Showing error 1014

User: Jiri Slaby
Error type: Leaving function in locked state
Error type description: Some lock is not unlocked on all paths of a function, so it is leaked
File location: arch/x86/mm/pageattr.c
Line in file: 471
Project: Linux Kernel
Project version: 2.6.28
Tools: Undetermined 1
Entered: 2012-03-04 17:07:06 UTC


Source:

   1/*
   2 * Copyright 2002 Andi Kleen, SuSE Labs.
   3 * Thanks to Ben LaHaise for precious feedback.
   4 */
   5#include <linux/highmem.h>
   6#include <linux/bootmem.h>
   7#include <linux/module.h>
   8#include <linux/sched.h>
   9#include <linux/slab.h>
  10#include <linux/mm.h>
  11#include <linux/interrupt.h>
  12#include <linux/seq_file.h>
  13#include <linux/debugfs.h>
  14
  15#include <asm/e820.h>
  16#include <asm/processor.h>
  17#include <asm/tlbflush.h>
  18#include <asm/sections.h>
  19#include <asm/uaccess.h>
  20#include <asm/pgalloc.h>
  21#include <asm/proto.h>
  22#include <asm/pat.h>
  23
  24/*
  25 * The current flushing context - we pass it instead of 5 arguments:
  26 */
  27struct cpa_data {
  28        unsigned long        *vaddr;
  29        pgprot_t        mask_set;
  30        pgprot_t        mask_clr;
  31        int                numpages;
  32        int                flags;
  33        unsigned long        pfn;
  34        unsigned        force_split : 1;
  35        int                curpage;
  36};
  37
  38/*
  39 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  40 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  41 * entries change the page attribute in parallel to some other cpu
  42 * splitting a large page entry along with changing the attribute.
  43 */
  44static DEFINE_SPINLOCK(cpa_lock);
  45
  46#define CPA_FLUSHTLB 1
  47#define CPA_ARRAY 2
  48
  49#ifdef CONFIG_PROC_FS
  50static unsigned long direct_pages_count[PG_LEVEL_NUM];
  51
  52void update_page_count(int level, unsigned long pages)
  53{
  54        unsigned long flags;
  55
  56        /* Protect against CPA */
  57        spin_lock_irqsave(&pgd_lock, flags);
  58        direct_pages_count[level] += pages;
  59        spin_unlock_irqrestore(&pgd_lock, flags);
  60}
  61
  62static void split_page_count(int level)
  63{
  64        direct_pages_count[level]--;
  65        direct_pages_count[level - 1] += PTRS_PER_PTE;
  66}
  67
  68void arch_report_meminfo(struct seq_file *m)
  69{
  70        seq_printf(m, "DirectMap4k:    %8lu kB\n",
  71                        direct_pages_count[PG_LEVEL_4K] << 2);
  72#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  73        seq_printf(m, "DirectMap2M:    %8lu kB\n",
  74                        direct_pages_count[PG_LEVEL_2M] << 11);
  75#else
  76        seq_printf(m, "DirectMap4M:    %8lu kB\n",
  77                        direct_pages_count[PG_LEVEL_2M] << 12);
  78#endif
  79#ifdef CONFIG_X86_64
  80        if (direct_gbpages)
  81                seq_printf(m, "DirectMap1G:    %8lu kB\n",
  82                        direct_pages_count[PG_LEVEL_1G] << 20);
  83#endif
  84}
  85#else
  86static inline void split_page_count(int level) { }
  87#endif
  88
  89#ifdef CONFIG_X86_64
  90
  91static inline unsigned long highmap_start_pfn(void)
  92{
  93        return __pa(_text) >> PAGE_SHIFT;
  94}
  95
  96static inline unsigned long highmap_end_pfn(void)
  97{
  98        return __pa(roundup((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
  99}
 100
 101#endif
 102
 103#ifdef CONFIG_DEBUG_PAGEALLOC
 104# define debug_pagealloc 1
 105#else
 106# define debug_pagealloc 0
 107#endif
 108
 109static inline int
 110within(unsigned long addr, unsigned long start, unsigned long end)
 111{
 112        return addr >= start && addr < end;
 113}
 114
 115/*
 116 * Flushing functions
 117 */
 118
 119/**
 120 * clflush_cache_range - flush a cache range with clflush
 121 * @addr:        virtual start address
 122 * @size:        number of bytes to flush
 123 *
 124 * clflush is an unordered instruction which needs fencing with mfence
 125 * to avoid ordering issues.
