Showing error 1018

User: Jiri Slaby
Error type: Leaving function in locked state
Error type description: Some lock is not unlocked on all paths of a function, so it is leaked
File location: fs/fs-writeback.c
Line in file: 411
Project: Linux Kernel
Project version: 2.6.28
Tools: Undetermined 1
Entered: 2012-03-04 17:07:06 UTC


Source:

  1/*
  2 * fs/fs-writeback.c
  3 *
  4 * Copyright (C) 2002, Linus Torvalds.
  5 *
  6 * Contains all the functions related to writing back and waiting
  7 * upon dirty inodes against superblocks, and writing back dirty
  8 * pages against inodes.  ie: data writeback.  Writeout of the
  9 * inode itself is not handled here.
 10 *
 11 * 10Apr2002        Andrew Morton
 12 *                Split out of fs/inode.c
 13 *                Additions for address_space-based writeback
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/module.h>
 18#include <linux/spinlock.h>
 19#include <linux/sched.h>
 20#include <linux/fs.h>
 21#include <linux/mm.h>
 22#include <linux/writeback.h>
 23#include <linux/blkdev.h>
 24#include <linux/backing-dev.h>
 25#include <linux/buffer_head.h>
 26#include "internal.h"
 27
 28
 29/**
 30 * writeback_acquire - attempt to get exclusive writeback access to a device
 31 * @bdi: the device's backing_dev_info structure
 32 *
 33 * It is a waste of resources to have more than one pdflush thread blocked on
 34 * a single request queue.  Exclusion at the request_queue level is obtained
 35 * via a flag in the request_queue's backing_dev_info.state.
 36 *
 37 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
 38 * unless they implement their own.  Which is somewhat inefficient, as this
 39 * may prevent concurrent writeback against multiple devices.
 40 */
 41static int writeback_acquire(struct backing_dev_info *bdi)
 42{
 43        return !test_and_set_bit(BDI_pdflush, &bdi->state);
 44}
 45
 46/**
 47 * writeback_in_progress - determine whether there is writeback in progress
 48 * @bdi: the device's backing_dev_info structure.
 49 *
 50 * Determine whether there is writeback in progress against a backing device.
 51 */
 52int writeback_in_progress(struct backing_dev_info *bdi)
 53{
 54        return test_bit(BDI_pdflush, &bdi->state);
 55}
 56
 57/**
 58 * writeback_release - relinquish exclusive writeback access against a device.
 59 * @bdi: the device's backing_dev_info structure
 60 */
 61static void writeback_release(struct backing_dev_info *bdi)
 62{
 63        BUG_ON(!writeback_in_progress(bdi));
 64        clear_bit(BDI_pdflush, &bdi->state);
 65}
 66
 67/**
 68 *        __mark_inode_dirty -        internal function
 69 *        @inode: inode to mark
 70 *        @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 71 *        Mark an inode as dirty. Callers should use mark_inode_dirty or
 72 *          mark_inode_dirty_sync.
 73 *
 74 * Put the inode on the super block's dirty list.
 75 *
 76 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 77 * dirty list only if it is hashed or if it refers to a blockdev.
 78 * If it was not hashed, it will never be added to the dirty list
 79 * even if it is later hashed, as it will have been marked dirty already.
 80 *
 81 * In short, make sure you hash any inodes _before_ you start marking
 82 * them dirty.
 83 *
 84 * This function *must* be atomic for the I_DIRTY_PAGES case -
 85 * set_page_dirty() is called under spinlock in several places.
 86 *
 87 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 88 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 89 * the kernel-internal blockdev inode represents the dirtying time of the
 90 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 91 * page->mapping->host, so the page-dirtying time is recorded in the internal
 92 * blockdev inode.
