
Extensible Approach to the Virtual Worlds Editing

Vı́t Kovalčı́k, Jan Flasar and Jiřı́ Sochor∗

Faculty of Informatics, Masaryk University

Brno, Czech Republic

Figure 1: The virtual environment editor.

Abstract

We present a virtual reality framework (VRECKO) with an edi-
tor that is capable of creating new scenes or applications using
this framework. The VRECKO system consists of objects with
predefined behaviors that an application designer can dynamically
change. With instances of a special object type called Ability, we
may extend or change behaviors of objects in a scene. As an ex-
ample of this approach, we present an editor that we implemented
entirely as a set of abilities. The editing is done directly in 3D envi-
ronment which has several benefits over the 2D editing, particularly
the possibility to work with a scene exactly as in the final applica-
tion.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual reality; I.3.6 [Methodology and Techniques]: Interaction
techniques

Keywords: VR system, editing virtual worlds

1 Introduction

The virtual reality (VR) systems are becoming more common then
they were in the previous years. We can walk through an ancient
city reconstructed in a computer, test-fly aircraft, arrange a training

∗{kovalcik, flasar, sochor}@fi.muni.cz

for a hazardous situation or visualize furniture, all in environments
that are non-existent in reality.

It is possible to make a separate application for each of the pur-
poses, but it is more practical to create a generic framework that
covers the basic needs. The designer implements the applications as
extensions of such framework. Using a component-based approach,
a programmer creates new components to extend the framework or
they can reuse the existing ones in order to create a new applica-
tion. We have implemented a framework with such features, that it
is both efficient and easy to use.

However, even with the component-based approach it is necessary
to prepare a scene, connect the components to interact properly, and
perform various additional tasks to set up the environment. While it
may be possible to pass the settings to the framework as parameters,
carefully preparing these parameters requires considerable effort.

For this reason, researchers developed and published several edit-
ing applications. These editors ease the creation and setting up of
a target application. Many of the editors serve for domain spe-
cific purposes, such as arranging furniture or creating a GUI-like
application. With such editors, the users usually work directly in
the virtual space with the same devices as in the final application.
There are also editors capable of editing larger scenes with the abil-
ities to add objects or make logical connections between them, but
in this case, a developer accomplishes the work often in 2D using
keyboard and mouse.

We created an editor that works entirely in 3D space and contains
tools to manage the objects and connections between them to create
interactive applications.

2 Related Work

Nowadays there are many systems having the ability to construct
virtual worlds and to interact with them. Some virtual reality sys-
tems are designed specially for a given application area, e.g. med-
ical simulation or visualization of scientific data. However, there
are only several systems with modular architecture, which design-
ers can adjust according to the requirements of a user and make



changes and extensions of the system at run-time.

One of the first developed systems was MAVERICK [Hubbold et al.
2001] which uses an object-oriented design and decouples the sys-
tem into a modules. Another example of an early work is the VR-
Juggler [Bierbaum et al. 2001] which presented an idea to create
a virtual platform that hides the technical details of the hardware
from the programmer.

In [Tanriverdi and Jacob 2001] the authors describe a design model
for developing virtual reality interfaces called VRID. The paper fo-
cuses on the methodology of designing the interface components
of a VR system. The system has multi-component object architec-
ture. Each object consists of five components: graphic, interaction,
behavior, mediator and communicator component. One object can
contain several different behavior components, which enable the
user to create complex object behavior. The mediator component
controls the communication among other components in the object.
The communicator provides communication with other objects in-
side the virtual world using the distributed event model. If any ob-
ject intends to receive future events from a given object, it registers
at the communicator of the sender object. Any event generated is
then sent to the target object.