 126 */
 127void clflush_cache_range(void *vaddr, unsigned int size)
 128{
 129        void *vend = vaddr + size - 1;
 130
 131        mb();
 132
 133        for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
 134                clflush(vaddr);
 135        /*
 136         * Flush any possible final partial cacheline:
 137         */
 138        clflush(vend);
 139
 140        mb();
 141}
 142
 143static void __cpa_flush_all(void *arg)
 144{
 145        unsigned long cache = (unsigned long)arg;
 146
 147        /*
 148         * Flush all to work around Errata in early athlons regarding
 149         * large page flushing.
 150         */
 151        __flush_tlb_all();
 152
 153        if (cache && boot_cpu_data.x86_model >= 4)
 154                wbinvd();
 155}
 156
 157static void cpa_flush_all(unsigned long cache)
 158{
 159        BUG_ON(irqs_disabled());
 160
 161        on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 162}
 163
 164static void __cpa_flush_range(void *arg)
 165{
 166        /*
 167         * We could optimize that further and do individual per page
 168         * tlb invalidates for a low number of pages. Caveat: we must
 169         * flush the high aliases on 64bit as well.
 170         */
 171        __flush_tlb_all();
 172}
 173
 174static void cpa_flush_range(unsigned long start, int numpages, int cache)
 175{
 176        unsigned int i, level;
 177        unsigned long addr;
 178
 179        BUG_ON(irqs_disabled());
 180        WARN_ON(PAGE_ALIGN(start) != start);
 181
 182        on_each_cpu(__cpa_flush_range, NULL, 1);
 183
 184        if (!cache)
 185                return;
 186
 187        /*
 188         * We only need to flush on one CPU,
 189         * clflush is a MESI-coherent instruction that
 190         * will cause all other CPUs to flush the same
 191         * cachelines:
 192         */
 193        for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
 194                pte_t *pte = lookup_address(addr, &level);
 195
 196                /*
 197                 * Only flush present addresses:
 198                 */
 199                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 200                        clflush_cache_range((void *) addr, PAGE_SIZE);
 201        }
 202}
 203
 204static void cpa_flush_array(unsigned long *start, int numpages, int cache)
 205{
 206        unsigned int i, level;
 207        unsigned long *addr;
 208
 209        BUG_ON(irqs_disabled());
 210
 211        on_each_cpu(__cpa_flush_range, NULL, 1);
 212
 213        if (!cache)
 214                return;
 215
 216        /* 4M threshold */
 217        if (numpages >= 1024) {
 218                if (boot_cpu_data.x86_model >= 4)
 219                        wbinvd();
 220                return;
 221        }
 222        /*
 223         * We only need to flush on one CPU,
 224         * clflush is a MESI-coherent instruction that
 225         * will cause all other CPUs to flush the same
 226         * cachelines:
 227         */
 228        for (i = 0, addr = start; i < numpages; i++, addr++) {
 229                pte_t *pte = lookup_address(*addr, &level);
 230
 231                /*
 232                 * Only flush present addresses:
 233                 */
 234                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 235                        clflush_cache_range((void *) *addr, PAGE_SIZE);
 236        }
 237}
 238
 239/*
 240 * Certain areas of memory on x86 require very specific protection flags,
 241 * for example the BIOS area or kernel text. Callers don't always get this
 242 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 243 * checks and fixes these known static required protection bits.
 244 */
 245static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
 246                                   unsigned long pfn)
 247{
 248        pgprot_t forbidden = __pgprot(0);
 249
 250        /*
 251         * The BIOS area between 640k and 1Mb needs to be executable for
 252         * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
 253         */
 254        if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
 255                pgprot_val(forbidden) |= _PAGE_NX;
 256
 257        /*
 258         * The kernel text needs to be executable for obvious reasons
 259         * Does not cover __inittext since that is gone later on. On
 260         * 64bit we do not enforce !NX on the low mapping
 261         */
 262        if (within(address, (unsigned long)_text, (unsigned long)_etext))
 263                pgprot_val(forbidden) |= _PAGE_NX;
 264
 265        /*
 266         * The .rodata section needs to be read-only. Using the pfn
 267         * catches all aliases.
 268         */
 269        if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
 270                   __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
 271                pgprot_val(forbidden) |= _PAGE_RW;
 272
 273        prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
 274
 275        return prot;
 276}
 277
 278/*
 279 * Lookup the page table entry for a virtual address. Return a pointer
 280 * to the entry and the level of the mapping.
 281 *
 282 * Note: We return pud and pmd either when the entry is marked large
 283 * or when the present bit is not set. Otherwise we would return a
 284 * pointer to a nonexisting mapping.