 93 */
 94void __mark_inode_dirty(struct inode *inode, int flags)
 95{
 96        struct super_block *sb = inode->i_sb;
 97
 98        /*
 99         * Don't do this for I_DIRTY_PAGES - that doesn't actually
100         * dirty the inode itself
101         */
102        if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
103                if (sb->s_op->dirty_inode)
104                        sb->s_op->dirty_inode(inode);
105        }
106
107        /*
108         * make sure that changes are seen by all cpus before we test i_state
109         * -- mikulas
110         */
111        smp_mb();
112
113        /* avoid the locking if we can */
114        if ((inode->i_state & flags) == flags)
115                return;
116
117        if (unlikely(block_dump)) {
118                struct dentry *dentry = NULL;
119                const char *name = "?";
120
121                if (!list_empty(&inode->i_dentry)) {
122                        dentry = list_entry(inode->i_dentry.next,
123                                            struct dentry, d_alias);
124                        if (dentry && dentry->d_name.name)
125                                name = (const char *) dentry->d_name.name;
126                }
127
128                if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
129                        printk(KERN_DEBUG
130                               "%s(%d): dirtied inode %lu (%s) on %s\n",
131                               current->comm, task_pid_nr(current), inode->i_ino,
132                               name, inode->i_sb->s_id);
133        }
134
135        spin_lock(&inode_lock);
136        if ((inode->i_state & flags) != flags) {
137                const int was_dirty = inode->i_state & I_DIRTY;
138
139                inode->i_state |= flags;
140
141                /*
142                 * If the inode is being synced, just update its dirty state.
143                 * The unlocker will place the inode on the appropriate
144                 * superblock list, based upon its state.
145                 */
146                if (inode->i_state & I_SYNC)
147                        goto out;
148
149                /*
150                 * Only add valid (hashed) inodes to the superblock's
151                 * dirty list.  Add blockdev inodes as well.
152                 */
153                if (!S_ISBLK(inode->i_mode)) {
154                        if (hlist_unhashed(&inode->i_hash))
155                                goto out;
156                }
157                if (inode->i_state & (I_FREEING|I_CLEAR))
158                        goto out;
159
160                /*
161                 * If the inode was already on s_dirty/s_io/s_more_io, don't
162                 * reposition it (that would break s_dirty time-ordering).
163                 */
164                if (!was_dirty) {
165                        inode->dirtied_when = jiffies;
166                        list_move(&inode->i_list, &sb->s_dirty);
167                }
168        }
169out:
170        spin_unlock(&inode_lock);
171}
172
173EXPORT_SYMBOL(__mark_inode_dirty);
174
175static int write_inode(struct inode *inode, int sync)
176{
177        if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
178                return inode->i_sb->s_op->write_inode(inode, sync);
179        return 0;
180}
181
182/*
183 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
184 * furthest end of its superblock's dirty-inode list.
185 *
186 * Before stamping the inode's ->dirtied_when, we check to see whether it is
187 * already the most-recently-dirtied inode on the s_dirty list.  If that is
188 * the case then the inode must have been redirtied while it was being written
189 * out and we don't reset its dirtied_when.
190 */
191static void redirty_tail(struct inode *inode)
192{
193        struct super_block *sb = inode->i_sb;
194
195        if (!list_empty(&sb->s_dirty)) {
196                struct inode *tail_inode;
197
198                tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
199                if (!time_after_eq(inode->dirtied_when,
200                                tail_inode->dirtied_when))
201                        inode->dirtied_when = jiffies;
202        }
203        list_move(&inode->i_list, &sb->s_dirty);
204}
205
206/*
207 * requeue inode for re-scanning after sb->s_io list is exhausted.