The following projects are more flexible and provide new possibili-
ties. In [Oliveira et al. 2003] the authors present a novel design ap-
proach called JADE (Java Adaptive Dynamic Environment). They
discuss a challenging problem with regard to the development of
VE applications. They point mainly at the non-extensibility, non-
interoperability and non-evolution of the previous VE solutions.
The JADE system is based on a component design methodology
with a layered component framework. The main part of the system
is a kernel that is accessible from any place in the system. Another
important component is the ModuleManager, which provides func-
tions for the management of the modules such as loading or replac-
ing them in memory in the run time. The ResourceLocator com-
ponent serves as an access point to the outer resources (harddisk,
operating system, network etc.). Inter-module communication em-
ploys both direct access as well as event triggering. Two event dis-
tribution schemes are available: The first scheme is the distributed
event model where each module dynamically registers subscribers
that want to receive a generated event. The second scheme is a cen-
tral event model. In this case, a central event manager component
processes every event and dispatches it according to its type, prior-
ity and source. The event is then delivered to the objects, which are
registered in the event manager. The JADE kernel and the resulting
system can be configured at startup via a command line or via a file
containing for example an XML description.

Similar problems were recognized in [Kapolka et al. 2002] and
led to the development of a unified component framework called
NPSNET-V implemented in JavaTM. The framework is able to re-
configure, add, remove and upgrade components in the run time.
In comparison with the JADE system, it presents a more general
solution. The core of the system is the micro-kernel that provides
functions for module managing. The used modules define the func-
tionality of a developed VR application. Other components are re-
alized using modules with appropriate functions, similarly as in the
JADE. A newer version or another module with a similar interface
can replace each component (module). Both JADE and NPSNET-V
are implemented in Java, which guarantees wide compatibility on
many platforms.

In addition to the core system design, some researchers focused
on the editors for the virtual environments. The performance
of low-level specialized editors, such as Autodesk R© 3ds max R©,
NewTekTM Lightwave 3D R© or Softimage|XSI R© is very hard to
match, therefore most authors have decided to use 3D models cre-

ated in one of the existing editors and implement only the position-
ing and interaction in their editors to compose the final environ-
ment.

An example of the low-level editing was presented in [Grossman
et al. 2001]. The paper describes a 3D modeler designed for large-
scale displays, which allow users to work directly in the 3D space.
However, the modeling is primarily aimed at the car design and it
lacks the tools to modify large scenes or adjust the object interac-
tion.

Interesting approach to the high-level editing was described in
[Holm et al. 2002]. The authors designed an authoring tool for
the design and prototyping of scenarios for virtual environment,
the Safety Virtual Environment (SAVE). The tool is composed of a
VR-simulation part and a desktop application (SAVE Assembly and
Constructing Environment – SAVEace) which can be used by two
persons at the same time to design a scenario in collaboration. The
3D editor is in the desktop part of the system and it is able to rapidly
place the objects to the scene and to create logical dependencies be-
tween the objects. The SAVEace represents a sophisticated editor
and the environment can be created quickly. The disadvantage is
that two persons are necessary to create and test the environment.
The user located in the VR has no access to the editing tools and
can only give advices to the user using the desktop part of the ap-
plication.

The SAVEace editor provides complex functionality, but a user ac-
complishes all editing work on a 2D screen using a mouse and key-
board combination. There have been various attempts to perform
the editing directly in the 3D space using data gloves as a spatial in-
put device. Most researchers focused mainly on specific tasks, such
as path editing for keyframe animation [Osawa and Asai 2003]. The
animation is created in the immersive environment using gloves. To
help the user with the modelling a gearbox widget is used [Osawa
and Ren 2003]. This widget is a part of the it3d library [Osawa et al.
2002], which allows the user to quickly develop 3D applications
consisting of components. It may be thought of as an extension of
the 2D GUI into a 3D space. There is a range of widgets that were
created to allow the same number of possibilities in 3D space as
was available on 2D computer screen. These widgets include for
example button, slider or combo box.

3 Motivation

Our motivation was to create a component-based system that will
be able to handle the interaction in the virtual reality using a number
of input and output devices. To accelerate the development of the
applications or scenes an editor was necessary. We have chosen to
edit the scene directly in the immersive environment as this offers
some advantages over the more traditional 2D approach, mainly the
ability to test any change immediately and to see the scene exactly
as the final user.

4 System Description

We designed virtual reality engine named VRECKO as a system
for managing the virtual environment. The system has the ability
dynamically change behavior of objects. It shares the design and
principles used in JADE and NPSNET-V systems, but also incor-
porates new features. The VRECKO system allows us to create vir-
tual worlds composed of visual objects with a specified behavior,
which are able to communicate with the other components within
the system. In this section, we will describe the system and point
out the differences in comparison to the other systems.