 285 */
 286pte_t *lookup_address(unsigned long address, unsigned int *level)
 287{
 288        pgd_t *pgd = pgd_offset_k(address);
 289        pud_t *pud;
 290        pmd_t *pmd;
 291
 292        *level = PG_LEVEL_NONE;
 293
 294        if (pgd_none(*pgd))
 295                return NULL;
 296
 297        pud = pud_offset(pgd, address);
 298        if (pud_none(*pud))
 299                return NULL;
 300
 301        *level = PG_LEVEL_1G;
 302        if (pud_large(*pud) || !pud_present(*pud))
 303                return (pte_t *)pud;
 304
 305        pmd = pmd_offset(pud, address);
 306        if (pmd_none(*pmd))
 307                return NULL;
 308
 309        *level = PG_LEVEL_2M;
 310        if (pmd_large(*pmd) || !pmd_present(*pmd))
 311                return (pte_t *)pmd;
 312
 313        *level = PG_LEVEL_4K;
 314
 315        return pte_offset_kernel(pmd, address);
 316}
 317EXPORT_SYMBOL_GPL(lookup_address);
 318
 319/*
 320 * Set the new pmd in all the pgds we know about:
 321 */
 322static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 323{
 324        /* change init_mm */
 325        set_pte_atomic(kpte, pte);
 326#ifdef CONFIG_X86_32
 327        if (!SHARED_KERNEL_PMD) {
 328                struct page *page;
 329
 330                list_for_each_entry(page, &pgd_list, lru) {
 331                        pgd_t *pgd;
 332                        pud_t *pud;
 333                        pmd_t *pmd;
 334
 335                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 336                        pud = pud_offset(pgd, address);
 337                        pmd = pmd_offset(pud, address);
 338                        set_pte_atomic((pte_t *)pmd, pte);
 339                }
 340        }
 341#endif
 342}
 343
 344static int
 345try_preserve_large_page(pte_t *kpte, unsigned long address,
 346                        struct cpa_data *cpa)
 347{
 348        unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
 349        pte_t new_pte, old_pte, *tmp;
 350        pgprot_t old_prot, new_prot;
 351        int i, do_split = 1;
 352        unsigned int level;
 353
 354        if (cpa->force_split)
 355                return 1;
 356
 357        spin_lock_irqsave(&pgd_lock, flags);
 358        /*
 359         * Check for races, another CPU might have split this page
 360         * up already:
 361         */
 362        tmp = lookup_address(address, &level);
 363        if (tmp != kpte)
 364                goto out_unlock;
 365
 366        switch (level) {
 367        case PG_LEVEL_2M:
 368                psize = PMD_PAGE_SIZE;
 369                pmask = PMD_PAGE_MASK;
 370                break;
 371#ifdef CONFIG_X86_64
 372        case PG_LEVEL_1G:
 373                psize = PUD_PAGE_SIZE;
 374                pmask = PUD_PAGE_MASK;
 375                break;
 376#endif
 377        default:
 378                do_split = -EINVAL;
 379                goto out_unlock;
 380        }
 381
 382        /*
 383         * Calculate the number of pages, which fit into this large
 384         * page starting at address:
 385         */
 386        nextpage_addr = (address + psize) & pmask;
 387        numpages = (nextpage_addr - address) >> PAGE_SHIFT;
 388        if (numpages < cpa->numpages)
 389                cpa->numpages = numpages;
 390
 391        /*
 392         * We are safe now. Check whether the new pgprot is the same:
 393         */
 394        old_pte = *kpte;
 395        old_prot = new_prot = pte_pgprot(old_pte);
 396
 397        pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 398        pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 399
 400        /*
 401         * old_pte points to the large page base address. So we need
 402         * to add the offset of the virtual address:
 403         */
 404        pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
 405        cpa->pfn = pfn;
 406
 407        new_prot = static_protections(new_prot, address, pfn);
 408
 409        /*
 410         * We need to check the full range, whether
 411         * static_protection() requires a different pgprot for one of
 412         * the pages in the range we try to preserve:
 413         */
 414        addr = address + PAGE_SIZE;
 415        pfn++;
 416        for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
 417                pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
 418
 419                if (pgprot_val(chk_prot) != pgprot_val(new_prot))
 420                        goto out_unlock;
 421        }
 422
 423        /*
 424         * If there are no changes, return. maxpages has been updated
 425         * above:
 426         */
 427        if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
 428                do_split = 0;
 429                goto out_unlock;
 430        }
 431
 432        /*
 433         * We need to change the attributes. Check, whether we can
 434         * change the large page in one go. We request a split, when
 435         * the address is not aligned and the number of pages is
 436         * smaller than the number of pages in the large page. Note
 437         * that we limited the number of possible pages already to
 438         * the number of pages in the large page.