208 */
209static void requeue_io(struct inode *inode)
210{
211        list_move(&inode->i_list, &inode->i_sb->s_more_io);
212}
213
214static void inode_sync_complete(struct inode *inode)
215{
216        /*
217         * Prevent speculative execution through spin_unlock(&inode_lock);
218         */
219        smp_mb();
220        wake_up_bit(&inode->i_state, __I_SYNC);
221}
222
223/*
224 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
225 */
226static void move_expired_inodes(struct list_head *delaying_queue,
227                               struct list_head *dispatch_queue,
228                                unsigned long *older_than_this)
229{
230        while (!list_empty(delaying_queue)) {
231                struct inode *inode = list_entry(delaying_queue->prev,
232                                                struct inode, i_list);
233                if (older_than_this &&
234                        time_after(inode->dirtied_when, *older_than_this))
235                        break;
236                list_move(&inode->i_list, dispatch_queue);
237        }
238}
239
240/*
241 * Queue all expired dirty inodes for io, eldest first.
242 */
243static void queue_io(struct super_block *sb,
244                                unsigned long *older_than_this)
245{
246        list_splice_init(&sb->s_more_io, sb->s_io.prev);
247        move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
248}
249
250int sb_has_dirty_inodes(struct super_block *sb)
251{
252        return !list_empty(&sb->s_dirty) ||
253               !list_empty(&sb->s_io) ||
254               !list_empty(&sb->s_more_io);
255}
256EXPORT_SYMBOL(sb_has_dirty_inodes);
257
258/*
259 * Write a single inode's dirty pages and inode data out to disk.
260 * If `wait' is set, wait on the writeout.
261 *
262 * The whole writeout design is quite complex and fragile.  We want to avoid
263 * starvation of particular inodes when others are being redirtied, prevent
264 * livelocks, etc.
265 *
266 * Called under inode_lock.
267 */
268static int
269__sync_single_inode(struct inode *inode, struct writeback_control *wbc)
270{
271        unsigned dirty;
272        struct address_space *mapping = inode->i_mapping;
273        int wait = wbc->sync_mode == WB_SYNC_ALL;
274        int ret;
275
276        BUG_ON(inode->i_state & I_SYNC);
277
278        /* Set I_SYNC, reset I_DIRTY */
279        dirty = inode->i_state & I_DIRTY;
280        inode->i_state |= I_SYNC;
281        inode->i_state &= ~I_DIRTY;
282
283        spin_unlock(&inode_lock);
284
285        ret = do_writepages(mapping, wbc);
286
287        /* Don't write the inode if only I_DIRTY_PAGES was set */
288        if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
289                int err = write_inode(inode, wait);
290                if (ret == 0)
291                        ret = err;
292        }
293
294        if (wait) {
295                int err = filemap_fdatawait(mapping);
296                if (ret == 0)
297                        ret = err;
298        }
299
300        spin_lock(&inode_lock);
301        inode->i_state &= ~I_SYNC;
302        if (!(inode->i_state & I_FREEING)) {
303                if (!(inode->i_state & I_DIRTY) &&
304                    mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
305                        /*
306                         * We didn't write back all the pages.  nfs_writepages()
307                         * sometimes bales out without doing anything. Redirty
308                         * the inode; Move it from s_io onto s_more_io/s_dirty.
309                         */
310                        /*
311                         * akpm: if the caller was the kupdate function we put
312                         * this inode at the head of s_dirty so it gets first
313                         * consideration.  Otherwise, move it to the tail, for
314                         * the reasons described there.  I'm not really sure
315                         * how much sense this makes.  Presumably I had a good
316                         * reasons for doing it this way, and I'd rather not
317                         * muck with it at present.
318                         */
319                        if (wbc->for_kupdate) {
320                                /*
321                                 * For the kupdate function we move the inode
322                                 * to s_more_io so it will get more writeout as
323                                 * soon as the queue becomes uncongested.
324                                 */
325                                inode->i_state |= I_DIRTY_PAGES;
326                                if (wbc->nr_to_write <= 0) {
327                                        /*
328                                         * slice used up: queue for next turn
329                                         */
330                                        requeue_io(inode);
331                                } else {
332                                        /*
333                                         * somehow blocked: retry later
334                                         */
335                                        redirty_tail(inode);
336                                }
337                        } else {
338                                /*
339                                 * Otherwise fully redirty the inode so that
340                                 * other inodes on this superblock will get some
341                                 * writeout.  Otherwise heavy writing to one
342                                 * file would indefinitely suspend writeout of
343                                 * all the other files.