The core of the VRECKO system consists of several main compo-



nent types, which we will describe in the following sections. We
will also highlight dependencies between components.

All components have simple interface – channels for input and
output events/requests (see figure 2) and also the management
functions, such as the initialization or update, functions for
events/requests processing and for setting the priority. Update and
communication schemes between components will be described
later in this paper.

Component

.

.

.

Inputs

.

.

.

Outputs

initialize();
update();

processEvent();
.
.

Figure 2: Core of the component interface

4.1 World, Scene and EnvironmentObjects

The main component of a virtual environment is the World. It is a
container for the Scene, DeviceManager, EventDispatcher and the
Scheduler components. The World component is accessible from
any function and allows other components to use the services pro-
vided by the contained components.

The Scene serves as a container for virtual objects that are situated
within the virtual world. This component provides the management
of objects in space. Our system supports also collision detection for
which we have used the Extensible Scene Graph library [Ošlejšek
and Sochor 2005]. The objects may consist of many primitives;
therefore, we employ additional spatial data structures. Current
implementation includes bounding volume hierarchies using Axis-
Aligned Bounding Boxes, k-DOPs (discrete oriented polytopes)
and others.

The virtual object in the VR space is represented by the Environ-
mentObject component. It stores the local transformation and ge-
ometry together with its collision hierarchy, material and user data.
Behavior of these objects is provided by the Abilities that have ac-
cess to the data stored in the EnvironmentObject.

Global rendering architecture is based on graphic patterns which
combine local and global illumination models [Ošlejšek and Sochor
2003]. For the rapid rendering of a scene, VRECKO uses Open-
SceneGraph [OSG ], an open source 3D graphics toolkit. Written
entirely in Standard C++ and OpenGL it runs on many platforms,
including MS Windows and GNU/Linux.

4.2 Device and DeviceManager

The Device component controls a specific physical device or re-
source. The data from the component can be obtained through the
interface. To manage the devices connected to the system, we use
the DeviceManager. When we want to connect a new device to a
virtual world under construction, we send the request for the de-
vice connection. If the device is not already present in the system,
the DeviceManager installs the device and calibrates it if necessary.
Otherwise, the existing instance of the requested device is used.

4.3 Scheduler

The system runs in discrete time mode. Timing frequencies and
respective timing slots are controlled by the Scheduler component

and may differ for individual components. To update any compo-
nent inside the system with a certain frequency, scheduler must reg-
ister such components. It is also possible to set the update priority.
The scheduler decides the order of the component updates using the
priority evaluated in each frame.

If the specified update frequency of a Device component is much
higher than the frame rate, the Devices can choose to run in a sep-
arate thread. We exploit this possibility e.g. for force-feedback
devices. In addition to that, it is possible to synchronize the updates
with the frame rate, which we use whenever we want to update
some components with the same frequency as the graphics render-
ing.

4.4 Object Behaviour

A behaviour of a virtual object can be dynamically modified us-
ing Abilities. We can add a new instance of ability to a given En-
vironmentObject, or remove or replace an existing abilities. The
Abilities are stored in dynamic libraries (plug-ins). The ability is
identified by its name and the name of the plug-in in which it is
placed. The component has access to the functions and data of its
owner EnvironmentObject.

An Ability can perform tasks in two ways: In the processEvent
function by responding to a received event or in the update function
that is periodically called without the necessity of any outer signal.
These two approaches we can combine.

4.5 Event and Request Model

The mechanism used for the communication is maintained by the
EventDispatcher. The components can communicate with each
other using events and requests within the system. The difference
between the two we will describe in the following subsections.

4.5.1 Event Scheme

The communication mechanism uses a similar approach as in
[Oliveira et al. 2003]. The components can communicate directly
or generate events for connected components. The EventDispatcher
queues input events and messages and distributes them to the rele-
vant receiving components.

Invoked events flow through these channels. When a new event is
created and sent to the event dispatcher, the dispatcher must find
according interconnection and send the event to the receiving com-
ponent(s).

We allow two ways of communication between components. When
sending events through the event dispatcher we can choose the for-
warding output method or the activating input method (Figure 3).

