
Object Model Unifying Wrapping, Replacement and Roled–Objects

Techniques

Lubomı́r Markovič Jǐŕı Sochor
markovic@fi.muni.cz sochor@fi.muni.cz

Faculty of Informatics
Masaryk University

Brno, Czech Republic

Abstract

We present the formal model of objects with roles,
that provides both theoretical and practical framework
for construction of objects. In this model the objects
with roles can dynamically change the interfaces they
support. The purpose of the paper is to describe the
improved, more general model that comprises also oth-
er techniques used to handle evolving objects.

1 Motivation

Object oriented technology brings many advan-
tages when used to design systems with static struc-
tures. Requirement analysis methods are tailored to
capture the traditional ”is-a” and ”part-of” structures
in class hierarchy models and to derive the necessary
associations for inter-object communication. The se-
rious drawback of traditional techniques is the impos-
sibility to model the situations where an application
has to reflect the dynamical changes in object respon-
sibilities and behavior.

The need to support dynamically changing objects
can be found in many application domains. Frequent-
ly mentioned example is an object representing a per-
son, playing the different roles over the time (child,
student, parent, employee, . . . ). Many others objects,
e.g. documents, products passing production process-
es, may also serve as the examples.

In [14] we proposed the flexible object model
based on roles. We recognised, that the most impor-
tant part of the presented model, influencing its power,
are dependencies between roles. The study of relat-
ed problems showed the new possibilities in defining
dependency rules. The formal approach presented in
this paper describes the usage of object wrapping and
replacement techniques on the level of role instances.

2 Existing Techniques – Previous
Work

The advocacy of objects with roles is done in
many papers ([8][17][15][2][14]. . . ) Models deal-
ing with evolving objects were published e.g. in
[6][4][7][11][16],[20] [12]. The main techniques (ideas)
that stay behind these models are shown in Figure 1.

ApplicationApplication

Application

Application

ApplicationApplication

Application

Application

Object A

Object B

Object BObject A

Object A

Object B

Object A Object A

Object B

Object Object

Method/

Attribute

Object

Object
Role B

Role A

Role A

Role B

Replacement

Wrapping

Prototypes

Objects with Roles

Figure 1: Existing Techniques

Replacement – The change of the behavior of an ob-
ject in an application is accomplished by replace-
ment of the original object with another one.

Wrapping – This technique is very similar to previ-



ous one. The main difference is that the original
object remains in the application to be internally
used by a new object (using delegation or consul-
tation [11]). The wrapping object needs to imple-
ment only the changes to wrapped object.

In the case of replacement or wrapping the objec-
t’s interfaces are static, they cannot be extended or
modified later. The advantage of both techniques is
that if the type (interface) of a new object is the same
as or a subtype of, a type of a previous object, the
object modifications can be done type-safely. The dis-
advantage is that a new object, representing the same
real entity, is introduced in an application.

Prototypes – Objects formed with prototyped based
OOP techniques [3][19][21] are not restricted by
any static interface. Every object can have its
own interface that can be changed dynamically.
New methods or attributes can be added to any
prototyped object directly. The disadvantage of
these techniques is their problematic type control
(in statically typed languages), as the objects can
change their interfaces unpredictably.

Objects with Roles – Objects consist of ”smaller
objects” called role instances (or just roles). Ob-
ject interface is changed dynamically by adding
new, or removing existing roles.

The definition of the role appropriate for our
model is taken from [13]:

A role of an object is a set of proper-
ties which are important for an object
to be able to behave in a certain way
expected by a set of other objects.

3 Formal Model of Objects with Roles

In the following sections we introduce the new
model of objects with roles. It’s new features, the
support of replacement and wrapping techniques on
the level of role instances, are described.

3.1 Previous Work – Simple Model

In [14] we introduced model based on single inher-
itance and stateless, instance–controlled dependency.
The model can be build over existing class–based plat-
forms that often support multiple inheritance of inter-
faces (Java, CORBA IDL). Obviously, if we want to
profit of all features available with these platforms we
have to include multiple inheritance in our model.

Original model of objects with roles dealt only
with extensions of an object (adding new roles in-
stances to an object), but it did not allow to change

their behavior, as the techniques based on wrapping
or replacement do.

When we add support of these techniques to our
model we get a strong object model supporting dy-
namicly evolving objects that preserves the important
feature of type control.

3.2 Role and Role Instance

Every role R is associated with its interface I, that
provides methods and attributes which the role sup-
ports. The description of interface can be written e.g.
using CORBA IDL [18].