344                                 */
345                                inode->i_state |= I_DIRTY_PAGES;
346                                redirty_tail(inode);
347                        }
348                } else if (inode->i_state & I_DIRTY) {
349                        /*
350                         * Someone redirtied the inode while were writing back
351                         * the pages.
352                         */
353                        redirty_tail(inode);
354                } else if (atomic_read(&inode->i_count)) {
355                        /*
356                         * The inode is clean, inuse
357                         */
358                        list_move(&inode->i_list, &inode_in_use);
359                } else {
360                        /*
361                         * The inode is clean, unused
362                         */
363                        list_move(&inode->i_list, &inode_unused);
364                }
365        }
366        inode_sync_complete(inode);
367        return ret;
368}
369
370/*
371 * Write out an inode's dirty pages.  Called under inode_lock.  Either the
372 * caller has ref on the inode (either via __iget or via syscall against an fd)
373 * or the inode has I_WILL_FREE set (via generic_forget_inode)
374 */
375static int
376__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
377{
378        wait_queue_head_t *wqh;
379
380        if (!atomic_read(&inode->i_count))
381                WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
382        else
383                WARN_ON(inode->i_state & I_WILL_FREE);
384
385        if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) {
386                /*
387                 * We're skipping this inode because it's locked, and we're not
388                 * doing writeback-for-data-integrity.  Move it to s_more_io so
389                 * that writeback can proceed with the other inodes on s_io.
390                 * We'll have another go at writing back this inode when we
391                 * completed a full scan of s_io.
392                 */
393                requeue_io(inode);
394                return 0;
395        }
396
397        /*
398         * It's a data-integrity sync.  We must wait.
399         */
400        if (inode->i_state & I_SYNC) {
401                DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
402
403                wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
404                do {
405                        spin_unlock(&inode_lock);
406                        __wait_on_bit(wqh, &wq, inode_wait,
407                                                        TASK_UNINTERRUPTIBLE);
408                        spin_lock(&inode_lock);
409                } while (inode->i_state & I_SYNC);
410        }
411        return __sync_single_inode(inode, wbc);
412}
413
414/*
415 * Write out a superblock's list of dirty inodes.  A wait will be performed
416 * upon no inodes, all inodes or the final one, depending upon sync_mode.
417 *
418 * If older_than_this is non-NULL, then only write out inodes which
419 * had their first dirtying at a time earlier than *older_than_this.
420 *
421 * If we're a pdlfush thread, then implement pdflush collision avoidance
422 * against the entire list.
423 *
424 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
425 * that it can be located for waiting on in __writeback_single_inode().
426 *
427 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
428 * This function assumes that the blockdev superblock's inodes are backed by
429 * a variety of queues, so all inodes are searched.  For other superblocks,
430 * assume that all inodes are backed by the same queue.
431 *
432 * FIXME: this linear search could get expensive with many fileystems.  But
433 * how to fix?  We need to go from an address_space to all inodes which share
434 * a queue with that address_space.  (Easy: have a global "dirty superblocks"
435 * list).
436 *
437 * The inodes to be written are parked on sb->s_io.  They are moved back onto
438 * sb->s_dirty as they are selected for writing.  This way, none can be missed
439 * on the writer throttling path, and we get decent balancing between many
440 * throttled threads: we don't want them all piling up on inode_sync_wait.