When forwarding output, the event dispatcher receives an event and
delivers it to a given component intact. The activating input method
means that if a specified event is generated at a given output, it is
replaced by a predefined event and sent to a given input. As an
example, we can choose a keyboard and a light components. When
we press a key on keyboard, this component generates an event with
the character of the pressed key. This event is of a string type, but
the light component has an input of a Boolean type. Thus if we
want to switch light on/off we must design an interconnection that
allows the conversion between these two types.

4.5.2 Request Scheme

The second way components can communicate within VRECKO
system is the usage of request. The components are able to request



EventDispatcher

Interconnection
storage

Component 1

Component 3

STRING

Component 2
STRING

BOOLEAN

Forward
output

Activate
input

Figure 3: The scheme of a communication between components;
examples of input/output data types.

data from other components via an interconnection defined between
components in the EventDispatcher (Figure 4). In this case, the
EventDispatcher only forwards the request. A part of the request is
a value that can be used to specify the request.

EventDispatcher

Interconnection
storage

Component 1 Component 2
Request
output

Request
input

21

34

Figure 4: The communication scheme of a request: four phases are
depicted with the 1 and 2 being the asking part and 3 and 4 being
the answering part of a request.

The other benefit of the requests is the ability to specify a default
interconnection that may be defined in the EventDispatcher. It pro-
vides the ability for any component to obtain a specific data with-
out the need to define the exact interconnection. If, for example,
one component provides the information about the pointer position,
it is sufficient to specify one default request so that any compo-
nent requesting the position of the pointer will be automatically
”redirected” to this service component. The requests are essentially
equivalent to the intermediate call of a function of another compo-
nent as the result is received immediately.

5 Editing the Virtual Worlds

We have developed an editor application designed entirely as a set
of abilities, which allows us easily implement further extensions.

5.1 Abilities Used in the Editor

The abilities used in our system can be arranged according their
usage to the following groups:

• Controlling ability

• Editing abilities

• Service abilities

• Placed abilities

The controlling ability group contains only a single ability that con-
trols the main behavior of the application. The editing abilities pro-
vide implementation of various editing tasks, such as object move-
ment or animation setting. The service abilities are utilized by other
abilities to perform simpler tasks. The placed abilities are assigned
to various objects and are intended to work in the resulting applica-
tion that is being created in the editor. We will describe each group
in detail in the following sections.

5.1.1 The Controlling Ability

The core part of the editor is located in the ability named Editor-
Controller. This ability tracks the actual state of the editing process
and serves as a ”director” who sends messages to other abilities.
Every finger press or mouse button click triggers an event message
that arrives to the EditorController and the controller immediately
forwards the message to the relevant ability.

This ability also includes functions for answering the requests that
ask for the currently selected object or the current pointer position.
These requests are default requests enabling other abilities to eas-
ily query the position or selection, and receive the results. While
in theory it may be simpler just to make the default requests oper-
ate directly on the device abilities, we made the EditorController
to answer the requests because it overcomes the possible different
device interfaces and also handles multiple pointers positions dis-
tinguished by a single parameter – the pointer identification number
(ID). Using the ID in various communication between the abilities
offers another advantages, for example, an editing ability can offer
only one input for all possible button events and easily handle any
such event by examining only the pointer and the button IDs.

We created the EditorController ability solely for the editor applica-
tion and it contains editor-specific code. Other complex application
with context-based behavior will need similar abilities that have the
control over other abilities.

5.1.2 Editing Abilities

There are several abilities that were created to work together with
the EditorController. This abilities have several inputs and outputs
with a specific names that are used to automate the communica-
tion. It is sufficient to place such an ability to the configuration file
without connecting it to any other ability – the connections will be
created automatically by the EditorController or the messages will
be sent to the ability directly using the specified inputs.

To detect the abilities that are editor-compatible the EditorCon-
troller iterates through all the abilities present in the World (that are
not owned by any EnvironmentObject) and checks whether a given
ability contains the ”GetInfo” request input. In the positive case, it
sends the request to the GetInfo and it expects returning of a proper
structure. The structure contains the information about the ability
behavior, thus the EditorController can activate and deactivate the
ability properly.

Other standardized inputs or input requests are designed to inform
the ability about button state changes and to activate/deactivate the
ability or to request its current state.