Let R be a set of all roles meaningful in applica-
tion context. The instance RI of the role R ∈ R is
denoted as RI :!R. Similarly RI denotes the set of
all instances of roles,i.e.RI = {RI} . The instances of
roles are distinguishable by their unique global identi-
fier GID The instances of roles in an object (section
3.5) are distinguishable by their object–unique role i-
dentifier RID.

With respect to role types [14] the set of all roles R
splits in two disjoint subsets RS and RM. Roles from
the set RS are s-roles (single roles), roles from the
set RM are m-roles (multiple roles). RS ∪RM = R,
RS ∩RM = ∅

Every object includes at most one instance of
some s-role (exception to this rule is described in 4.2.6)
and zero-to-many instances of any m-role.

3.3 Inheritance Relation

Definition 1. (Multiple) Inheritance Relation ≤ is
defined as relation ≤ ⊆ R×R that is reflexive, anti-
symmetric, transitive and meets condition
(C1) (R1 ≤ R2) ∧ (R2 ∈ RS) =⇒ (R1 ∈ RS)
R1 ≤ R2 means that role R1 is a descendant of role
R2, and vice versa R2 is the ancestor of R1.

The condition (C1) states that a descendant of
s-role must be also an s-role. The next condition re-
stricts the model to single inheritance only.
Definition 2. (Single) Inheritance Relation ≤ is de-
fined as inheritance relation which meets the condition
(C2) (R1 ≤ R2) =⇒ �R3 : (R1 ≤ R3) ∧ (R2 	≤ R3) ∧
(R3 	≤ R2)

This rule expresses that any role can have at most
one parent.

The inheritance relation defines an oriented a-
cyclic graph.
� (RI :: R) abbreviates ∃(R1 ∈ R) : (RI :!R1)∧

(R1 ≤ R)
� R1 < R2 abbreviates (R1 ≤ R2) ∧ (R1 	= R2)
� Function SubRoles : R → 2R : R → {R1 :

(R ≤ R1)} (returns all sub-roles of role R).



3.4 Dependency Relation of Roles

Definition 3. Relation ↪→⊆ R×R, that meets (C3-
C7) is dependency relation of roles. R1 ↪→ R2 means
that role R1 depends on role R2. ↪→∗ is a transitive
closure.
(C3) (R1 ≤ R2) =⇒ (R1 ↪→ R2)
Roles depend on self and their ancestors. The rule is
called wrapping rule.
(C4) (R1 ≤ R2) ∧ (R2 ↪→ R3) =⇒ (R1 ↪→ R3)
If an ancestor of a role R1 depends on another role,
then R1 depends on it too. Dependency is hereditary.
(C5) (R1 ↪→ R2) =⇒ (R2 	< R1)
Roles cannot depend on their descendants.
(C6) (R1 ↪→∗ R2) ∧ (R3 ≤ R2) ∧ (R1 	≤ R2) =⇒
(R3 	↪→ R1)
Role cannot depend on roles that depend on it’s an-
cestors (cyclic dependency is not allowed also on the
level of role instances).
(C7) (R1 ↪→ R2) ∧ (R2 ≤ R3) ∧ (R3 ∈ RS) =⇒ �R4 :
(R4 ≤ R3) ∧ (R4 	≤ R2) ∧ (R2 	≤ R4) ∧ (R1 ↪→ R4)
No role may depend on mutually exclusive roles, i.e.
on roles that cannot coexist in the same object Ex-
amples of role hierarchies where (C7) is violated, is in
Figure 2.

Single role

Multiple role

Inheritance
Dependency

R
3

R
2 R

4
R

1

R
3

R
2

R
4 R

1

Figure 2: Examples of wrong roles’ hierarchy

Relation ↪→ defines an oriented acyclic graph on
the set of roles.

3.5 Object with roles

An object encapsulates the nonempty list of in-
stances of roles it includes, containing its base role at
least. Object has proper interface and functionality
to maintain the dependency relations between its role
instances.
Definition 4. The role R is a base role (b-role) if
�(R1 ∈ R) : (R ↪→ R1) ∧ (R 	≤ R1).