441 */
442void generic_sync_sb_inodes(struct super_block *sb,
443                                struct writeback_control *wbc)
444{
445        const unsigned long start = jiffies;        /* livelock avoidance */
446
447        spin_lock(&inode_lock);
448        if (!wbc->for_kupdate || list_empty(&sb->s_io))
449                queue_io(sb, wbc->older_than_this);
450
451        while (!list_empty(&sb->s_io)) {
452                struct inode *inode = list_entry(sb->s_io.prev,
453                                                struct inode, i_list);
454                struct address_space *mapping = inode->i_mapping;
455                struct backing_dev_info *bdi = mapping->backing_dev_info;
456                long pages_skipped;
457
458                if (!bdi_cap_writeback_dirty(bdi)) {
459                        redirty_tail(inode);
460                        if (sb_is_blkdev_sb(sb)) {
461                                /*
462                                 * Dirty memory-backed blockdev: the ramdisk
463                                 * driver does this.  Skip just this inode
464                                 */
465                                continue;
466                        }
467                        /*
468                         * Dirty memory-backed inode against a filesystem other
469                         * than the kernel-internal bdev filesystem.  Skip the
470                         * entire superblock.
471                         */
472                        break;
473                }
474
475                if (wbc->nonblocking && bdi_write_congested(bdi)) {
476                        wbc->encountered_congestion = 1;
477                        if (!sb_is_blkdev_sb(sb))
478                                break;                /* Skip a congested fs */
479                        requeue_io(inode);
480                        continue;                /* Skip a congested blockdev */
481                }
482
483                if (wbc->bdi && bdi != wbc->bdi) {
484                        if (!sb_is_blkdev_sb(sb))
485                                break;                /* fs has the wrong queue */
486                        requeue_io(inode);
487                        continue;                /* blockdev has wrong queue */
488                }
489
490                /* Was this inode dirtied after sync_sb_inodes was called? */
491                if (time_after(inode->dirtied_when, start))
492                        break;
493
494                /* Is another pdflush already flushing this queue? */
495                if (current_is_pdflush() && !writeback_acquire(bdi))
496                        break;
497
498                BUG_ON(inode->i_state & I_FREEING);
499                __iget(inode);
500                pages_skipped = wbc->pages_skipped;
501                __writeback_single_inode(inode, wbc);
502                if (wbc->sync_mode == WB_SYNC_HOLD) {
503                        inode->dirtied_when = jiffies;
504                        list_move(&inode->i_list, &sb->s_dirty);
505                }
506                if (current_is_pdflush())
507                        writeback_release(bdi);
508                if (wbc->pages_skipped != pages_skipped) {
509                        /*
510                         * writeback is not making progress due to locked
511                         * buffers.  Skip this inode for now.
512                         */
513                        redirty_tail(inode);
514                }
515                spin_unlock(&inode_lock);
516                iput(inode);
517                cond_resched();
518                spin_lock(&inode_lock);
519                if (wbc->nr_to_write <= 0) {
520                        wbc->more_io = 1;
521                        break;
522                }
523                if (!list_empty(&sb->s_more_io))
524                        wbc->more_io = 1;
525        }
526        spin_unlock(&inode_lock);
527        return;                /* Leave any unwritten inodes on s_io */
528}
529EXPORT_SYMBOL_GPL(generic_sync_sb_inodes);
530
531static void sync_sb_inodes(struct super_block *sb,
532                                struct writeback_control *wbc)
533{
534        generic_sync_sb_inodes(sb, wbc);
535}
536
537/*
538 * Start writeback of dirty pagecache data against all unlocked inodes.
539 *
540 * Note:
541 * We don't need to grab a reference to superblock here. If it has non-empty
542 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
543 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
544 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
545 * inode from superblock lists we are OK.
546 *
547 * If `older_than_this' is non-zero then only flush inodes which have a
548 * flushtime older than *older_than_this.
549 *
550 * If `bdi' is non-zero then we will scan the first inode against each
551 * superblock until we find the matching ones.  One group will be the dirty
552 * inodes against a filesystem.  Then when we hit the dummy blockdev superblock,
553 * sync_sb_inodes will seekout the blockdev which matches `bdi'.  Maybe not
554 * super-efficient but we're about to do a ton of I/O...