 439         */
 440        if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
 441                /*
 442                 * The address is aligned and the number of pages
 443                 * covers the full page.
 444                 */
 445                new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
 446                __set_pmd_pte(kpte, address, new_pte);
 447                cpa->flags |= CPA_FLUSHTLB;
 448                do_split = 0;
 449        }
 450
 451out_unlock:
 452        spin_unlock_irqrestore(&pgd_lock, flags);
 453
 454        return do_split;
 455}
 456
 457static int split_large_page(pte_t *kpte, unsigned long address)
 458{
 459        unsigned long flags, pfn, pfninc = 1;
 460        unsigned int i, level;
 461        pte_t *pbase, *tmp;
 462        pgprot_t ref_prot;
 463        struct page *base;
 464
 465        if (!debug_pagealloc)
 466                spin_unlock(&cpa_lock);
 467        base = alloc_pages(GFP_KERNEL, 0);
 468        if (!debug_pagealloc)
 469                spin_lock(&cpa_lock);
 470        if (!base)
 471                return -ENOMEM;
 472
 473        spin_lock_irqsave(&pgd_lock, flags);
 474        /*
 475         * Check for races, another CPU might have split this page
 476         * up for us already:
 477         */
 478        tmp = lookup_address(address, &level);
 479        if (tmp != kpte)
 480                goto out_unlock;
 481
 482        pbase = (pte_t *)page_address(base);
 483        paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 484        ref_prot = pte_pgprot(pte_clrhuge(*kpte));
 485
 486#ifdef CONFIG_X86_64
 487        if (level == PG_LEVEL_1G) {
 488                pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 489                pgprot_val(ref_prot) |= _PAGE_PSE;
 490        }
 491#endif
 492
 493        /*
 494         * Get the target pfn from the original entry:
 495         */
 496        pfn = pte_pfn(*kpte);
 497        for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
 498                set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
 499
 500        if (address >= (unsigned long)__va(0) &&
 501                address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
 502                split_page_count(level);
 503
 504#ifdef CONFIG_X86_64
 505        if (address >= (unsigned long)__va(1UL<<32) &&
 506                address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
 507                split_page_count(level);
 508#endif
 509
 510        /*
 511         * Install the new, split up pagetable. Important details here:
 512         *
 513         * On Intel the NX bit of all levels must be cleared to make a
 514         * page executable. See section 4.13.2 of Intel 64 and IA-32
 515         * Architectures Software Developer's Manual).
 516         *
 517         * Mark the entry present. The current mapping might be
 518         * set to not present, which we preserved above.
 519         */
 520        ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
 521        pgprot_val(ref_prot) |= _PAGE_PRESENT;
 522        __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
 523        base = NULL;
 524
 525out_unlock:
 526        /*
 527         * If we dropped out via the lookup_address check under
 528         * pgd_lock then stick the page back into the pool:
 529         */
 530        if (base)
 531                __free_page(base);
 532        spin_unlock_irqrestore(&pgd_lock, flags);
 533
 534        return 0;
 535}
 536
 537static int __change_page_attr(struct cpa_data *cpa, int primary)
 538{
 539        unsigned long address;
 540        int do_split, err;
 541        unsigned int level;
 542        pte_t *kpte, old_pte;
 543
 544        if (cpa->flags & CPA_ARRAY)
 545                address = cpa->vaddr[cpa->curpage];
 546        else
 547                address = *cpa->vaddr;
 548
 549repeat:
 550        kpte = lookup_address(address, &level);
 551        if (!kpte)
 552                return 0;
 553
 554        old_pte = *kpte;
 555        if (!pte_val(old_pte)) {
 556                if (!primary)
 557                        return 0;
 558                WARN(1, KERN_WARNING "CPA: called for zero pte. "
 559                       "vaddr = %lx cpa->vaddr = %lx\n", address,
 560                       *cpa->vaddr);
 561                return -EINVAL;
 562        }
 563
 564        if (level == PG_LEVEL_4K) {
 565                pte_t new_pte;
 566                pgprot_t new_prot = pte_pgprot(old_pte);
 567                unsigned long pfn = pte_pfn(old_pte);
 568
 569                pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 570                pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 571
 572                new_prot = static_protections(new_prot, address, pfn);
 573
 574                /*
 575                 * We need to keep the pfn from the existing PTE,
 576                 * after all we're only going to change it's attributes
 577                 * not the memory it points to
 578                 */
 579                new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
 580                cpa->pfn = pfn;
 581                /*
 582                 * Do we really change anything ?