The base role is every role that does not depend
on any other role but on its ancestors. RB ⊆ R is the
set of all b-roles.
Definition 5. Object with roles O is defined as

O = (OID, RIB , G)

where
– OID is global unique object identifier;
– RIB ∈ RI is the instance of a base role of an object
– G = (V, E) is oriented graph of dependencies be-
tween role instances in object
– V ⊆ RI is a set of graph nodes, each node for one
role instance included in an object
– E ⊆ RI×RI is a set of edges storing the dependen-
cy relations, i.e. (RI1, RI2) ∈ o.E ⇐⇒ (RI1 ↪→ RI2).

O is a set of all objects with roles. o!R means that
an object o ∈ O supports a role R, o!R ⇐⇒ ∃RI ∈
o.V : (RI :: R). Role instance RI ∈ RI is said to
be bounded, iff ∃(o ∈ O) : RI ∈ o.V . The set of all
bounded role instances is RIB.

In the rest of the paper the following set elements
are used: r, RI, RI? ∈ RI; R, R? ∈ R; o ∈ O

3.6 Dependency Relation of Role In-
stances of an Object

Definition 6. Relation ↪→⊆ RI × RI, that meet-
s conditions (C8-C13) is dependency relation of role
instances. RI1 ↪→ R2 means that role instance RI1

depends on role instance RI2. The relation is defined
only between role instances that are in the same ob-
ject. ↪→∗ is a transitive closure of this relation.

The dependency relation of roles determines many
properties of the relation between instances of roles.
We use the same symbol for dependency between role
instances as for dependency between roles. Since both
relations are defined on different sets, it will not cause
a misunderstanding.

Some ancillary functions and abbreviations are de-
fined in the following list:

� Function Role : RI → R : RI → R : (RI :
!R) (returns the most specific role of a role
instance RI).

� Expression RI1
!

↪→ RI2 abbreviates (RI1 ↪→
RI2) ∧ (Role(RI1) 	≤ Role(RI2)), we say that
RI1 depends on RI2 not using wrapping rule.



� Expression R1
!

↪→ R2 abbreviates (R1 ↪→
R2) ∧ (R1 	≤ R2), we say that R1 depends on
R2 not using wrapping rule.

� Expression RI1
W
↪→ RI2 abbreviates (RI1 ↪→

RI2) ∧ (Role(RI1) ≤ Role(RI2)), we say that
RI1 wraps RI2 or that RI1 depends on RI2

using wrapping rule.

� Condition RI1
C
↪→ RI2 abbreviates ∃(R ∈

SubRoles(Role(RI2))) : (Role(RI1) ↪→ R),
with semantics RI1 can depend on RI2.

� Function GenerateUID() → GUID returns
global unique identificator. This function is
used for generating new unique OID for ob-
jects or GID and RID for role instances.

Dependencies between role instances of an object
must meet next conditions:

(C8) (RI1 ↪→ RI2) =⇒ ∃(o ∈ O) : (RI1 ∈ o.V ) ∧
(RI2 ∈ o.V ) ∧ ((RI1, RI2) ∈ o.E)
When a role instance RI1 depends on another role
instance RI2, than both these role instances are in
the same object and their dependency is reflected in
object’s graph.

(C9) (RI1 ↪→ RI2) =⇒ (RI1
C
↪→ RI2)

When a role instance RI1 depends on another role
instance RI2, than the role of RI1 must depend on
some sub-role of RI2.

(C10) (RI1
W
↪→ RI2) =⇒ �RI3 : (RI1 	= RI3) ∧

(RI3 ↪→ RI2)
Every role instance can be wrapped by only one an-
other role instance, and if it is wrapped nothing can
depend on it.

(C11) (RI1
W
↪→ RI2) =⇒ �RI3 : (RI2 	= RI3) ∧

(RI1
W
↪→ RI3)

Every role instance can wrap at most one another role
instance. This rule together with (C10) says, that de-
pendencies between role instances based on wrapping
rules can create only linear graphs.

(C12) (R1
!

↪→ R2) ∧ ∃(RI1 :!R1) =⇒ ∃(RI2 ::
R2) : (RI1 ↪→ RI2)

From dependency between roles R1
!

↪→ R2 it follows
that every instance RI1 :!R1 depends on at least one
instance RI2 :: R2 in the same object.

(C13) (R ∈ RS) ∧ ∃(RI1 :!R) =⇒ ∀(RI2 :: R) :
(RI1 = RI2) ∨ (RI1 ↪→∗ RI2) ∨ (RI1 ↪→∗ RI2)
There can be only one instance of one single role in an
object (except instances of the same single role that
wrap themselves).