A new ability can be created and added into the editor easily. The
implementation is straightforward, because developer can derive
new abilities from a basic class, which already has the elementary
behavior implemented.

The current editing abilities include an ability to move objects
across the world, an ability to edit a simple animation of an ob-
ject or an ability to connect service abilities located in the scene



assigned with objects (e.g. to turn on the light when the trigger is
pressed).

5.1.3 Service Abilities

The two aforementioned groups of abilities – the controlling ability
and the editing abilities –both use service abilities to fulfill simple
(and not so simple) tasks. These abilities are highly re-usable and
can be used in many other abilities or different applications.

Figure 5: The DynamicMenu ability, which can be used in any
other ability in one of the two variants

An useful service ability is the DynamicMenu (see Figure 5), which
is able to display a specified menu structure, let the user to interact
with it and return the item that was selected. Each ability that wants
to use the menu has only to create the DynamicMenu ability, spec-
ify the menu structure and wait for the event signaling an item was
selected.

Figure 6: The ObjectEffect ability adds a graphical effect around
the owner object. It is used mainly for the visualization of the se-
lection.

Another example of a service is the ObjectEffect ability (see Figure
6) that displays an effect around its owner object. This is used to
emphasize a selected object by drawing a semi-transparent bound-
ing volume. Similarly, the ConnectionViz ability visualizes all
event connections that are connected to its owner object. Work-
ing with such abilities is simple as it means only adding its instance
to a target object. Add-on functionality is done by the ability.

5.1.4 Placed abilities

The last group consists of the abilities that are assigned to the ob-
jects using the editor. They become a part of the final product – the
new scene created.

For instance, if the designed behavior is that a trigger will turn on
the light, we need to add two different abilities to the trigger and
the light object and connect them together. A similar case will be
described in more detail in the later section as an example of the
usage.

5.2 Connecting the Abilities

The connections between abilities can be categorized by its cre-
ator (see the Figure 7 for the illustration). The first group contains
connections that represent the heart of the editor. A designer must
specify them in the configuration file before executing the editor
application. Second group of connections is created automatically
by the EditorController ability without the human interaction. The
last group of connections contains the connections between abili-
ties in the created scene. These connections are created by some of
the editing abilities, usually as a result of a user’s action. Besides
the listed types there are also service abilities with the connections
created by the ability that is using it, but such connections are not
significant for the overall picture therefore we will put them aside in
this categorization. We will now review the other groups in detail.

The connections created by a human are mainly to route events from
the devices’ outputs to the EditorController, to enable the controller
to track the pointer position and buttons states. These connections
are unique to every hardware configuration and it is necessary to
adjust them with any change of the input device. There are also
another few connections made by a human, which are the default
requests for requesting the pointer position or rotation and the cur-
rent object selection. These are used by other abilities whenever
necessary.

After execution of the editor, the EditorController finds all editing
abilities through the mechanism described above. The connections
between the controller and the editing abilities are then created dy-
namically according to the current state of the application. Only
the ability that is currently activated receives the messages from the
controller. The other abilities are unconnected.

The editing abilities are able to change the scene and to add or re-
move event connections between the placed abilities that are owned
by the objects in the scene. It is the equivalent of writing down
the connection into the configuration file, but in a much faster, con-
venient and safer way. To make the editing easier, the editor may
visualize these connections.

5.3 Working in the Editor

The editor is primarily focused on editing interactive virtual scenes
from the inside using several different input and output devices.
This section covers the used hardware devices and the way that a
user works in the editor.

5.3.1 Hardware devices

The user can control the application using a number of various de-
vices for the display and navigation. Our preferred combination of
the devices, which we will use in the subsequent description of the
editor, is the following:

• Large projection screen displaying images from two projec-
tors. The user wears polarized glasses to achieve the 3D view.



EditorController

Input device 1

Input device 2

Input device n

.

.

.

Editing ability 1

Editing ability 2

Editing ability n

.

.

.

Placed ability X Placed ability Y

connections
created

by human

connections
created

by EditorController

connections
created

by editing abilities

Figure 7: Main connections between abilities in the editor divided into groups by the creator of the particular connection. Connections
between the devices and the EditorController are specified by a human before the application is executed. The EditorController automatically
creates the connections to the editing abilities. Placed abilities are connected by the editing abilities usually because of the user’s order. We
do not show connections to the service abilities, as they do not pose significant contribution to the system overview.