555 */
556void
557writeback_inodes(struct writeback_control *wbc)
558{
559        struct super_block *sb;
560
561        might_sleep();
562        spin_lock(&sb_lock);
563restart:
564        list_for_each_entry_reverse(sb, &super_blocks, s_list) {
565                if (sb_has_dirty_inodes(sb)) {
566                        /* we're making our own get_super here */
567                        sb->s_count++;
568                        spin_unlock(&sb_lock);
569                        /*
570                         * If we can't get the readlock, there's no sense in
571                         * waiting around, most of the time the FS is going to
572                         * be unmounted by the time it is released.
573                         */
574                        if (down_read_trylock(&sb->s_umount)) {
575                                if (sb->s_root)
576                                        sync_sb_inodes(sb, wbc);
577                                up_read(&sb->s_umount);
578                        }
579                        spin_lock(&sb_lock);
580                        if (__put_super_and_need_restart(sb))
581                                goto restart;
582                }
583                if (wbc->nr_to_write <= 0)
584                        break;
585        }
586        spin_unlock(&sb_lock);
587}
588
589/*
590 * writeback and wait upon the filesystem's dirty inodes.  The caller will
591 * do this in two passes - one to write, and one to wait.  WB_SYNC_HOLD is
592 * used to park the written inodes on sb->s_dirty for the wait pass.
593 *
594 * A finite limit is set on the number of pages which will be written.
595 * To prevent infinite livelock of sys_sync().
596 *
597 * We add in the number of potentially dirty inodes, because each inode write
598 * can dirty pagecache in the underlying blockdev.
599 */
600void sync_inodes_sb(struct super_block *sb, int wait)
601{
602        struct writeback_control wbc = {
603                .sync_mode        = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
604                .range_start        = 0,
605                .range_end        = LLONG_MAX,
606        };
607        unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
608        unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
609
610        wbc.nr_to_write = nr_dirty + nr_unstable +
611                        (inodes_stat.nr_inodes - inodes_stat.nr_unused) +
612                        nr_dirty + nr_unstable;
613        wbc.nr_to_write += wbc.nr_to_write / 2;                /* Bit more for luck */
614        sync_sb_inodes(sb, &wbc);
615}
616
617/*
618 * Rather lame livelock avoidance.
619 */
620static void set_sb_syncing(int val)
621{
622        struct super_block *sb;
623        spin_lock(&sb_lock);
624        list_for_each_entry_reverse(sb, &super_blocks, s_list)
625                sb->s_syncing = val;
626        spin_unlock(&sb_lock);
627}
628
629/**
630 * sync_inodes - writes all inodes to disk
631 * @wait: wait for completion
632 *
633 * sync_inodes() goes through each super block's dirty inode list, writes the
634 * inodes out, waits on the writeout and puts the inodes back on the normal
635 * list.
636 *
637 * This is for sys_sync().  fsync_dev() uses the same algorithm.  The subtle
638 * part of the sync functions is that the blockdev "superblock" is processed
639 * last.  This is because the write_inode() function of a typical fs will
640 * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
641 * What we want to do is to perform all that dirtying first, and then write
642 * back all those inode blocks via the blockdev mapping in one sweep.  So the
643 * additional (somewhat redundant) sync_blockdev() calls here are to make
644 * sure that really happens.  Because if we call sync_inodes_sb(wait=1) with
645 * outstanding dirty inodes, the writeback goes block-at-a-time within the
646 * filesystem's write_inode().  This is extremely slow.