3.7 Consistent object

Object o ∈ O is said consistent if it matches next
conditions:
• | o.V |≥ 1; an object has at least one role

instance — base role instance (RIB)
• (RI ∈ o.V ) =⇒ �(o2 ∈ O) : (o 	= o2) ∧ (RI ∈

o2.V )

• �(RI ∈ o.V ) : (o.RIB
!

↪→ RI)
• for all role instances of an object and depen-

dencies between them are valid rules (C8) –
(C13)

3.8 Wrapping Rule and Replacement

3.8.1 Wrapping Rule The most significant change
against the model described in [14] is the rule (C5)
named as wrapping rule. This rule says that roles
always depends on self and all its ancestors.

Wrapping rule allows to substitute role instance
implementing role R1 by another one supporting role
R2 ≤ R1, in such a way that original role instance
remains in object to be internally used by wrapping
role instance in performing its tasks.

The dependency relation of role instances is de-
fined in a such way, that it emulates the relation of
roles (rules (C9),(C12)), but restricts dependency be-
tween role instances using the wrapping rule and adds
some other restricting rules. The intended semantics
of a wrapping rule is that a role instance that wraps
another one takes over a task of a wrapped role. Es-
pecially wrapping role instance takes over the RID of
the wrapped role instance (it has assigned another one
consecutively). As it makes no sense to wrap any role
instance more than once, this possibility is forbidden
by rules ( (C10),(C11) ). However, the wrapping role
instance can be wrapped again, so we may get linear
graph of wrapping role instances.

3.8.2 Replacement Wrapping is useful when im-
plementation of wrapping role instance does not differ
from wrapped role instance very much. If we want
to change the behavior of a role more radically it is
better to replace the original role instance by another
one. Replacement technique allows to take some role
instances out of the object and put another role in-
stance to their place. The new role instance has the
same RID as replaced one. Wrapped role instance
cannot be replaced. The replacing role instance must
be of the same role or a sub-role of the role of the
replaced role instance.

A simplified schema of an object is shown in fig-
ure 3. A base role instance is shaded. Wrapped role
instances are not accessible from outside of the object,



they are hidden inside their wrapping roles. Depen-
dencies between role instances are marked by dashed
arrows.

0 0

5 5
4 4

1 2

3 3

0

2 1

OID

RID

GID

Person
Student Postgraduate

Location
Access to Refectory

Access to Hall
of Residence

Figure 3: Simplified schema of an object

4 Implementation

Formal model is supplied with the description
of ”minimal” implementation. Any implementation
must assure not breaking given rules. An object mod-
el of an implementation is shown in figure 4.

4.1 Description of Classes

4.1.1 Objects with Roles

OID — unique object identifier, determined in the
time of creation of an object.

baseRoleInstance — references the base role in-
stance of an object

addRole — adds new role instance (newRole) to an
object. depRoles is the set of role instances al-
ready included in an object on which newly added
role instance should depend on. Described in
4.2.2 in detail.

removeRole — removes given role instance from an
object. Described in 4.2.4 in detail.

replaceRole — replaces one role instance with an-
other one. Described in 4.2.7 in detail.

wrapRole — wraps one role instance with another
one. Described in 4.2.6 in detail.

findByRole — returns set of all role instances in
an object (excluded wrapped ones) that supports
given role.

dependsOn — returns set of all role instances in an
object which given role instance depends on.

neededBy — returns set of all role instances in an
object that depend on given role instance.

create — constructor of an object. Base role instance
is specified by a parameter. Described in 4.2.1 in
detail.

4.1.2 Role

GID — global unique role instance identifier, deter-
mined in the time of creation of a role instance
and it’s not never changed then.

RID — unique role instance identifier inside an ob-
ject. It’s determined in the time of adding a role
instance to an object and it can be changed by
wrapping operation.

acceptedWrappingRole — attribute that indicates
whether a role instance should wrap another one.
If a role instance should not wrap another role
instance, this attributed has value nil, otherwise
it refers to the role that must be supported by a
role instance that can be wrapped by this one.

roleBeingAdded — a function, that is called when
some role instance which this one can depend on
was added to an object. Described in 4.2.3 in
detail.

roleBeingAdded — a function, that is called when
some role instance which this one depends on is
going to be removed from an object. Described
in 4.2.5 in detail.

4.1.3 Role Repository
A service where informations about roles and their

relations (inheritance, dependency) are stored and
that is consulted when some modification operation
is performed on an object.

