       rv);
3030#endif
3031
3032#ifdef CONFIG_PPC_OF
3033        of_register_platform_driver(&ipmi_of_platform_driver);
3034#endif
3035
3036        if (si_trydefaults) {
3037                mutex_lock(&smi_infos_lock);
3038                if (list_empty(&smi_infos)) {
3039                        /* No BMC was found, try defaults. */
3040                        mutex_unlock(&smi_infos_lock);
3041                        default_find_bmc();
3042                } else {
3043                        mutex_unlock(&smi_infos_lock);
3044                }
3045        }
3046
3047        mutex_lock(&smi_infos_lock);
3048        if (unload_when_empty && list_empty(&smi_infos)) {
3049                mutex_unlock(&smi_infos_lock);
3050#ifdef CONFIG_PCI
3051                pci_unregister_driver(&ipmi_pci_driver);
3052#endif
3053
3054#ifdef CONFIG_PPC_OF
3055                of_unregister_platform_driver(&ipmi_of_platform_driver);
3056#endif
3057                driver_unregister(&ipmi_driver.driver);
3058                printk(KERN_WARNING
3059                       "ipmi_si: Unable to find any System Interface(s)\n");
3060                return -ENODEV;
3061        } else {
3062                mutex_unlock(&smi_infos_lock);
3063                return 0;
3064        }
3065}
3066module_init(init_ipmi_si);
3067
3068static void cleanup_one_si(struct smi_info *to_clean)
3069{
3070        int           rv;
3071        unsigned long flags;
3072
3073        if (!to_clean)
3074                return;
3075
3076        list_del(&to_clean->link);
3077
3078        /* Tell the driver that we are shutting down. */
3079        atomic_inc(&to_clean->stop_operation);
3080
3081        /*
3082         * Make sure the timer and thread are stopped and will not run
3083         * again.
3084         */
3085        wait_for_timer_and_thread(to_clean);
3086
3087        /*
3088         * Timeouts are stopped, now make sure the interrupts are off
3089         * for the device.  A little tricky with locks to make sure
3090         * there are no races.
3091         */
3092        spin_lock_irqsave(&to_clean->si_lock, flags);
3093        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3094                spin_unlock_irqrestore(&to_clean->si_lock, flags);
3095                poll(to_clean);
3096                schedule_timeout_uninterruptible(1);
3097                spin_lock_irqsave(&to_clean->si_lock, flags);
3098        }
3099        disable_si_irq(to_clean);
3100        spin_unlock_irqrestore(&to_clean->si_lock, flags);
3101        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3102                poll(to_clean);
3103                schedule_timeout_uninterruptible(1);
3104        }
3105
3106        /* Clean up interrupts and make sure that everything is done. */
3107        if (to_clean->irq_cleanup)
3108                to_clean->irq_cleanup(to_clean);
3109        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3110                poll(to_clean);
3111                schedule_timeout_uninterruptible(1);
3112        }
3113
3114        rv = ipmi_unregister_smi(to_clean->intf);
3115        if (rv) {
3116                printk(KERN_ERR
3117                       "ipmi_si: Unable to unregister device: errno=%d\n",
3118                       rv);
3119        }
3120
3121        to_clean->handlers->cleanup(to_clean->si_sm);
3122
3123        kfree(to_clean->si_sm);
3124
3125        if (to_clean->addr_source_cleanup)
3126                to_clean->addr_source_cleanup(to_clean);
3127        if (to_clean->io_cleanup)
3128                to_clean->io_cleanup(to_clean);
3129
3130        if (to_clean->dev_registered)
3131                platform_device_unregister(to_clean->pdev);
3132
3133        kfree(to_clean);
3134}
3135
3136static __exit void cleanup_ipmi_si(void)
3137{
3138        struct smi_info *e, *tmp_e;
3139
3140        if (!initialized)
3141                return;
3142
3143#ifdef CONFIG_PCI
3144        pci_unregister_driver(&ipmi_pci_driver);
3145#endif
3146
3147#ifdef CONFIG_PPC_OF
3148        of_unregister_platform_driver(&ipmi_of_platform_driver);
3149#endif
3150
3151        mutex_lock(&smi_infos_lock);
3152        list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3153                cleanup_one_si(e);
3154        mutex_unlock(&smi_infos_lock);
3155
3156        driver_unregister(&ipmi_driver.driver);
3157}
3158module_exit(cleanup_ipmi_si);
3159
3160MODULE_LICENSE("GPL");
3161MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3162MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3163                   " system interfaces.");