 583                 */
 584                if (pte_val(old_pte) != pte_val(new_pte)) {
 585                        set_pte_atomic(kpte, new_pte);
 586                        cpa->flags |= CPA_FLUSHTLB;
 587                }
 588                cpa->numpages = 1;
 589                return 0;
 590        }
 591
 592        /*
 593         * Check, whether we can keep the large page intact
 594         * and just change the pte:
 595         */
 596        do_split = try_preserve_large_page(kpte, address, cpa);
 597        /*
 598         * When the range fits into the existing large page,
 599         * return. cp->numpages and cpa->tlbflush have been updated in
 600         * try_large_page:
 601         */
 602        if (do_split <= 0)
 603                return do_split;
 604
 605        /*
 606         * We have to split the large page:
 607         */
 608        err = split_large_page(kpte, address);
 609        if (!err) {
 610                /*
 611                  * Do a global flush tlb after splitting the large page
 612                  * and before we do the actual change page attribute in the PTE.
 613                  *
 614                  * With out this, we violate the TLB application note, that says
 615                  * "The TLBs may contain both ordinary and large-page
 616                 *  translations for a 4-KByte range of linear addresses. This
 617                 *  may occur if software modifies the paging structures so that
 618                 *  the page size used for the address range changes. If the two
 619                 *  translations differ with respect to page frame or attributes
 620                 *  (e.g., permissions), processor behavior is undefined and may
 621                 *  be implementation-specific."
 622                  *
 623                  * We do this global tlb flush inside the cpa_lock, so that we
 624                 * don't allow any other cpu, with stale tlb entries change the
 625                 * page attribute in parallel, that also falls into the
 626                 * just split large page entry.
 627                  */
 628                flush_tlb_all();
 629                goto repeat;
 630        }
 631
 632        return err;
 633}
 634
 635static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
 636
 637static int cpa_process_alias(struct cpa_data *cpa)
 638{
 639        struct cpa_data alias_cpa;
 640        int ret = 0;
 641        unsigned long temp_cpa_vaddr, vaddr;
 642
 643        if (cpa->pfn >= max_pfn_mapped)
 644                return 0;
 645
 646#ifdef CONFIG_X86_64
 647        if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
 648                return 0;
 649#endif
 650        /*
 651         * No need to redo, when the primary call touched the direct
 652         * mapping already:
 653         */
 654        if (cpa->flags & CPA_ARRAY)
 655                vaddr = cpa->vaddr[cpa->curpage];
 656        else
 657                vaddr = *cpa->vaddr;
 658
 659        if (!(within(vaddr, PAGE_OFFSET,
 660                    PAGE_OFFSET + (max_low_pfn_mapped << PAGE_SHIFT))
 661#ifdef CONFIG_X86_64
 662                || within(vaddr, PAGE_OFFSET + (1UL<<32),
 663                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))
 664#endif
 665        )) {
 666
 667                alias_cpa = *cpa;
 668                temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
 669                alias_cpa.vaddr = &temp_cpa_vaddr;
 670                alias_cpa.flags &= ~CPA_ARRAY;
 671
 672
 673                ret = __change_page_attr_set_clr(&alias_cpa, 0);
 674        }
 675
 676#ifdef CONFIG_X86_64
 677        if (ret)
 678                return ret;
 679        /*
 680         * No need to redo, when the primary call touched the high
 681         * mapping already:
 682         */
 683        if (within(vaddr, (unsigned long) _text, (unsigned long) _end))
 684                return 0;
 685
 686        /*
 687         * If the physical address is inside the kernel map, we need
 688         * to touch the high mapped kernel as well:
 689         */
 690        if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
 691                return 0;
 692
 693        alias_cpa = *cpa;
 694        temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
 695        alias_cpa.vaddr = &temp_cpa_vaddr;
 696        alias_cpa.flags &= ~CPA_ARRAY;
 697
 698        /*
 699         * The high mapping range is imprecise, so ignore the return value.
 700         */
 701        __change_page_attr_set_clr(&alias_cpa, 0);
 702#endif
 703        return ret;
 704}
 705
 706static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 707{
 708        int ret, numpages = cpa->numpages;
 709
 710        while (numpages) {
 711                /*
 712                 * Store the remaining nr of pages for the large page
 713                 * preservation check.