4.2 Algorithms

4.2.1 Creation of an Object
Signature
• ”Object with Roles”.create(RI)
Preconditions
• Role(RI) ∈ RB
• RI 	∈ RIB
• RI.acceptedWrappingRole = nil

Algorithm
• o = new”Object with Roles”
◦ Generate unique identifier for the object
• o.OID = GenerateUID()
◦ Add base role instance to the object
• o.V = {RI}



+OID: TOID
+baseRoleInstance: TRID

+addRole(newRole:TGID,depRoles:sequence<TRID>): void
+removeRole(role:TRID): void
+replaceRole(newRole:TGID,oldRole:TGID,depRoles:sequence<TRID>): void
+wrapRole(newRole:TGID,oldRole:TGID,depRoles:sequence<TRID>): void
+findByRole(role:TRole): sequence<TRID>
+dependsOn(role:TRID): sequence<TRID>
+neededBy(role:TRID): sequence<TRID>
+<<constructor>> create(baseRole:TGID)

Role
+GID: TGID
+RID: TRID
+acceptedWrappingRole: TRole

+roleBeingAdded(RID:TRID): bool
+roleBeingRemoved(RID:TRID): bool

Role Repository

0..1

1..*

Object with Roles

Figure 4: Class diagram

◦ Generate unique role identifier for the role in-
stance in the object

• RI.RID = GenerateUID()
• o.RIB = RI
• o.E = ∅
Postconditions
• created object o is consistent
• RI is a base role instance of o

4.2.2 Adding New Role Instance to an Object

0 0

5 5
4 4

1 2

3 3

0

2 1

? 6

0 0

5 5
4 4

1 2

3 3

0

2 1
6 6

Access to Refectory

Access to Hall of Residence

Location

Person

Applicant of Grant

Postgraduate

Location
Access to Refectory

Access to College

Postgraduate

Applicant of Grant

Person

Figure 5: Simplified scenario of adding role in-
stance

Signature
• o.addRole(RI, depRoles)

Preconditions
• o is consistent
• RI 	∈ RIB
• RI.acceptedWrappingRole = nil
• depRoles ⊆ o.V

• ∀R ∈ R : (Role(RI)
!

↪→ R) =⇒ ∃(RI2 :: R) ∈
depRoles

• ∀RI2 ∈ depRoles : RI
C
↪→ RI2

• �RI2 ∈ depRoles : (Role(RI) ≤ Role(RI2))
• (Role(RI) ∈ RS) ∧ (∃(RI1 ∈

o.V ) : (Role(RI1) ∈ RS)) =⇒
�R ∈ (SubRoles(Role(RI)) ∩
SubRoles(Role(RI1))) : (R ∈ RS)

Algorithm
◦ Add role instance to an object
• o.V = o.V ∪ {RI}
◦ Generate unique role identifier for the role in-

stance in the object
• RI.RID = GenerateUID()
◦ Add all required dependencies to dependency

graph of the object
• for ∀RI2 ∈ depRoles do
• o.E = o.E ∪ {(RI, RI2)}
◦ Inform all non-wrapped role instances that

can depend (not using wrapping rule) on
added role instance

• for ∀RI2 ∈ o.V : (RI2
C
↪→ RI)∧ (Role(RI2) 	≤

Role(RI)) ∧ (�RI3 ∈ o.V : (RI3
W
↪→ RI2)) do



• if RI2.roleBeingAdded(RI) then
• o.E = o.E ∪ {(RI2, RI)}
Postconditions
• object o is consistent
• RI is added to o

4.2.3 Informing Role Instances, that New
Role Instance was Added
Signature
• r.roleBeingAdded(RI)
Preconditions
• o is consistent
• ∃o ∈ O : r, RI ∈ o.V

• Role(r)
!

↪→ Role(RI)

• �RI2 ∈ o.V : (RI2
W
↪→ RI)

• �RI2 ∈ o.V : (RI2
W
↪→ r)

Algorithm
◦ If role instance r ”wants” to depend on RI, it

can
• if ("condition")
• then return true
• else return false

Postconditions
• o is consistent
• dependency between r and RI could be added

4.2.4 Removing Role Instance from an Object

0 0

5 5
4 4

1 2

3 3

0

2 1

Remove

0 0

5 5

0

? 4

? 3

? 2

? 1

Location Access to Hall
of Residence

Access to Refectory

Postgraduate
Person

Person

Location

Access to Hall
of Residence

Access to
Refectory

Postgraduate

Student

Figure 6: Simplified scenario of removing role
instance

Signature
• o.removeRole(RI)
Preconditions
• o is consistent

• RI ∈ o.V

• �RI2 ∈ o.V : (RI2
W
↪→ RI)