• FakeSpace Pinch GlovesTM signaling when a user touches fin-
ger with another one (see Figure 8).

• Ascension Technologies Nest of BirdsTMdevice tracking the
positions of user’s hands.

Figure 8: The FakeSpace Pinch GlovesTM.

Aside from this equipment, the editor can be just as easily run only
on a common desktop PC, using a monitor as the output device and
mouse/keyboard combination to control the application. While the
ease of use is obviously impaired, we found it very useful option
for debugging purposes.

Similarly, we can use different devices mostly only by changing a
few lines in the configuration file to re-route the message flow.

5.3.2 The User Experience

At the beginning, the system presents to a user a worldview. Users
are wearing the pinch gloves and have eight basic input signals at
their disposal. Using the thumb to touch one of the other fingers
of the same hand with glove, users invoke signals. It is possible to
use other signals such as mutual touch of three and more fingers or
touch of fingers of both hands, but currently we restrict ourselves to
the basic combinations only.

The user can map some editing ability to any of the eight fingers
except the one that is chosen to let the user show the system menu,
where the finger-to-ability mapping can be adjusted.

When moving a pointer around the scene the currently selected ob-

ject is indicated. After touching the fingers in one of the allowed
combinations, the editor activates the corresponding editing ability
that performs the respective task. After the finger release, the ability
is asked to deactivate, but it may refuse if necessary and continue
to perform its task (so it may let the user select an item from a com-
plex menu or perform any other action, which requires more than a
single press-release activity). The example of the first, simple kind
of an ability is the ObjectMovement ability, which moves an ob-
ject in space. After the activation of the ability, the object starts to
move according to the pointer movement and the object movement
stops with the ability deactivation. The user may also turn on the
snapping to the nearest objects to make positioning simpler. This
feature is controlled by the fingers of the other hand.

An example of the latter, more complex editing ability is the ability
for the editing of the connection. With the activation of the ability,
the first object is selected (”the sender” in the connection). Then the
user is expected to move the pointer over the second object, which
will act as ”the receiver”. After the finger release, the second object
is selected and the ability remains active. Instead of deactivating,
the menu with possible connection options is displayed. The users
can select existing connection to delete it or they can create new
connection from the list of the available options.

6 Example of Usage

Let us consider a simple real-life example of a task: Two objects in
a scene are parts of an interaction. The first object is used to trigger
a function of the second object. This might happen when a switch
is triggering a light bulb or in a slightly more complex situation
when a button causes opening of a car’s boot. In the car example if
the objects are already in place we only need to add two abilities to
the objects, set them up and connect one to another. This could be
represented by about 20 lines in the configuration file, but it can be
created much more easily in the editor. The schematic view of the
used components is presented on the Figure 9.

The first thing that needs to be done is to set up the animation of
the boot. This is very simple thanks to the AnimatorEditor editing
ability. This ability can set current object position, orientation and
scale as a starting or ending transformation of the animation. The
Animator ability realizes the animation by interpolating between
these extremes to produce a smooth movement over time. The user
only needs to position the opening part of the car’s body properly
and save its state as the starting transformation, then reposition it



Button Car’s bootObjects

UseToTriggerAbilities Animator

Figure 9: An example of connecting two objects so that using one
object will trigger an animation of the second object.

and save the transformation again, but as a final transformation.

After setting up the animation, users have to add the UseToTrigger
ability to the trigger object and connect its output to the input of
the Animator ability. Both of the mentioned actions can user do
using the menu evoked by the AbilityEditor editing ability. The
UseToTrigger ability transforms the Use signal (emitted when the
user interacts with an object) to the Trigger signal (emitted when
controlling other objects).

7 Conclusions and Future Work

We have presented the VRECKO virtual reality system that is ex-
tensible and allows us to create various interactive applications. To
exhibit its extensibility we have described an editor that was created
as an ordinary application based on this system. The editor is able
to help us with the creation of the new applications or scenes and is
easily extensible by writing of new editing abilities.