 714                 */
 715                cpa->numpages = numpages;
 716                /* for array changes, we can't use large page */
 717                if (cpa->flags & CPA_ARRAY)
 718                        cpa->numpages = 1;
 719
 720                if (!debug_pagealloc)
 721                        spin_lock(&cpa_lock);
 722                ret = __change_page_attr(cpa, checkalias);
 723                if (!debug_pagealloc)
 724                        spin_unlock(&cpa_lock);
 725                if (ret)
 726                        return ret;
 727
 728                if (checkalias) {
 729                        ret = cpa_process_alias(cpa);
 730                        if (ret)
 731                                return ret;
 732                }
 733
 734                /*
 735                 * Adjust the number of pages with the result of the
 736                 * CPA operation. Either a large page has been
 737                 * preserved or a single page update happened.
 738                 */
 739                BUG_ON(cpa->numpages > numpages);
 740                numpages -= cpa->numpages;
 741                if (cpa->flags & CPA_ARRAY)
 742                        cpa->curpage++;
 743                else
 744                        *cpa->vaddr += cpa->numpages * PAGE_SIZE;
 745
 746        }
 747        return 0;
 748}
 749
 750static inline int cache_attr(pgprot_t attr)
 751{
 752        return pgprot_val(attr) &
 753                (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
 754}
 755
 756static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 757                                    pgprot_t mask_set, pgprot_t mask_clr,
 758                                    int force_split, int array)
 759{
 760        struct cpa_data cpa;
 761        int ret, cache, checkalias;
 762
 763        /*
 764         * Check, if we are requested to change a not supported
 765         * feature:
 766         */
 767        mask_set = canon_pgprot(mask_set);
 768        mask_clr = canon_pgprot(mask_clr);
 769        if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
 770                return 0;
 771
 772        /* Ensure we are PAGE_SIZE aligned */
 773        if (!array) {
 774                if (*addr & ~PAGE_MASK) {
 775                        *addr &= PAGE_MASK;
 776                        /*
 777                         * People should not be passing in unaligned addresses:
 778                         */
 779                        WARN_ON_ONCE(1);
 780                }
 781        } else {
 782                int i;
 783                for (i = 0; i < numpages; i++) {
 784                        if (addr[i] & ~PAGE_MASK) {
 785                                addr[i] &= PAGE_MASK;
 786                                WARN_ON_ONCE(1);
 787                        }
 788                }
 789        }
 790
 791        /* Must avoid aliasing mappings in the highmem code */
 792        kmap_flush_unused();
 793
 794        vm_unmap_aliases();
 795
 796        cpa.vaddr = addr;
 797        cpa.numpages = numpages;
 798        cpa.mask_set = mask_set;
 799        cpa.mask_clr = mask_clr;
 800        cpa.flags = 0;
 801        cpa.curpage = 0;
 802        cpa.force_split = force_split;
 803
 804        if (array)
 805                cpa.flags |= CPA_ARRAY;
 806
 807        /* No alias checking for _NX bit modifications */
 808        checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
 809
 810        ret = __change_page_attr_set_clr(&cpa, checkalias);
 811
 812        /*
 813         * Check whether we really changed something:
 814         */
 815        if (!(cpa.flags & CPA_FLUSHTLB))
 816                goto out;
 817
 818        /*
 819         * No need to flush, when we did not set any of the caching
 820         * attributes:
 821         */
 822        cache = cache_attr(mask_set);
 823
 824        /*
 825         * On success we use clflush, when the CPU supports it to
 826         * avoid the wbindv. If the CPU does not support it and in the
 827         * error case we fall back to cpa_flush_all (which uses
 828         * wbindv):
 829         */
 830        if (!ret && cpu_has_clflush) {
 831                if (cpa.flags & CPA_ARRAY)
 832                        cpa_flush_array(addr, numpages, cache);
 833                else
 834                        cpa_flush_range(*addr, numpages, cache);
 835        } else
 836                cpa_flush_all(cache);
 837
 838out:
 839        return ret;
 840}
 841
 842static inline int change_page_attr_set(unsigned long *addr, int numpages,
 843                                       pgprot_t mask, int array)
 844{
 845        return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
 846                array);
 847}
 848
 849static inline int change_page_attr_clear(unsigned long *addr, int numpages,
 850                                         pgprot_t mask, int array)
 851{