Algorithm — when RI = o.RIB

◦ Remove all role instances from the object and
destroy the object

• for ∀RI2 ∈ o.V do
• o.V = ∅
• o.E = ∅
• destroy o

Algorithm — when (RI 	= o.RIB) ∧ (�RI2 ∈
o.V : (RI

W
↪→ RI2))

◦ Inform all role instances that depend on RI
that it’s going to be removed

• for ∀RI2 ∈ o.V : (RI2 ↪→ RI) do
• if RI2.roleBeingRemoved(RI)then
• o.E = o.E \ {(RI2, RI)}
◦ Recursively remove all role instances that de-

pend on RI
• for ∀RI2 ∈ o.V : (RI2 ↪→ RI) do
• o.removeRole(RI2)
◦ Remove RI from the object
• o.V = o.V \ {RI}
◦ Remove all dependencies of RI
• for ∀RI2 ∈ o.V : (RI ↪→ RI2) do
• o.E = o.E \ {(RI, RI2)}
Algorithm — when (RI 	= o.RIB) ∧ (∃RI2 ∈
o.V : (RI

W
↪→ RI2))

◦ Inform all role instances that depend on RI
that it’s going to be removed

• for ∀RI2 ∈ o.V : (RI2 ↪→ RI) do
• if RI2.roleBeingRemoved(RI)then
• o.E = o.E \ {(RI2, RI)}
◦ Recursively remove all role instances that de-

pend on RI
• for ∀RI2 ∈ o.V : (RI2 ↪→ RI) do
• o.removeRole(RI2)
◦ Recursively remove all role instances wrapped

by RI

• RIq = (RI2 ∈ o.V ) : (RI
W
↪→ RI2)

• RIp = RI
• do
• o.V = o.V \ {RIq}
• o.E = o.E \ {(RIp, RIq)}
• RIp = RIq

• RIq = (RI2 ∈ o.V ) : (RIp
W
↪→ RI2)

• while (RIq 	= nil)
◦ Remove RI from the object
• o.V = o.V \ {RI}
◦ Remove all dependencies of RI



• for ∀RI2 ∈ o.V : (RI ↪→ RI2) do
• o.E = o.E \ {(RI, RI2)}
Postconditions
• object o is consistent or destroyed
• RI and all role instances that remain depend-

ing on it are removed from o
• if o was destroyed then all role instances were

removed

4.2.5 Informing Role Instances, that Role In-
stance They Depend On Is Going to Be Re-
moved

Signature
• r.roleBeingRemoved(RI)
Preconditions
• ∃o ∈ O : r, RI ∈ o.V
• o is consistent

• r
!

↪→ RI

• �RI2 ∈ o.V : (RI2
W
↪→ RI)

• �RI2 ∈ o.V : (RI2
W
↪→ r)

Algorithm
◦ If RI is not last role r is depending on us-

ing some dependency of roles then dependency
can be removed

• if ∀(R ∈ R) : (Role(r)
!

↪→ R) =⇒ ∃(RI2 ∈
o.V ) : (r ↪→ RI2) ∧ (RI2 :: R) ∧ (RI2 	= RI)
then

• if ("condition")
• then return true
• else return false
• else return false

Postconditions
• o is consistent
• dependency between r and RI could be re-

moved

4.2.6 Wrapping Role Instances

Signature
• r.wrapRole(RIn, RIo, depRoles)
Preconditions
• o is consistent
• RIn 	∈ RIB
• RIo ∈ o.V
• depRoles ⊆ o.V
• (RIo = o.RIB) =⇒ (depRoles = ∅)
• Role(RIn) ≤ Role(RIo)
• (RIn.acceptedWrappingRole 	= nil) ∧

(Role(RIo) ≤ RIn.acceptedWrappingRole)

0 0

5 5
4 4

1 2

3 3

0

2 1

? 6

0 0

5 5 4 4

1 2

3 6

0

2 1

6 3

Access to Refectory

Access to Hall
of Residence

Postgraduate

Location

Person

Subsidized Access
to Refectory

Subsidized Access
to RefectoryAccess to Hall

of Residence

Postgraduate

Person

Location

Figure 7: Simplified scenario of wrapping role
instance

• ∀R ∈ R : (Role(RIn)
!