We designed the editor to be as easy to use as possible to support
ordinary tasks. Furthermore, users can edit the application within
the virtual environment, which makes the editing more straightfor-
ward and allows ”novice” users to work in the application only with
a short training.

There are a number of possible improvements, mainly in the editor
ergonomics, as we would like to make the editing as user-friendly as
possible. We intend to implement an advanced snapping algorithms
to make the positioning easier (an another approach to constraint-
based editing). We would also like to reduce the necessity of the
user movements by using object references, which would be avail-
able at any time (possibly as analogy of a multiple clipboards).

8 Acknowledgements

This work has been supported by the Ministry of Education, Youth
and Sports of the Czech Republic under the research program
LC06008 (Center for Computer Graphics).

References

BIERBAUM, A., JUST, C., HARTLING, P., MEINERT, K., BAKER,
A., AND CRUZ-NEIRA, C. 2001. Vr juggler: A virtual platform
for virtual reality application development. In VR ’01: Proceed-
ings of the Virtual Reality 2001 Conference (VR’01), IEEE Com-
puter Society, Washington, DC, USA, 89.

GROSSMAN, T., BALAKRISHNAN, R., KURTENBACH, G., FITZ-
MAURICE, G., KHAN, A., AND BUXTON, B. 2001. Interac-
tion techniques for 3d modeling on large displays. In I3D ’01:
Proceedings of the 2001 symposium on Interactive 3D graphics,
ACM Press, New York, NY, USA, 17–23.

HOLM, R., STAUDER, E., WAGNER, R., PRIGLINGER, M., AND

VOLKERT, J. 2002. A combined immersive and desktop author-
ing tool for virtual environments. In VR ’02: Proceedings of the
IEEE Virtual Reality Conference 2002, IEEE Computer Society,
Washington, DC, USA, 93.

HUBBOLD, R., COOK, J., KEATES, M., GIBSON, S., HOWARD,
T., MURTA, A., WEST, A., AND PETTIFER, S. 2001.
Gnu/maverik: A microkernel for large-scale virtual environ-
ments. Presence: Teleoper. Virtual Environ. 10, 1, 22–34.

KAPOLKA, A., MCGREGOR, D., AND CAPPS, M. 2002. A unified
component framework for dynamically extensible virtual envi-
ronments. In CVE ’02: Proceedings of the 4th international
conference on Collaborative virtual environments, ACM Press,
64–71.

OLIVEIRA, M., CROWCROFT, J., AND SLATER, M. 2003. An in-
novative design approach to build virtual environment systems.
In EGVE ’03: Proceedings of the workshop on Virtual environ-
ments 2003, ACM Press, 143–151.

OSAWA, N., AND ASAI, K. 2003. An immersive path editor for
keyframe animation using hand direct manipulation and 3d gear-
box widgets. In IV ’03: Proceedings of the Seventh International
Conference on Information Visualization, IEEE Computer Soci-
ety, Washington, DC, USA, 524.

OSAWA, N., AND REN, X. 2003. Gearbox widget for fine ad-
justments by hand motion. In EGVE ’03: Proceedings of the
workshop on Virtual environments 2003, ACM Press, New York,
NY, USA, 313–314.

OSAWA, N., ASAI, K., AND SAITO, F. 2002. An interactive toolkit
library for 3d applications: it3d. In EGVE ’02: Proceedings of
the workshop on Virtual environments 2002, Eurographics Asso-
ciation, Aire-la-Ville, Switzerland, Switzerland, 149–157.

Openscenegraph. www.openscenegraph.org.

OŠLEJŠEK, R., AND SOCHOR, J. 2003. Generic rendering archi-
tecture. In Conference Proceedings 2003 Theory and Practice of
Computer Graphics, IEEE Computer Society.

OŠLEJŠEK, R., AND SOCHOR, J. 2005. A flexible, low-level scene
graph traversal with explorers. In SCCG ’05: Proceedings of the
21st spring conference on Computer graphics, ACM Press, New
York, NY, USA, 203–210.

TANRIVERDI, V., AND JACOB, R. J. 2001. Vrid: a design model
and methodology for developing virtual reality interfaces. In
VRST ’01: Proceedings of the ACM symposium on Virtual reality
software and technology, ACM Press, 175–182.