 852        return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
 853                array);
 854}
 855
 856int _set_memory_uc(unsigned long addr, int numpages)
 857{
 858        /*
 859         * for now UC MINUS. see comments in ioremap_nocache()
 860         */
 861        return change_page_attr_set(&addr, numpages,
 862                                    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
 863}
 864
 865int set_memory_uc(unsigned long addr, int numpages)
 866{
 867        /*
 868         * for now UC MINUS. see comments in ioremap_nocache()
 869         */
 870        if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
 871                            _PAGE_CACHE_UC_MINUS, NULL))
 872                return -EINVAL;
 873
 874        return _set_memory_uc(addr, numpages);
 875}
 876EXPORT_SYMBOL(set_memory_uc);
 877
 878int set_memory_array_uc(unsigned long *addr, int addrinarray)
 879{
 880        unsigned long start;
 881        unsigned long end;
 882        int i;
 883        /*
 884         * for now UC MINUS. see comments in ioremap_nocache()
 885         */
 886        for (i = 0; i < addrinarray; i++) {
 887                start = __pa(addr[i]);
 888                for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
 889                        if (end != __pa(addr[i + 1]))
 890                                break;
 891                        i++;
 892                }
 893                if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
 894                        goto out;
 895        }
 896
 897        return change_page_attr_set(addr, addrinarray,
 898                                    __pgprot(_PAGE_CACHE_UC_MINUS), 1);
 899out:
 900        for (i = 0; i < addrinarray; i++) {
 901                unsigned long tmp = __pa(addr[i]);
 902
 903                if (tmp == start)
 904                        break;
 905                for (end = tmp + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
 906                        if (end != __pa(addr[i + 1]))
 907                                break;
 908                        i++;
 909                }
 910                free_memtype(tmp, end);
 911        }
 912        return -EINVAL;
 913}
 914EXPORT_SYMBOL(set_memory_array_uc);
 915
 916int _set_memory_wc(unsigned long addr, int numpages)
 917{
 918        return change_page_attr_set(&addr, numpages,
 919                                    __pgprot(_PAGE_CACHE_WC), 0);
 920}
 921
 922int set_memory_wc(unsigned long addr, int numpages)
 923{
 924        if (!pat_enabled)
 925                return set_memory_uc(addr, numpages);
 926
 927        if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
 928                _PAGE_CACHE_WC, NULL))
 929                return -EINVAL;
 930
 931        return _set_memory_wc(addr, numpages);
 932}
 933EXPORT_SYMBOL(set_memory_wc);
 934
 935int _set_memory_wb(unsigned long addr, int numpages)
 936{
 937        return change_page_attr_clear(&addr, numpages,
 938                                      __pgprot(_PAGE_CACHE_MASK), 0);
 939}
 940
 941int set_memory_wb(unsigned long addr, int numpages)
 942{
 943        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 944
 945        return _set_memory_wb(addr, numpages);
 946}
 947EXPORT_SYMBOL(set_memory_wb);
 948
 949int set_memory_array_wb(unsigned long *addr, int addrinarray)
 950{
 951        int i;
 952
 953        for (i = 0; i < addrinarray; i++) {
 954                unsigned long start = __pa(addr[i]);
 955                unsigned long end;
 956
 957                for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
 958                        if (end != __pa(addr[i + 1]))
 959                                break;
 960                        i++;
 961                }
 962                free_memtype(start, end);
 963        }
 964        return change_page_attr_clear(addr, addrinarray,
 965                                      __pgprot(_PAGE_CACHE_MASK), 1);
 966}
 967EXPORT_SYMBOL(set_memory_array_wb);
 968
 969int set_memory_x(unsigned long addr, int numpages)
 970{
 971        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
 972}
 973EXPORT_SYMBOL(set_memory_x);
 974
 975int set_memory_nx(unsigned long addr, int numpages)
 976{
 977        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
 978}
 979EXPORT_SYMBOL(set_memory_nx);
 980
 981int set_memory_ro(unsigned long addr, int numpages)
 982{
 983        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
 984}
 985EXPORT_SYMBOL_GPL(set_memory_ro);
 986
 987int set_memory_rw(unsigned long addr, int numpages)
 988{
 989        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
 990}
 991EXPORT_SYMBOL_GPL(set_memory_rw);
 992
 993int set_memory_np(unsigned long addr, int numpages)
 994{
 995        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
 996}
 997
 998int set_memory_4k(unsigned long addr, int numpages)
 999{