↪→ R) =⇒ ∃((RI2 ::
R) ∈ o.V ) : (RI2 ∈ depRoles) ∨ (RIo ↪→ RI2)

• ∀RI2 ∈ depRoles : RIn
C
↪→ RI2

• �RI2 ∈ depRoles : (Role(RIn) ≤ Role(RI2))

• ∀RI2 ∈ depRoles : �RI3 ∈ o.V : (RI3
W
↪→ RI2)

• �RI2 ∈ o.V : (RI2
W
↪→ RIo)

• (Role(RIn) ∈ RS) ∧ (∃(RI1 ∈
o.V ) : (Role(RI1) ∈ RS)) ∧
(∃R ∈ (SubRoles(Role(RI)) ∩
SubRoles(Role(RI1))) : (R ∈ RS)) =⇒
(Role(RIo) ≤ Role(RI1)) ∧ ((RIo ↪→∗

RI1) ∨ (RIo = RI1))
Algorithm
◦ Add role instance to an object
• o.V = o.V ∪ {RIn}
◦ Set role identifier of wrapped role instance as

identifier for wrapping role instance and gen-
erate new role identifier for wrapped role in-
stance

• RIn.RID = RIo.RID
• RIo.RID = GenerateUID()
◦ Add all required dependencies to dependency

graph of an object
• for ∀RI2 ∈ depRoles do
• o.E = o.E ∪ {(RIn, RI2)}
◦ If base role instance is wrapped then re-map

base role instance
• if RIo = o.RIB then o.RIB = RIn



◦ Re-map all dependencies to wrapped role to
wrapping role

• for ∀RI2 : (RI2 ↪→ RIo) do
• o.E = o.E ∪ {(RI2, RIn)} \ {(RI2, RIo)}
◦ Re-map all dependencies from wrapped role to

be from wrapping role

• for ∀RI2 : (RIo
!

↪→ RI2) do
• o.E = o.E ∪ {(RIn, RI2)} \ {(RIo, RI2)}
◦ Inform all non-wrapped role instances that

can depend (not using wrapping rule) on
added role instance

• for ∀RI2 ∈ o.V : (RI2
C
↪→ RIn) ∧

(Role(RI2) 	≤ Role(RI)) ∧ (�RI3 ∈ o.V :

(RI3
W
↪→ RI2)) do

• RI2.roleBeingAdded(RIn)
Postconditions
• object o is consistent
• RIn wrapped RIo in o

4.2.7 Replacing Role Instances

0 0

5 5
4 4

1 2

3 3

0

2 1

? 6

0 0

5 5
4 4

1 6

3 3

0

? 2? 1

Location

Postgraduate

Person

Access to Refectory

Access to College

Lecturer

Person
Lecturer

Location
Access to Refectory

Access to Hall
of Residence

Student Postgraduate

Figure 8: Simplified scenario of replacing role
instance

Signature
• r.replaceRole(RIn, RIo, depRoles)

Algorithm for replacing uses the same approach as
previous algorithms (especially wrapping), it is not p-
resented in this paper. Replacement scenario is shown
in Figure 8. It is completely described in [22].

5 Open Problems

• consistency of proposed algorithms — an imple-
mentation of this model must assure not breaking
the given rules. Suggested algorithms should as-
sure this but they were not formally validated.

• complexity of dependency relations in real appli-
cations — practical experiences with ”typical”
object evolving in some real-world application,
are needed.

• usability of this model in complex applications —
we want to check this model in some application
for managing virtual entities in an virtual worlds.

• intuitiveness of creation of role hierarchies – is
it easier to use this paradigm compared to tra-
ditional inheritance relation ? We hope that a
conception of student being a role of a person
rather than as a special kind of a person is more
intuitive, but working with two relations (depen-
dency, inheritance) could complicate a modeling.

• dynamic changes of data stored in Role Repos-
itory — the possibility to dynamically change
informations stored in Role Repository was not
discussed yet. Prelusively we can see that on-
ly changes that will not alter the semantics of
roles already described in Role Repository can be
made. It could mean that only addition of new
roles as leafs to existing trees is allowed.

• comparison with other component models — this
model stays somewhere behind classic models of
objects with roles and models working with soft-
ware components. It was compared to objects
with roles models only, comparison to component
models can be inspiriting for a future.