647 */
648static void __sync_inodes(int wait)
649{
650        struct super_block *sb;
651
652        spin_lock(&sb_lock);
653restart:
654        list_for_each_entry(sb, &super_blocks, s_list) {
655                if (sb->s_syncing)
656                        continue;
657                sb->s_syncing = 1;
658                sb->s_count++;
659                spin_unlock(&sb_lock);
660                down_read(&sb->s_umount);
661                if (sb->s_root) {
662                        sync_inodes_sb(sb, wait);
663                        sync_blockdev(sb->s_bdev);
664                }
665                up_read(&sb->s_umount);
666                spin_lock(&sb_lock);
667                if (__put_super_and_need_restart(sb))
668                        goto restart;
669        }
670        spin_unlock(&sb_lock);
671}
672
673void sync_inodes(int wait)
674{
675        set_sb_syncing(0);
676        __sync_inodes(0);
677
678        if (wait) {
679                set_sb_syncing(0);
680                __sync_inodes(1);
681        }
682}
683
684/**
685 * write_inode_now        -        write an inode to disk
686 * @inode: inode to write to disk
687 * @sync: whether the write should be synchronous or not
688 *
689 * This function commits an inode to disk immediately if it is dirty. This is
690 * primarily needed by knfsd.
691 *
692 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
693 */
694int write_inode_now(struct inode *inode, int sync)
695{
696        int ret;
697        struct writeback_control wbc = {
698                .nr_to_write = LONG_MAX,
699                .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
700                .range_start = 0,
701                .range_end = LLONG_MAX,
702        };
703
704        if (!mapping_cap_writeback_dirty(inode->i_mapping))
705                wbc.nr_to_write = 0;
706
707        might_sleep();
708        spin_lock(&inode_lock);
709        ret = __writeback_single_inode(inode, &wbc);
710        spin_unlock(&inode_lock);
711        if (sync)
712                inode_sync_wait(inode);
713        return ret;
714}
715EXPORT_SYMBOL(write_inode_now);
716
717/**
718 * sync_inode - write an inode and its pages to disk.
719 * @inode: the inode to sync
720 * @wbc: controls the writeback mode
721 *
722 * sync_inode() will write an inode and its pages to disk.  It will also
723 * correctly update the inode on its superblock's dirty inode lists and will
724 * update inode->i_state.
725 *
726 * The caller must have a ref on the inode.
727 */
728int sync_inode(struct inode *inode, struct writeback_control *wbc)
729{
730        int ret;
731
732        spin_lock(&inode_lock);
733        ret = __writeback_single_inode(inode, wbc);
734        spin_unlock(&inode_lock);
735        return ret;
736}
737EXPORT_SYMBOL(sync_inode);
738
739/**
740 * generic_osync_inode - flush all dirty data for a given inode to disk
741 * @inode: inode to write
742 * @mapping: the address_space that should be flushed
743 * @what:  what to write and wait upon
744 *
745 * This can be called by file_write functions for files which have the
746 * O_SYNC flag set, to flush dirty writes to disk.
747 *
748 * @what is a bitmask, specifying which part of the inode's data should be
749 * written and waited upon.
750 *
751 *    OSYNC_DATA:     i_mapping's dirty data
752 *    OSYNC_METADATA: the buffers at i_mapping->private_list
753 *    OSYNC_INODE:    the inode itself
754 */
755
756int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
757{
758        int err = 0;
759        int need_write_inode_now = 0;
760        int err2;
761
762        if (what & OSYNC_DATA)
763                err = filemap_fdatawrite(mapping);
764        if (what & (OSYNC_METADATA|OSYNC_DATA)) {
765                err2 = sync_mapping_buffers(mapping);
766                if (!err)
767                        err = err2;
768        }
769        if (what & OSYNC_DATA) {
770                err2 = filemap_fdatawait(mapping);
771                if (!err)
772                        err = err2;
773        }
774
775        spin_lock(&inode_lock);
776        if ((inode->i_state & I_DIRTY) &&
777            ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
778                need_write_inode_now = 1;
779        spin_unlock(&inode_lock);
780
781        if (need_write_inode_now) {
782                err2 = write_inode_now(inode, 1);
783                if (!err)
784                        err = err2;
785        }
786        else
787                inode_sync_wait(inode);
788
789        return err;
790}
791EXPORT_SYMBOL(generic_osync_inode);