1000        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1001                                        __pgprot(0), 1, 0);
1002}
1003
1004int set_pages_uc(struct page *page, int numpages)
1005{
1006        unsigned long addr = (unsigned long)page_address(page);
1007
1008        return set_memory_uc(addr, numpages);
1009}
1010EXPORT_SYMBOL(set_pages_uc);
1011
1012int set_pages_wb(struct page *page, int numpages)
1013{
1014        unsigned long addr = (unsigned long)page_address(page);
1015
1016        return set_memory_wb(addr, numpages);
1017}
1018EXPORT_SYMBOL(set_pages_wb);
1019
1020int set_pages_x(struct page *page, int numpages)
1021{
1022        unsigned long addr = (unsigned long)page_address(page);
1023
1024        return set_memory_x(addr, numpages);
1025}
1026EXPORT_SYMBOL(set_pages_x);
1027
1028int set_pages_nx(struct page *page, int numpages)
1029{
1030        unsigned long addr = (unsigned long)page_address(page);
1031
1032        return set_memory_nx(addr, numpages);
1033}
1034EXPORT_SYMBOL(set_pages_nx);
1035
1036int set_pages_ro(struct page *page, int numpages)
1037{
1038        unsigned long addr = (unsigned long)page_address(page);
1039
1040        return set_memory_ro(addr, numpages);
1041}
1042
1043int set_pages_rw(struct page *page, int numpages)
1044{
1045        unsigned long addr = (unsigned long)page_address(page);
1046
1047        return set_memory_rw(addr, numpages);
1048}
1049
1050#ifdef CONFIG_DEBUG_PAGEALLOC
1051
1052static int __set_pages_p(struct page *page, int numpages)
1053{
1054        unsigned long tempaddr = (unsigned long) page_address(page);
1055        struct cpa_data cpa = { .vaddr = &tempaddr,
1056                                .numpages = numpages,
1057                                .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1058                                .mask_clr = __pgprot(0),
1059                                .flags = 0};
1060
1061        /*
1062         * No alias checking needed for setting present flag. otherwise,
1063         * we may need to break large pages for 64-bit kernel text
1064         * mappings (this adds to complexity if we want to do this from
1065         * atomic context especially). Let's keep it simple!
1066         */
1067        return __change_page_attr_set_clr(&cpa, 0);
1068}
1069
1070static int __set_pages_np(struct page *page, int numpages)
1071{
1072        unsigned long tempaddr = (unsigned long) page_address(page);
1073        struct cpa_data cpa = { .vaddr = &tempaddr,
1074                                .numpages = numpages,
1075                                .mask_set = __pgprot(0),
1076                                .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1077                                .flags = 0};
1078
1079        /*
1080         * No alias checking needed for setting not present flag. otherwise,
1081         * we may need to break large pages for 64-bit kernel text
1082         * mappings (this adds to complexity if we want to do this from
1083         * atomic context especially). Let's keep it simple!
1084         */
1085        return __change_page_attr_set_clr(&cpa, 0);
1086}
1087
1088void kernel_map_pages(struct page *page, int numpages, int enable)
1089{
1090        if (PageHighMem(page))
1091                return;
1092        if (!enable) {
1093                debug_check_no_locks_freed(page_address(page),
1094                                           numpages * PAGE_SIZE);
1095        }
1096
1097        /*
1098         * If page allocator is not up yet then do not call c_p_a():
1099         */
1100        if (!debug_pagealloc_enabled)
1101                return;
1102
1103        /*
1104         * The return value is ignored as the calls cannot fail.
1105         * Large pages for identity mappings are not used at boot time
1106         * and hence no memory allocations during large page split.
1107         */
1108        if (enable)
1109                __set_pages_p(page, numpages);
1110        else
1111                __set_pages_np(page, numpages);
1112
1113        /*
1114         * We should perform an IPI and flush all tlbs,
1115         * but that can deadlock->flush only current cpu:
1116         */
1117        __flush_tlb_all();
1118}
1119
1120#ifdef CONFIG_HIBERNATION
1121
1122bool kernel_page_present(struct page *page)
1123{
1124        unsigned int level;
1125        pte_t *pte;
1126
1127        if (PageHighMem(page))
1128                return false;
1129
1130        pte = lookup_address((unsigned long)page_address(page), &level);
1131        return (pte_val(*pte) & _PAGE_PRESENT);
1132}
1133
1134#endif /* CONFIG_HIBERNATION */
1135
1136#endif /* CONFIG_DEBUG_PAGEALLOC */
1137
1138/*
1139 * The testcases use internal knowledge of the implementation that shouldn't
1140 * be exposed to the rest of the kernel. Include these directly here.
1141 */
1142#ifdef CONFIG_CPA_DEBUG
1143#include "pageattr-test.c"
1144#endif