• support in distributed environments — this plat-
form brings additional problems to be solved
(for example all modifying operations (addRole,
removeRole, . . . ) should be atomic, inaccessibil-
ity of some role instances of an object can com-
plicate or disable the work with objects, etc.).

6 Conclusion and Future Work

The new model based on object with roles tech-
nique is presented. The direction to possible imple-
mentation was described. Some disadvantages of pre-
vious model were solved (multiple inheritance) and the
model was also extended by other features that en-
hanced the ability to create evolving objects. In the
future we want to exploit the flexibility of this model



to model dynamic behavior of virtual objects in virtual
worlds. The proof of concept implementation is theme
of a future work (partially functional implementation
is done using Enterprise Java-Beans technology).

Acknowledgements

This work was supported by Grant Agency of
Czech Republic, Contract No. GACR 201/98/K041
and by Czech Ministry of Education, Contract No.
VZ MSM143300003.

References

[1] Abadi, M., Cardeli L.: A Theory of Objects.
Springer-Verlag, New York 1996.

[2] Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An
Object Data Model with Roles. In Proceedings of the
International Conference on Very Large Data Bases,
pp. 39–51, 1993

[3] Blashek, G.: Object Oriented Programming with
Prototypes. Springer-Verlag, 1994

[4] Bardou, D., Dony, Ch.: Split Objects: a Discipline
Use of Delegation within Objects, OOPSLA’96, in
ACM– SIGPLAN Notices Vol. 31, pp. 122-137, 1996

[5] Booch, G.: Object Oriented Analysis and Design
with Applications. 2nd Ed., Benjamin Cummings,
Redwood City, CA, 1994

[6] Büchi, M., Weck, W.: Generic Wrappers, ECOOP
2000, LNCS 1850, pp. 201–225

[7] Clifton, C., Leavens, G.T., Chambers, C., Millstein,
T.: MultiJava: Modular Open Classes and Symmet-
ric Multiple Dispatch for Java, OOPSLA 2000, Min-
neapolis

[8] Gottlob, G., Schrefl, M., Röck B.: Extending Object-
Oriented Systems with Roles. ACM Transactions on
Information Systems, Vol. 14, No. 3, pp. 268–296,
1996

[9] Hjálmtýsson, G., Gray, R.: Dynamic C++ Classes
A Lightweight mechanism to update code in a run-
ning program, USENIX, Annual Technical Confer-
ence, 1998

[10] Kniesel, G.: Object do not migrate! Perspectives on
Objects with Roles. Report IAI–TR–96–11. Univer-
sität Bonn, Institut für Informatik III, April 1996

[11] Kniesel, G.: Dynamic Object–Based Inheritance with
Subtyping. Dissertation work. Universität Bonn, In-
stitut für Informatik III, 2000

[12] Kristensen, B.,B.: Object–Oriented Modeling with
Roles. Proceedings of the 2nd International Con-
ference on Object–Oriented Information Systems
(OOIS’95), Dublin, Ireland, 1995

[13] Kristensen, B.,B., Österbye, K.: Roles: Conceptu-
al Abstraction Theory & Practical Language Issues.
Special Issue of Theory and Practise of Object Sys-
tems (TAPOS) on Subjectivity in Object–Oriented
Systems, 1996

[14] Markovic̆, L., Sochor, J.: Objects with Changeable
Roles. International Symposium on Distributed Ob-
jects and Applications — Short Papers, Rome, 2001

[15] Pernici, B.: Objects with Roles. ACM. pp. 205–215,
1990

[16] Plás̆il, F., Bálek, D., Janec̆ek, R.: SOFA/DCUP: Ar-
chitecture for Component Trading and Dynamic Up-
dating, Proceedings of ICCDS’98, Annapolis, 1998

[17] Richardson, J., Schwarz P.: Aspects: Extending Ob-
jects to Support Multiple, Independent Roles. ACM.
pp. 298–307, 1991

[18] Siegel, J. et al.: CORBA Fundamentals and Program-
ming. John Willey & Sons, 1996

[19] Ungar, D., Smith, R.: Self: The Power of Simplicity.
Proc. of OOPSLA’87, ACM Sigplan Notices, 1987

[20] Wieringa, R., de Jonge, W., Spruit, P.: Roles and
dynamic subclasses: a modal logic approach. In E-
COOP 94 Proceedings, Springer–Verlag, LNCS 821,
1994

[21] http://research.sun.com/research/self

[22] http://www.fi.muni.cz/∼markovic/USE02.html


